用户名: 密码: 验证码:
游泳运动应激下Ⅱ型糖尿病大鼠HPA轴功能变化与糖脂代谢的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的:探讨大鼠经高脂膳食加STZ联合诱导复制型糖尿病模型后,游泳运动对其的改善作用及HPA轴中枢调节在其中的影响,并为防治Ⅱ型糖尿病运动处方的制定提供必要的理论依据。研究方法:50只8周龄SPF级雄性SD大鼠,随机分为安静对照组(C组)、模型8周对照组(M8组)、模型16对照周组(M16组)、模型+运动8周组(ME8组)和模型+运动16周组(EE16组)。实验共进行16周,各运动组大鼠每天进行1次自由游泳运动,大鼠进行不负重游泳训练,训练时间为第1周15min/day,游泳时间以每周15min递增延长,直到延长至60min/day,游泳训练时间共16周,每周训练5天。8周或16周后,用酶免法测定大鼠血胰岛素、血清皮质酮(C)血清脑源性神经营养因子(BDNF)含量;用自动生化仪测定大鼠血糖、血脂含量。研究结果:(1)模型组(M8、M16组)均较正常对照组(C组)之间血清皮质酮含量增加,随着时间的延长呈上升趋势,前者之间具有显著性差异(P<0.05),后者之间具有极显著性差异(P<0.01);(2)ME16组较M16组血清皮质酮水平下降,且具有显著性差异(P<0.05),ME8组较M8组血清皮质酮水平下降,但无显著性差异(P>0.05);(3)模型组(M8、M16)较正常对照组之间血清BDNF含量降低,且前者具有显著性差异(P<0.05),后者之间具有极显著性差异(P<0.01);(4)ME8组较M8组血清BDNF水平有所增加,但两者之间无显著性差异(P>0.05),ME16组较M16组血清BDNF含量明显增加,且具有极显著性差异(P<0.01);(5)模型组(M8、M16)与正常对照组之间血糖、血脂含量明显上升,且均有极显著性差异(P<0.01);(6)ME8组较M8组血糖含量明显下降,且具有极显著性差异(P<0.01),ME16组较M16组血糖含量下降,且具有显著性差异(P<0.05),运动组较模型组血脂含量明显下降,且均具有显著性差异(P<0.05),但M8与M16、ME8与ME16之间血脂含量无显著性差异(P>0.05);(7)各指标间的相关性分析,血清皮质酮与血胰岛素、血糖的相关程度极高,r值分别为0.84、0.96,但与血脂呈负相关,r值为﹣0.45;血清BDNF与血糖的相关系数为0.86,两者呈高度正相关,而与血胰岛素为中度相关,r值为0.55,与血脂呈负相关,r值为﹣0.32。研究结论:(1)5周高脂膳食加腹腔注射小剂量(35mg/kgbw)链脲佐菌素(STZ)可以成功复制2型糖尿病大鼠模型;(2)糖尿病模型组较正常对照组血糖、血脂含量均急剧升高,表现为糖脂代谢紊乱,引起外周皮质酮持续高水平的HPA轴功能紊乱,且血清BDNF的表达受抑制;(3)8周和16周游泳运动均可有效降低糖尿病大鼠的血糖、血脂水平,改善糖脂代谢紊乱;(4)16周游泳运动较8周游泳运动的效果更明显,这种改善可能与长期游泳运动引起的皮质酮水平降低、BDNF水平升高的中枢调节机制密切相关。
Objective:Discuss rat diabetic model induced by STZ and high fat diets, anddiscover impacts from swimming and HPA axis center regulation; Provide theoreticsupport for developing exercise prescription against type2diabetes.Methods: Put50SD male rats(SPF class)with8weeks old into groups including: normal controls(group C), model group after8weeks(M8group), model group after16weeks(M16group), model group with exercises after8weeks(ME8group) and modelgroup with exercises after16weeks(ME16group). The experiment will last for16weeks during which rats in all groups will swim everyday without burden. Duration is15min/day in the first week and will increase by15min every week until60min/day.Swim training will last for16weeks with5days a week. After8weeks and16weeks,use enzyme immunoassay method to determine plasma insulin level, serumcorticosterone level and BDNF level; use automatic biochemical analyzer to determineblood glucose and lipids level. Results:(1)5weeks high fat diet with injecting smalldose STZ (35mg/kgbw) into abdominal cavity can successfully duplicate rat modelwith type II diabetes;(2)Compared with normal control C, the serum corticosteronelevel in M8and M16has increased. And it is on a rise trend along with the time. Theformer one has significant difference (P<0.05). And the latter one has extremedifference (P<0.01);(3) Group M16and group ME16have significant difference(P<0.05). No significant difference can be found in serum corticosterone levelbetween group M8and group ME8(P>0.05);(4)Compared with normal control,Serum BDNF level in M8and M16has decreased. And the former one has significantdifference (P<0.05). And the latter one has extreme difference (P<0.01). SerumBDNF level in ME8has increased more than that of M8, but no significant difference can be found (P>0.05). In contrary with M16, Serum BDNF level in ME16hasincreased significantly with extreme difference(P<0.01);(5)Compared with normalcontrol, blood glucose and lipids level in M8and M16has increased significantly withextreme difference(P<0.01);(6)Blood glucose level between group M8and groupME8has extreme difference (P<0.01). Meanwhile, significant difference in bloodglucose level can be found between group M16and ME16(P<0.05). Blood lipids levelbetween exercise group and model group has significant difference (P<0.05). Nosignificant difference can be identified in blood lipids level between group M8andM16, ME8and ME16respectively;(7)Correlation analysis of all kinds of index.Serum corticosterone level has high degree of correlation with plasma insulin level,blood sugar level and blood serum BDNF. The r value is0.84,0.96and0.84respectively. However, it has a negative correlation with blood lipids with an r value of-0.45. Blood serum BDNF has a high degree of positive correlation (r=0.86) withblood sugar level but a middle positive correlation(r=0.55) with plasma insulin level.It has a negative correlation with blood lipids level with a r value of-0.32.
     Conclusions:(1)5weeks high fat diet with injecting small dose STZ(35mg/kgbw) into abdominal cavity can successfully duplicate rat model with type IIdiabetes;(2) Compared with normal controls, rats in model groups have reflectedglycolipid metabolic disorder featured by soaring blood glucose and lipids level.Consequently,peripheral sustained high corticosterone level cause HPA axis functionaldisorder. And expression of serum BDNF is inhibited.(3)8weeks swim and16weeks swim can effectively decrease the blood glucose and lipids level, and ease themetabolic disorder.(4) Improvements in ME16group are more substancial whichmay contributed by central control mechanisms featured by low corticosterone level andhigh BDNF level after long term swim exercises.
引文
[1]杨宏,鞠躬.细胞因子与下丘脑-垂体-肾上腺轴[J].神经解剖学杂志,1996,12(1):70-74.
    [2]乔玉成.神经-内分泌-免疫网络在健身运动中的整合调控作用[J].山西师大体育学院学报,2002,17(1):74-79.
    [3]柏树令主编.系统解剖学[M].北京:人民卫生出版社,2005:371.
    [4] Jiang X et al.Impaired hypothalamic-pituitary-adrenal axis and its feedbackregulation in serotonin transporter knockout mice[].Psychoneuroendocrinology,2009,34:317-331.
    [5]蒋春雷,路长林主编.应激医学[M].上海:上海科学技术出版社,2006,38-39.
    [6] Alexander M.Efanov,David G.Barrett,Martin B.Brenner,et al.A NovelGlucokinase Activator Modulates Pancreatic Islet and Hepatocyte Function[J].Endocrinology,2005,146(9):3696-3701.
    [7] Perego C,Vetrugno GC,De Simoni MG,et al.Aging prolongs the stressinduced release of noradrenaline in rat hypothalamus[J].Neurosci Lett,1993,157(2):127-130.
    [8] Riancho JA,Zarrabeitia MT,Amado JA,et al.Age-related differences incytokine secretion[J].Gerontol,1994,40(3):8-19.
    [9] John CD,Buckingham JC.Cytokines:regulation of the hypothalamo–pituitary-adrenocortical axis[J].Curr Opin Pharmacol,2003,3(1):78-91.
    [10] Bao A M, Hestiantoro A, Van Someren E J, et al. Colocalization ofcorticotropin-releasing hormone and oest rogen receptor-alpha in the paraventricularnucleus of the hypothalamus in mood disorders[J]. Brain,2005,128(6):1301-1313.
    [11]王斌.运动对HPA轴分泌、海马相关蛋白及信号分子作用的研究[D].上海:华东师范大学,2008.
    [12]韩晓春.下丘脑-垂体-肾上腺在慢性应激中的作用[J].医学综述,2006,12(2):73-75.
    [13]朱泽华.电针结合淫羊藿总黄酮对外源性皮质醇引起大鼠海马损伤的影响及机制[D].上海:复旦大学中西医结合基础,2006.
    [14]杨硕,崔红生,何丰华,等.三步序贯法对激素干预后哮喘大鼠模型HPA轴功能的影响[J].中华中医药杂志,2007,22(3):159-161.
    [15]贾宝辉,李志刚,时宇静,等.电针对慢性应激模型大鼠行为学及HPA轴相关激素的影响[J].针刺研究,2004,29:252-256.
    [16]章汝霜,李启富.下丘脑-垂体-肾上腺轴与糖尿病[J].国际病理科学与临床杂志,2005,25(6):550-552.
    [17]崔慧先主编.系统解剖学[M].北京:人民卫生出版社,2008,2.288-289.
    [18]阎淑枝,李希成,赵帮云等.大鼠海马至额叶、顶叶、颞叶皮层的纤维投射[J].第三军医大学学报,1986,8(2):134-137.
    [19]朱进霞,周祥庭,张华等.大白鼠前脑和脑干向双侧背海马的分枝投射[J].解剖学报,1988,19(3)):261-264.
    [20]金玉祥,张振友,姚敏等.大白鼠海马向外侧隔核的分枝投射—荧光素双标记法[J].白求恩医科大学学报,1992,18(6):530-531.
    [21]迟素敏主编.内分泌生理学[M].西安:第四军医大学出版社,2005:25-48.
    [22]姚泰主编.生理学(第六版)[M].北京:人民卫生出版社,2003,336-348.
    [23]叶建宁,陆建华,熊加祥.海马NMDA受体调节严重烫伤应激后HPA轴兴奋性的相关机制研究[J],中华神经医学杂志.2006,5(10):982-985.
    [24] Meaney M J,Dierio J,Francis D,et al.Postnatal handling increasestheexpression of cAMP inducible transcription factors in the rat hippocampus:the effectsof thyroid hormones and serotonin[J]. Journal of Neuroscience,2000,20:3926-3935.
    [25] Tjurmina OA er al.Exaggerated adrenomedullary response to immobilizationin mice with targeted disruption of the serotonin transporter gene.Endocrinology,2002,143:4520-4526.
    [26]程庆丰.高脂、高糖对HPA轴功能影响及分子机制研究[D].重庆:重庆医科大学,2007.
    [27] Shimabukuro M,Ohneda M,Lee Y,et al.Role of nitricoxide in obesityinduced B cell disease[J].J Clin Invest,1997,100(2):290.
    [28]王晓英,万顺伦.11β-羟基类固醇脱氢酶1在束缚应激大鼠下丘脑及海马的表达[J].实用医药杂志,2010,27(08):727-729.
    [29]史榕荇,秦丽娜,吴茜,等.电针对慢性应激模型大鼠行为学及海马谷氨酸含量影响的研究[J].北京中医药大学学报,2007,30(3):177-180.
    [30]冯昊,陆利民,黄莺,等.阻断NMDA受体可增强皮质醇对海马脑源性神经营养因子表达的抑制:cAMP反应原件结合蛋白的作用[J].生理学报,2005,57(5):544-547.
    [31]陆小香,张蕴琨,江年.力竭运动后大鼠海马CA1区自由基、下丘脑GABA及HPA轴的动态变化[J].中国运动医学杂志,2007,26(5):563-567.
    [32]赖璐华.代谢综合征的研究进展[J].柳州医学,2008,21(2):77-80.
    [33] Panagiotis Anagnostis,Vasilios G.Athyros,Konstantions Tziomalos,et al.ThtPathogenetic Role of Cortisol in the Metabolic Syndrome:A Hypothesis[J].J ClinEndocrinol Metab,2009,94(8):2692-2701.
    [34] Carmilla M.M, Sophie A.Increased sympathetic and decreasedparasympathetic activity rather than changes in hypothalamic-pituitary-adrenal axisactivity is associated with metabolic abnormalitiea[J].Endocrine Research,2010,95(5):2458-2466.
    [35]杜蕾,柳宝华,王友华,等.运动训练对高脂膳食大鼠主动脉M2受体的影响[J].西安体育学院学报,2010,27(1):66-70.
    [36] Ljung T, Holm G, Friberg P, et al.The activity of thehypothalamic-pituitary-adrenal axis and the sympathetic nervous system in relation towaist/hip circumference ratio in men[J].Obesity Research.2000,8(7):487-495.
    [37]邱宁岩,李殿富,张静鑫,等.2型糖尿病患者垂体-肾上腺的变化与胰岛素抵抗[J],放射免疫学杂志.2006,19(6):517-519.
    [38] X.He,P.Xue,X.Xu. Short-Term Administration of ACTH Improves PlasmaLipid Profile and Renal Function in Kidney Transplant Patients[J].TransplantationProceedings,2006,38:1371-1374.
    [39] Chiodini I,Di Lembo S,Morelli V,et al.Hypothalamic-pituitary-adrenalactivity in type2diabetes mellitus:role of autonomic imbalance[J].Metabolism Clinicaland Experimental,2006,55(8):1135-1140.
    [40] R.Rosmond,Bjorntorp P.The hypothalamic-pituitary-adrenal axis activity as apredictor of cardiovascular disease,type2diabetes and stroke[J].Journal of InternalMedicine,2000,247:188-197.
    [41]崔俊芳,张如意.2型糖尿病患者的血浆皮质醇水平的变化与代谢指标的相关分析[J].宁夏医学杂志,2010,32(6):535-537.
    [42]林东源,刘志梅,李剑军,等.2型糖尿病60例下丘脑-垂体-肾上腺功能的变化[J].内科,2009,4(2):235-237.
    [43]张炜,张征,徐尔理,等.2型糖尿病患者下丘脑-垂体-肾上腺功能变化的临床意义[J]. Chinese General Practice,2011,14(9):2881-2883.
    [44] Kleiman A,Tucker mann J P.Glucocorticoid receptor action in beneficial andside effects of steroid therapy:lessons from conditional knockout mice[J].Mol CellEndocrinol,2007,275(1-2):98-108.
    [45] Chakravarty K,Cassuto H,Reshef L,Hanson RW.Factors that control thetissue-specific transcription of the gene for phosphoenolpyruvatecarboxykinase-C[J].Crit.Rev.Biochem,2005,40(3):129-154.
    [46]邬亦华.2型糖尿病与下丘脑-垂体-肾上腺轴[J].国外医学老年医学分册,2008,29:193-196.
    [47] Fruehwald-Schultes B, Kern W, Bong W, et al.SupraphysiologicalHyperinsulinemia Acutely Increases Hypothalamic-Pituitary-Adrenal Secretory Activityin Humans[J].The Journal of Clinical Endocrinology&Metabolism,1999,84(9):3041-3046.
    [48] Benthem L,Keizer K,Wiegman C H,et al.Excess portal venous long-chainfatty acids induce syndrome X via HPA axis and sympathetic activation[J].AmericanJournal of Physiology-Endocrinology&Metabolism.2000,279(6):1286-1293.
    [49] Bruehl H,Rueger M,Dziobek I,et al.Hypothalamic-Pituitary-Adrenal AxisDysregulation and Memory Impairments in Type2Diabetes[J]. The Journal of ClinicalEndocrinology&Metabolism,2007,92(7):2439-2445.
    [50]陈文彬,潘祥林主编.诊断学[M].北京:人民卫生出版社,2008:381-384.
    [51] Lvan Tkac.Treatment of dyslipidemia in patients with type2diabetes:Overview and meta-analysis of randomized trials[J].DiabetesResearch and ClinicalPractice,2007,78:23-28.
    [52]马玲.短期胰岛素强化治疗对初诊2型糖尿病患者HPA轴功能的影响[D].重庆:重庆医科大学,2009.
    [53] Vestergaard H,Bratholn P,Christensen N J.Increments in insulin sensitivityduring intensive treatment are closely correlated with decrements in glucocorticoidreceptor mRNA in skeletalmuscle from patients with type2diabetes[J].Clin Sciclond,2001,101(5):533-540.
    [54] Fabio L,Roberta G,Micaela P,et al.Free fatty acids exert and inhibitoryeffect on adrenocorticotropin and cortisol secretion in humans[J].J Clin Meta,2004,89(3):1385-1390.
    [55]欧杨,李启富,章汝霜,等.游离脂肪酸对正常成人HPA轴功能的影响[J].重庆医科大学学报,2007,32(8):792-795.
    [56] Reimondo G,Allasino B,Bovio S,et al.Evaluation of the effectiveness ofmidnight serum cortisol in the diagnostic procedures for cushing,ssyndrome[J].European Journal of Endocrinology,2005,154(6):803-809.
    [57] Catargei B,Rigalleau V,Poussin A,et al.Occult cushing,s syndrome in type2diabetes[J].European Journal of Endocrinology,2005,153(6):803-809.
    [58] Chamay Y,Cusin I,Vallet P G,et al.Intracerebroventricular infusionof leptindecreases serotonin transporter binding sites in thefrontal cortex of the rat[J].NeurosciLett,2000,283(2):89-92.
    [59] Wilson M E,Fisher J,Brown J.Chronic subcutaneous leptin infusiondiminishes the responsiveness of the hypothalamic-pituitary-adre nal(HPA) axis infemale rhesus monkeys[J].Physiol Behav,2005,84(3):449-458.
    [60] Leal-Cerro A,Soto A,Martinez M A,et al.Influence of cortisol status onleptin secretion[J].pituitary,2001,4(1-2):111-116.
    [61] Sandoval D A,Davis S N.Leptin:metabolic control and regulation[J].DiabetesCanplications,2003,17(2):108-13.
    [62] Ho B,Andreasen N,Dawson J,et al. Association between brain-derivedneurotrophic factor Val66Met gene polymorphism and progressive brain volumechanges in schizophrenia[J].Psychiatry,2007,164:1890-1899.
    [63] Stranahan A,Arumugam T,Mattson M. Lowering corticosterone levelsreinstates hippocampal brain-derived neurotropic factor and Trk B expression withoutinfluencing deficits in hypothalamic brain-derived neurotropic factor expression inleptin receptor deficie nt mice[J].Neuroendocrinology,2011,93(1):58-64.
    [64] Stocker C J, Cawthome M A. The influence of leptin on early lifeprogramming of obesity[J].Trends Biotechnol,2008,26(10):545-551.
    [65] Xu B,Goulding E,Zang K,et al. Brain-derived neurotrophic factor regulatesenergy balance dowmstream of melanocortin-4receptor[J].Nat Neurosci,2003,6:736-742.
    [66] Nicholson J,Peter J,Lecourt A,et al.Melanocortin-4receptor activationstimulates hypothalamic brain-derived neurotrophic factorrelease to regulate foodintake, body temperature and cardiovascular function[J].Journal ofNeuroendocrinology,2007,19:974-982.
    [67]谢敏豪,冯伟权,严翊主编.运动内分泌学[M].北京:北京体育大学出版社,2008,7:1-9.
    [68]陈佩杰.运动训练后神经分泌功能的变化[J].体育科学.1996,(1):56-60.
    [69]戴志燕.运动对人体内分泌机能的影响[J].南京体育学院学报(自然科学版),2005,4(4):15-16.
    [70] Buemann B,et al. Effects of exercise training on abdominal obesity andrelated metabolic complications[J]. Sport-med,1996,21(3):191-212.
    [71]马山坡.传统保健疗法-艾灸对运动大鼠血睾酮、胰岛素及部分血清酶影响的实验研究[J].山东体育学院学报,2009,25(8):62-64.
    [72] Wadley GD, Tunstall RJ, SanigorskiA, et al. Differential effects ofexercise on insulin2signaling gene exp ression in human skele tal muscle[J]. JApply Phsiol,2001,90(2):436-440.
    [73]陈佩杰,任杰,刘无逸等.强化训练后血浆β-内啡肽及生长抑素与T淋巴细胞及其亚群的关系[J].上海体育学院学报,1995,19(4):24-28.
    [74] Karege F,Schwald M,Cisse M.Postnatal development profile of brain-derived neurotrophic factor in rat brain and platelets.Neurosc i Lett,2002,328(3):261-264.
    [75] Trajkovska V,Marcussen A,Vinberg M,et al. Measurements of brain-derivedneurotrophic factor:methodological aspects and demographical data[J].Brain Res Bull,2007,73:143-149.
    [76] Rasmussen P,Brassard P,Adser H,et al. Evidence for a release ofbrain-derived neurotrophic factor from the brain during exercise[J].Exp Physiol,2009,94:1062-1069.
    [77] Yarrow J,White L,McCoy S,et al. Training augments resistance exerciseinduced elevation of circulating brain-derived neurotrophic factor(BDNF)[J].NeurosciLett,2010,479:161-165.
    [78] Schiffer T,Schulte S,Sperlich B,et al. Lactate infusion at rest increasesBDNF blood concentration in humans[J].Neuroscience Letters,2011,488:234-237.
    [79] Goekint M,Roelands B,De Pauw K,et al. Does a period of detraining causea decrease in serum brain-derived neurotrophic factor[J].Neurosci Lett,2010,486(3):146-149.
    [80] Liu HL,Zhao G,Cai K,et al. Treadmill exercise prevents decline in spatiallearning and memory in APP/PSI transgenic mice thronghimprovement of hippocampallong-term potentiation[J].Behav BrainRes,2011,218(2):308-314.
    [81] Lin J C,Tsao D,Barras P,et al. Appetite enhancement and weight gain byperipheral administration of Trk B agonists in Non-Human Primates[J].Plos One,2008,3(4):1900.
    [82] Nakagawa T,Tsuchida A,Itakura Y,et al.Brain derived neurotrophic factorregulates glucose metabolism by modulating energy balance in diabeticmice[J].Diabetes,2000,49(3):436-444.
    [83] Tapia-Arancibia L,Rage F,Givalois,et al. Physiology of BDNF;focus onhypothalamic function[J].Front Neuroendocrinol,2004,25(2):77-107.
    [84] Hanyu O,Yamatani K,Ikarashi T,et al. Brain-derived neurotrophic factormodulates glucagon secretion from pancreatic alphacells:its contribution to glucosemetabolism[J].Diabetes Obes Metab,2003,5(1):27-37.
    [85] Byerly M S,Simon J,Lebihan-Duval E,et al. Effects of BDNF,T3andcorticosterone on expression of the hypothalamic obesity gene ne twork in vivo and invitro[J].Am J Physiol Regul Integr Comp Phy siol,2009,296(4):1180-1189.
    [86]刘亚平,季虹,荣海钦,等.不同性别大鼠在2型糖尿病造模过程中的稳定性[J].中国实验动物学报,2008,16(1):52-55.
    [87]王保伟,李颖,刘晓红,等.高脂饲料喂养时间及链脲佐菌素剂量对实验型2型糖尿病大鼠造模的影响[J].卫生研究,2011,40(1):99-106.
    [88]刘长青,宋立江,蒋东升,等.不同种属和禁食时间对链脲佐菌素诱导糖尿病模型的影响研究[J].实用预防医学,2010,17(2):377-378.
    [89]梁海霞,原海燕,李焕德,等.高脂喂养联合低剂量链脲佐菌素诱导的2型糖尿病大鼠模型稳定性观察[J].中国药理学通报,2008,24(4):551-554.
    [90]向雪松,王竹,祝宇铭,等.链脲佐菌素注射剂量对建立2型糖尿病大鼠模型的影响[J].卫生研究,2010,39(2):138-142.
    [91]黄焱,陈恩玉,陈雅芬,等.链脲佐菌素结合高糖高脂饮食诱导2型糖尿病大鼠模型[J].实用医学杂志,2010,26(13):2299-2301.
    [92]蒋朝晖,吕玉晶,赵芬,等.高脂高糖饮食结合链脲佐菌素建立2型糖尿病大鼠模型的改良[J].中国比较医学杂志,2011,21(1):33-44.
    [93]郭俊秀,武华,高向东.链脲佐菌素加膳食高脂高糖饲料诱导的2型糖尿病大鼠模型的验证[J].现代生物医学,2009,10(2):51-52.
    [94]李国生,刘栩晗,朱华,等.链脲佐菌素和高脂饮食诱导2型糖尿病中国地鼠模型的建立和稳定性观察[J].中国比较医学杂志,2007,17(9):497-500.
    [95]王雪芹,王军力.有氧运动及白藜芦醇对2型糖尿病大鼠TNF-α、IL-6、WBC和脾脏系数的影响[J].广州体育学院学报,2012,6(32):85-88.
    [96] Tsuchida A,Nonomura T,Nakagawa T,et al. Brain-derived neurotrophicfactor ameliorates lipid metabolism in diabetic mice[J].Diabetes Obes Metab,2002,4:262-269.
    [97] Rao A,Sridhar G,Srinivas B,et al. Bioinformatics analysis of functionalprotein sequences reveals a role for brain-derived neurotrophic factor in obesity andtype2diabetes mellitus[J].Med Hypotheses,2008,70(2):424-429.
    [98] Unger T J,Calderon G A,Bradley L C,et al. Selective deletion of Bdnf in theventromedial and dorsomedial hypothalamus of adult mice results in hyperphagicbehavior and obesity[J].J Neurosci,2007,27(52):14265-14274.
    [99] Karandrea P,Kittas C,Kitraki E. Forced swimming differentially affects maleand female brain corticosteroid receptors[J].Neuroendocrinology,2002,75(4):217-226.
    [100] liu X,yang le J,Fan SJ,et al.Swimming exercise effects on the expressionof HSP70and iNOS in hippocampus and prefrontal cortex in combinedstress[J].Neuroscience Letters,2010,476(2):99-103.
    [101] Sigwalt AR,Budde H,Helmich I,et al.Molecular aspects involved inswimming exercise training reducing anhedonia in a rat model ofdepression[J].Neuroscience,2011,192:661-674.
    [102] Joan C Han,Qingrong Liu,Mary Pat Jones,et al. Brain-derived neurotrophicfactor and obesity in the WAGR syndrome[J].NEngl J Med,2008,28,359(9):918-927.
    [103] Cao L,Lin E J,Cahill M C,et al. Molecular therapy of obesity and diabetesby a physiological autoregulatory approach[J].Nat Med,2009,15:447-454.
    [104] Fox E,Byerly M. A mechanism underlying mature-onset obesity;evidencefrom the hyperphagic phenotype of brain-derived neurotrophic fator mutants[J].Am JPhysiol,2004,286:994-1004.
    [105] Tsuchida A,Nonomura T,Nakagawa T,et al. Brain-derived neurotrophicfactor ameliorates lipid metabolism in diabetic mice[J].Diabetes Obes Metab,2002,4:262-269.
    [106] Yamanaka M,Itakura Y,Inoue T,et al. Protective effect of brain-derivedneurotrophic factor on pancreatic islets in obese diabetic mice[J].Metabolism,2006,55:1286-1292.
    [107] Tsuchida A,Nakagawa T,Itakura Y,et al. The effects of brain-derivedneurotrophic factor on insulin signal transduction in the liver of diabetic mice[J].Diabetologia,2001,44:555-566.
    [108] Yamanaka M,Tsuchida A,Nakagawa T,et al. Brain-derived neurotrophicfactor enhances glucose utilization in peripheral tissues of diabetic mice[J].Diabetes,Obesity and Metabolism,2007,9:59-64.
    [109] Liu HL,Zhao G,Cai K,et al. Treadmill exercise prevents decline in spatiallearning and memory in APP/PSI transgenic mice throughimprovement of hippocampallong-term potentiation[J].Behav BrainRes,2011,218(2):308-314.
    [110] Chen M,Russo-Neustadt A. Running exercise-induced up-regulation ofhippocampal brain-derived neurotrophic factor is CREB-depend ent[J].Hippocampus,2009,19(10):962-972.
    [111] Goekint M,Roelands B,De Pauw K,et al. Does a period of detraining causea decrease in serum brain-derived neurotrophic factor?[J].Neurosci Lett,2010,486(3):146-149.
    [112] Chakravarty K,Cassuto H,Reshef L,Hanson RW.Factors that control thetissue-specific transcription of the gene for phosphoenolpyruvatecarboxykinase-C[J].Crit.Rev.Biochem,2005,40(3):129-154.
    [113]程庆丰.高脂、高糖对HPA轴功能影响及分子机制研究[D].重庆:重庆医科大学,2007.
    [114] Shimabukuro M,Ohneda M,Lee Y,et al.Role of nitricoxide in obesityinduced B cell disease[J].J Clin Invest,1997,100(2):290.
    [115] Naert G,Ixart G,Maurice T,et al.Brain-derived neurotrophic facto r andhypothalamic-pituitary-adrenal axis adaptation processes i n a depressive-like stateinduced by chronic restraint stress[J]. Molecular&cellular Neurosciences,2011,46(1):55-66.
    [116]程瑞彬,朱亦堃.2型糖尿病合并抑郁的发病率及相关危险因素分析[J].山西医药杂志,2011,40(8):775-777.
    [117]孙艳,马维青,孔晓明,等.2型糖尿病合并抑郁患者血皮质醇水平变化的研究[J].安徽医科大学学报,2007,42(1):70-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700