禽类海马结构直接投射于小脑各叶的神经元定位—辣根过氧化物酶(HRP)逆行追踪法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验研究以粤禽黄鸡、成年鸽、仙湖白鸭为试验材料,采用HRP逆行追踪法,将50% HRP溶液分别注射青年鸡小脑Ⅳ、Ⅴ、Ⅵ、Ⅶ、Ⅷ、Ⅸ各叶,成年鸡、鸽、鸭同时注射小脑Ⅵ、Ⅶ、Ⅷ三叶,逆行追踪直接投射于禽类小脑各叶的起始神经元。对端脑及间脑、脑干及小脑进行冰冻切片,TMB呈色,观察脑内标记细胞出现的位置。结果表明:
     (1)在青年鸡小脑分别注射Ⅳ、Ⅴ、Ⅵ、Ⅶ、Ⅷ、Ⅸ各叶,除第Ⅸ叶外,双侧端脑的海马结构的旁海马内侧区(APHm)出现大量标记细胞,海马(HP)、旁海马中间内侧区(APHim)、旁海马中间外侧区(APHil)、旁海马外侧区(APHl)以及后背外侧区(CDL)均无标记细胞出现。标记细胞集中而密度稍大,在APHm分布范围长约5~11㎜,海马被标记区域约占海马总长度的40%以上。横断面观,见标记细胞分布于一个较小的区域,集中而密度稍大。细胞以球形为主,以接近脑室面一侧标记渐浅,细胞内酶标物不完全充满细胞,多在核周呈半月状分布,标记细胞直径大小为18.78±2.79μm。
     (2)在青年鸡小脑分别注射Ⅳ、Ⅴ、Ⅵ叶,在隔核偶尔出现少量逆标细胞,主要见于外侧隔核的背侧部,标记较疏淡。标记细胞体积较小,细胞直径平均大小约12.84±1.54μm。
     (3)在青年鸡随着注射点由Ⅳ叶到Ⅸ叶的后移,APHm出现标记细胞的可能性渐小。小脑前核群,包括延髓大细胞网状核、前庭降束核、下橄榄核、三叉下核、内外侧桥核、中脑的内侧螺旋核、被盖背侧核、豆状核等标记的可能性相应地增大。
     (4)在成年鸡将HRP同时注射于Ⅵ、Ⅶ、Ⅷ三叶,APHm和外侧隔核以及小脑前核群中的大细胞网状核、前庭降束核、下橄榄核、内外侧桥核、中脑的豆状核、内侧螺旋核等均出现标记细胞。
     (5)在鸽将HRP同时注射于Ⅵ、Ⅶ、Ⅷ三叶,在端脑内海马区无标记细胞出现,而外侧隔核有标记细胞出现,小脑前核群中的大细胞网状核、前庭降束核、下橄榄核、内外侧桥核、楔束外侧核、三叉神经脊束核、中脑的豆状核、内侧螺旋核等亦有标记细胞。
     (6)在鸭将HRP同时注射于Ⅵ、Ⅶ、Ⅷ三叶,在端脑内海马区和外侧隔核均无标记细胞出现,小脑前核群中的中脑的豆状核、内侧螺旋核等有标记细胞。
     用辣根过氧化物酶(HRP)逆行追踪法对直接投射于禽类小脑各叶的起始神经元进行定位研究,研究结果表明,在端脑,鸡存在海马向小脑的直接投射,这种投射主要终止于小脑的前叶、中叶;鸡和鸽存在隔核向小脑的直接投射。此外,在小脑前核群,对于几种实验动物均不同程度地有向小脑的直接投射,结果与前人对哺乳动物的研究相似。本研究结果还表明,在成年鸽和鸭端脑不存在海马向小脑的直接投射,关于该问题还有待于进一步深入研究。
To determine the existence and the topographic territories of direct hippo-cerebellar projections in chicken.Solution of 50% HRP(horseradish peroxidase ) were injected into the foliaⅣthroughⅨof the cerebellum in youth chickens, and injected into the foliaⅥ,ⅦandⅧof the cerebellum in adult chickens and pigeons and ducks,respectively, for retrograde tracing the origins of the cerebrum projection to the cerebellum. Carried out the frozen sections for cerebrum and brain stem and cerebellum,stained with TMB,we observed the location of the labelled cells. The results indicated that:
     (1)A lot of labeled cells were observed in the parahippocampal area(APHm) of the bilateral hippocampal formation after injected in foliumⅣ~Ⅸexcept foliumⅨin youth chickens. In other areas the labeled cells weren’t observed.The density of labeled cells was centered and large,the length was 5~12㎜.The labeled area accounted more than 40% of the length.The cells in the dorsomedial hippocampus were labeled heavily and their average size was 18.78±2.79μm。
     (2)In addition, afterⅣthroughⅥfolium injection small number of labelled cells were also found in the lateral septal nucleus .The cells in the in the septal nucleus were labeled lightly and their average size was 12.84±1.54μm.
     (3)With the injection site shifted from foliumⅣtoⅨ, the possibility of the APHm being labeled gradually declined ,but that of the pre-cerebellar nuclei ,including Nuc. magnocellular reticular, Nuc. parvocellular reticular , Nuc.vestibularis descendens, Nuc. inferior olivary, Nuc. inferiorin trigeminal, Nuc.pontine and Nuc. spiriformis medialis increased respectively.
     (4)We observed the labelled cells in APHm, Nuc. septal, Nuc. magnocellular reticular, Nuc. parvocellular reticular , Nuc.vestibularis descendens, Nuc. inferior olivary, Nuc. inferiorin trigeminal, Nuc.pontine and Nuc. spiriformis medialis after injected from foliumⅥtoⅧof adult chickens.
     (5)We observed the labelled cells in Nuc. septal, Nuc. magnocellular reticular, Nuc. parvocellular reticular , Nuc.vestibularis descendens, Nuc. inferior olivary, Nuc. inferiorin trigeminal, Nuc.pontine, Nuc. cuneate lateral , Nuc. spinal of trigeminal and Nuc. spiriformis medialis after injected from foliumⅥtoⅧof pigeons,but didn’t found labeled cells in hippocampus.
     (6)We observed the labelled cells in Nuc. lentiform and Nuc. spiriformis medialis after injected from foliumⅥtoⅧof ducks.But didn’t found labeled cells in hippocampus and Nuc. septal.
     In a word,to determine the existence and the topographic territories of direct hippo-cerebellar projections in poultry. These results indicated that there are direct projections from the hippocampal formation to the rostral and intermedial folia of the cerebellum in chicken and aren’t in pigeon and duck.As in mammal,the septal nucleus have tight connections with hippocampal formation in chicken.About this question will be further studied.
引文
[1]马仲华.家畜解剖学及组织胚胎学[M].北京:中国农业出版社,2001:155-262
    [2]Northcutt R.G. Architectonic studies of the telencephalon of Iguanaiguana [J].Comp. Neurol.1967,130:109-148
    [3]Northcutt R.G. Evolution of the telencephalon in nonmammals[J].Annu.Rev.Neurosci. 1981,4:301-350
    [4]Ulinski P.S. Cortico-septal projections in the snakes Natrix sipedon and Thamnophis sirtalis [J].Comp.Neurol.1975,164:375-388
    [5]Bruce L.L.A.B.Butler Telencephalic connections in lizards.I.Projections to cortex [J].Comp.Neurol.1984,229:585-601
    [6]Olucha F. F. Martínez-García L.Poch W.K. Schwerdtferger and C.Lpóez-García. Projections from the medial cortex in the brain of lizards: Correlation of anterograde and retrograde transport of horseradish peroxidase with Timm staining [J].Comp.Neurol. 1988, 276:469-480
    [7]Martínez-Guijarro F.J. P.J.Berbel A.Molowny and C.Lpóez-García. Apical dendrutic spines and axonic terminals in the bipyramidal neurons of the dorsomedial cortex of lizards(Lacerta).Anat.Embryol.(berl.)1984,170:321-326
    [8]Berbel P.J. Martínez-Guijarro and C.Lpóez-García. Intrinsic organization of the medial cerebral cortex of the lizard Lacerta pityusensis: A Golgi study [J].Morphol.1987,194:275-286
    [9]Karten and Hodos, A stereotaxic atlas of the brain of the pigeon(Columba livia)[M].Baltimore: Johns Hopkins Press,1967
    [10]Kovjanic D. and Redies C.Small-scale pattern formation in a cortical area of the embryonoc chicken telecephalon[J]. The Journal of Comparative Neurology,2003,456:95-104
    [11]Suárez J.,Dávila J.C.,Real M.A.,Guirado S. and Medina M.Calcium-binding proteins,neuronal nitric oxide synthase,and GABA help to distinguish different pallial areas in the developing and adult chicken.Ⅰ.Hippocampal formation and hyperpallium[J]. The Journal of Comparative Neurology,2006,497:751-771
    [12]Bingman V.P. Bagnoli P. IoalèP. Casini G. Homing behavior of pigeons after telencephalic ablations.Brain Behav Evol.1984,24:94-108
    [13]Bingman V.P. IoalèP. Casini G. Bagnoli P. Impaired retention of preoperatively acquired spatial reference merory in homing pigeons following hippocampal ablation.Behav Brain Res.1987,24:147-156
    [14]Alerstam T. Bird migration. Christie DA, translator. Cambridge: Cambridge University Press.1990
    [15]Berthold P. Bird migration: a general survey. 2nd ed. Oxford: Oxford University Press.2001
    [16]Kamil A.C. Balda R.P. Spatial memory in seed-caching corvids. Psychol Learn Motiv.1990,26:1-25
    [17]Shettleworth S.J. Spatial memory in food-storing birds. Phil Trans RSoc Lond Biol Sci.1990,329:143-151
    [18]Sherry D.F. Duff S.J. Behavioural and neural bases of orientation in food-storing birds.J Exp Biol.1996:165-172
    [19]Kramer G. Recent experiments on birds orientation.Ibis 1959,101:399-416
    [20] Berthold P. editor. Orientation in birds. Basel: Birkh?user-Verlag.1991
    [21]Squire L.R. Memory and the hippocampus: a synthesis from findings with rats,monkeys,and humans.Psychol Rev.1992,99:195-231
    [22]Wood E.R. Dudchenko P.A. Robitsek R.J. Eichenbaum H. Hippocampal neurons encode information about different types of memory episodes occurring in the same location.Neuron.2000,27:623-633
    [23]Amaral D.G. Witter M.P. Hippocampal formation. In: Paxinos G,editor.The rat nervous system. New York: Academic Press.1995,443-493
    [24]Sherry D.F. Vaccarino A.L. hippocampus and memory for food caches in black-capped chickadees. Behav Neurosci.1989,103:308-318
    [25]Sherry D.F. Jacobs L.F. Gaulin S.J.C. Spatial memory and adaptive specialization of the hippocampus. Trends Neurosci.1992,15:298-303
    [26]Good M. Macphail E.M. The avian hippocampus and short-term memory for spatial and non-spatial information.Q J Exp Psychol.1994,47B:293-317
    [27]Gagliardo A. IoalèP. Bingman V.P. Homing in pigeons: the role of the hippocampal formation in the representation of landmarks used for navigation [J].Neurosci 1999,19:311-315
    [28]Colombo M. Broafbent N.J. Is the avian hippocampus a functional homologue of the mammalian hippocampus? Neurosci Biobehav Rev.2000,24:465-484
    [29]Colombo M. Broafbent N.J. Taylor C.S.R. Frost N. The role of the avian hippocampus in orientation in space and time. Brain Res.2001,919:292-301
    [30]Benowitz L.I. Karten H.J. The tractus infundibuli and other afferents to the parahippocampal region of the pigeon.Brain Res.1976,102:174-180
    [31]Krayniak P.F. Siegel A. Efferent connections of the hippocampus and adjacent regions in the pigeon.Brain Behav Evol.1978,15:372-388
    [32]Casini G. Bingman V.P. Bangnoli P. Connections of the pigeon dorsomedial forebrain studies with WGA-HRP and H-proline [J].Comp.Neurol.1986,245:454-470
    [33]Andrea D.Székel Y. Krebs J.R. Efferent connectivity of the hippocampal formation of thezebra finch ( Taenopygia guttata): an anterograde pathway tracing study using phaseolus vulyaris leucoagglutin [J].Comp.Neurol.1996,368:198-214
    [34]Atoji Y. Wild J.M. Yamamoto Y. Suzuki Y. Intratelencephalic connections of the hippocampus in pigeons(Columba livia) [J].Comp.Neurol.2002,447:177-199
    [35]Kahn M.C. HoughⅡG.E. Eyck G.R.T. Bingman V.P. Internal connectivity of the homing pigeon (Columba livia ) hippocampal formation: an anterograde and retrograde tracer study [J].Comp.Neurol.2003,459:127-141
    [36]Atoji Y. Wild J.M. Fiber connections of the hippocampal formation and septum and subdivisions of the hippocampal formation in the pigeon as revealed by tract tracing and Kainic acid lesions [J].Comp.Neurol.2004,475:426-461
    [37]田九畴.畜禽神经解剖学[M].北京:中国农业出版社,1998:231-232
    [38]林大诚,北京鸭解剖[M].北京:北京农业大学出版社,1994:186
    [39]Okado N,Ito R,Homma S.The terminal distribution pattern of spinocerebellar fibers. An anterograde labelling study in the posthatching chick. Anat Embryol (Berl).1987;176(2):175-182.
    [40]Necker R,Spinal neurons projecting to anterior or posterior cerebellum in the pigeon.Anat Embryol (Berl). 1992,185(4):325-34.
    [41]Tolber D.L. and Panneton W.M. Transient cerebrocerebellar projections in kittens: postnatal development and topography [J].Comp.Neurol.1983,221:216-228;
    [42]Wild JM.and Williams MN. A diret cerebrocerebellar projection in adult birds and rats[J].Neuroscience,2000,96:333-339
    [43]Angelique Pijpers, Richard Apps, Joanne Pardoe,etal.Precise Spatial Relationships between Mossy Fibers and Climbing Fibers in Rat Cerebellar Cortical Zones [J].Neurosci.2006; 26: 12067 - 12080.
    [44] Bloedel J R,Bracha V.Duality of cerebellar motor and cognitive functions.In: Schmahmann J D (Ed.),Intern ational review of neurobiology:The cerebellum and Cognition.San Diego, CA:Academic Press,1997,6l3—634
    [45] Weng X C,Ding Y S,Volkow N D.Imaging the functioning human brain、Proceedings of the National Academy of Sciences of the United States of America,1999,96:l1073-11074
    [46]Bischoff-Grethe A,Ivry R B,Gration S T.Cerebellar involvement in response reassignment rather than attention.The Journal of Neuroscience,2002,22(2):546-553
    [47]Mandolesi L,Leggio M G,Graziano A,et a1.Cerebellar contribution to spatial event processing:involvement in procedural and working memory components. European Journal of Neuroscience,200l,l4(12):20l1-2022
    [48]Vokaer M,Bier J C,Elincx S,et a1.The cerebellum may be directly involved in cognitive functions.Neurology,2002,58(6):967-970
    [49]Claeys K G,Orban G A,Dupont P,et a1.Involvement of multiple functionally distinct cerebellar regions in visual discrimination:a human functional imaging study.Neuroimage,2003,20(2):840-854
    [50]Guenther F H,Ghosh S S,Tourville J A.Neural modeling and imaging of the cortical interactions underlying syllable production.Brain and Language,2005,96(3):280-30l
    [51]Allen G,McColl R, Bamard H,et a1.Magnetic resonance imaging of cerebellar-prefrontal and cerebellar-parietal functional connectivity.Neuroimage,2005,28(1):39-48
    [52]Schmahmaun JD,CaplanD.Cognition,emotion and the cerebellum .Brain,2006,129(2):288-292
    [53]Cui S Z,Li E Z,Zang Y F,et a1.Both sides of human cerebellum involved in preparation and execution of sequential movements.Neuroreport, 2000,1l(17):3849-3853
    [54]Xiang H D,Lin C Y,Ma X H,et a1.Involvement of the cerebellum in semantic discrimination:an fMRI study.Human Brain Mapping,2003,18(3):208-214
    [55]Zang Y F,Jin Z,Weng X C,et a1.Functional fMRI in attention-deficit hyperactivity disorder:evidence for hypofrontaIity.Brain and Develoment,2005,27:544-550
    [56]Zhu Y H,Di H B,Yah Y et a1.Involvement of the cerebellum in sequential finger movement learning:evidence from functional magnetic resonance imaging.Chinese Science Bulletin,2005,50:1887-1891
    [57]Xiao Z W,Lee T M C,Zhang J X,et a1.Thirsty heroin addicts show different fMRI activations when exposed to water-related and drug—related cues.Drug and Alcohol Dependence [J].2006,83(2):157-170
    [58]Cerebellar Control of Balance and Locomotion Morton and Bastian Neuroscientist.2004; 10: 247-259
    [59]Nitschke M E Kleinschmidt A,Wessel et a1.Somatotopie motor representation in the human anterior cerebellum.A high—resolution functional fMRI study.Brain,1996,l19(3):l023-l029
    [60]Desmond J E,Gabrieli J D,Wagner A D,et a1.Lobular patterns of cerebellar activation in verbal working—memory and finger-tapping tasks as revealed by functional fMRI.The Journal of Neuroscience,1997,17 (24):9675-9685
    [61]Lotze M,Montoya Erb M,et a1.Activation of cortical and cerebellar motor areas during executed and imagined hand movem ents : an fMRI study . Journal of Cognitive Neuroscience,1999,ll(5):491-501
    [62]Jancke L,Specht K,Mirzazade S,et a1.The Effect of Finger-Movement Speed of theDominant and the Subdominant Hand on Cerebellar Activation:A Functioral Magnetic Resonance Imaging Study.Neurolmage,1999,9(5):497-507
    [63]Brooks V B.The Neural Basis of Motor Contro1.New York:Oxford University Press,1986
    [64]Marmer J.Cerebellar influences on autonomic mechanisms,an experimental study in the cat with special reference to the fastigial nucleus[J].Acta Physiol Scand.1975,425(1):1-42.
    [65]Mahler JM . An unexpected role of the celebelIum : involvement in nutritional organization[J].Physiol Behav,1993,54:1063—1067.
    [66]Haines DE.Dietrichs E,Mihailoff GA,etal.The cerebellar-hypothalamic axis:basic circuits and clinical observations[J].Inter Rev Neurobiol,1997.41:83-107.
    [67]Li WC,Tang XH,Li HZ,etal.Histamine excites rat cerebellar granule cells in vitro though Hl and H2 receptore[J].J Physiol(Paris),1999,93:239-244.
    [68]Tian L,Wen YQ,Li HZ,eta1.Histamine excites rat cerebellar Purkinje cells via H2 receptors vitro[J].Neumsci Res,2000,36:61-66.
    [69]Shen B,Li HZ,Wang JJ.Excitatory effects 0f histamine on cerebellar interpositus nuclear cells of rats through H2 receptors in vitro[J].Brain Res,2O02,948:64-71.
    [70]Schmahmann JD,Doyon J,McDonald D,et al.Three-dimemional fMRI atlas of the cerebellum in proportional stereotaxic apace[J].Neuro Image,1999,10:233-260.
    [71]Liu YJ,Gao JH,Liu Hl,et al.The temporal response of the brainafter eating revealed by functional fMRI[J].Nature,200O,405:1058-1061.
    [72]Parsons LM,Denton D,Enga G,et al.Neuroimaging evidence implicating cerebellum in support of sensory / congitive processes associated with thirst[J] . Proc Natl Acad Sci USA,200O,97:2332-2334
    [73]朱景宁,张月萍,王建军.小脑参与内脏活动调节的研究进展[J].中国神经科学杂志,2003,19(4):268-270
    [74]Reis DJ,Golanov EV.Autonomic and vasomotor regulation[J].Inter Rev Neurobiol,1997,41:121—149.
    [75]Petersen S E,Fox P T,Posner M L,et a1.Positron emission tomographic studies of the processing of single words.Journal Cogn itive Neuroscience,1989,l:153-170
    [76]Bower J M.Is the cerebellum sensory for motor’s sake or motor for sensory’s sake:The view from the whiskers of a rat?Progress in brain research,1997,l14:463-496
    [77]Gold B L Buckner R L.Common prefrontal regions coactivate with dissociable posterior regions during controlled semantic and phonological tasks .Neuron,2002,35(4):803-812
    [78]Xiang H D,Lin C Y,Ma X H,et a1.Involvement of the cerebellum in semantic discrimination:an fMRI study.Human Brain Mapping,2003,18(3):208-214
    [79]Kim J H,Wang J J,EbnerT J.Alterationsin simple spike activity and locomotor behavior associated with climbing fiber input to Purkinje cells in a decerebrate walking cat.Neuroscience,1988,25(2):475-489
    [80]Schmahmann J D.Rediscovery of an early concept.In:Schmahmann J D (cd).The Cerebellum and Cognition.Boston:Acdamic Press,1997.3-18
    [81]Bastian A J,Thach W T.Cerebellar outflow lesions:A comparison of movement deficits resulting from lesions at the levels of the cerebellum and thalamus.Annals of Neurology,1995,38(6):881-892
    [82]Jueptner M,Rijntjes M,Weiller C,et a1.Location of cerebellar timing process using PET. Neurology,1995,45:1540-l545
    [83] Courchesne E,Townsend J,Akshoomoff N A,et a1.Impairment in shifting attention in autistic and cerebellar patients.Behavioral Neuroseience,l994,108 (5):848-865
    [84]Fiez J A,Petersen S E,Cheney M K. et a1.Impaired non-motor learning and error detection associated with cerebellar damage.A single case study.Brain,1992.115(l1):l55-178
    [85]MacKay W A,Murphy J Cerebellar modulation of reflex gain.Progress in Neurobiology,1979,l3(4):36l-4l7
    [86]Mart D.A theory of cerebellar cortex.The journal of physiology,1969,202(2):437-470
    [87]Albus J S.A theory of cerebellar function.Mathematical Biosciences,l97l,l0:25-6l
    [88]Ito M.The Cerebellum and Neural Control,Raven Press,l984
    [89]Seitz R J,Roland P E.Learning of sequential finger movements in man:A combined kinematic and positron emission tomography(PET)study.European Journal of Neuroscience,1992,4(2):l54-165
    [90]Toni I,Krams M,Turner R,et a1.The time course of changes during motor sequence learning:A whole-brain fMRI study.Neuroimage,1998,8(1):50-61
    [91]Friston K J,Frith C D,Passinghum RE,et a1.Motor practice and neu-rophysiological adaptation in the cerebellum :A positron tomography study.Proceedings:Biological Sciences,l992,248(1323):223-228
    [92]SeitzR J,Roland E,BohmC,et a1.Motor learning in man:A positron emission tomographic study.Neuroreport,1990,l(1):57-60
    [93]Grafton S T,Woods R P,Tyszka M.Functional imaging of procedural motor learning:Relating cerebral blood flow with individual subject performance.Human Brain Mapping,1994,l(3):221-234
    [94]Mahler P , Guastavino J M, Jacquart C , et al . An unexpected role of the cerebellum: involvement in nutrition organization [J ] . Physiol Behav , 1993 , 54 (6):1063-1067
    [95]李继硕,李云庆.神经科学基础[M].北京:高等教育出版社,2002:101-l15
    [96]Brodal A.Neurological anatomy in relation to clinical medicine[M].New York:Oxford University Press,1981:36-78
    [97]李云庆.现代神经解剖学研究内容和方法的发展特点[J].第四军医大学学报,2007,28(1):1
    [98]丁文龙,刘德明,温蔚.异种神经移植后再生神经纤维的HRP逆行运输[J].解剖学杂志,l996,l9(1):l7
    [99]鞠躬,万选才,董新文.神经解剖学方法[M] .北京:人民卫生出版社,1985. 76-123
    [100]韩济生.神经科学纲要[M] .北京:北京医科大学中国协和大学联合出版社,1993. 8-10
    [101]Kristensson K,Olsson Y. Retrograde axonal transport of a protein [J].Brain Research.1971 ,29 :363-365
    [102]Kristensson K,Olsson Y. Uptake and retrograde axonal transport of protein tracers in hypoglossal neurons :fate of the tracer and reaction of the nerve cell bodies[J] . Acta Neuropath. 1973 ,47 :43-47
    [103] La Vail J . H ,La Vail M. M. Retrograde axonal transport in the central nervous system[J] . Science 1972 ,176 :1416-1417
    [104] La Vail J . H ,La Vail M. M. The retrograde intraaxonal transport of horseradish peroxidase in the chink visual system: a light and electron microscopic study[J] Comp . Neurol . 1974 ,157 :303-358
    [105]林锓武,陈以国,蔡定芳. HRP示踪法在经络、腧穴实质研究中的应用与进展[J] .上海中医药大学学报.1999,13(1):63-64
    [106]彭克美等,5种家禽小脑至脊髓的直接投射-HRP逆行追踪法研究[J] .华中农业大学学报. 1996,15(5):454-458
    [107]Schmahmann J.D. and Pandya D.N. The cerebrocerebellar system .In the cerebellum and cognition (ed.Schmahmann J.D.),pp.31-60.Academic,San Diego.
    [108]Panneton W.M and Tolbert D.L.The collateral origin of a transient cerebrocerebellar pathway in kittens. A study using fluorescent double-labeling techniques. Devl Brain Res.1984,14:247-254
    [109]Tolbert D.L. Somatotopically organized transient projections from the primary somatosensory cortex to the cerebellar cortex. Devl Brain Res.1989,45:113-127
    [110]Tolber D.L. and Panneton W.M. The transience of cerebrocerebellar projections is due to selective elimination of axon collaterals and not neuronal death. Devl Brain Res.1984,16:301-306
    [111]Distel H. and H?llander H.Autoradiographic traceing of developing subcortical projections of the occipital region in fetal rabbits[J]. Comp Neuro.,1980,192:505-518
    [112]Felleman D.J. Wall J.T. Cusick C.G. and Kags J.H. The representation of the body surface in S-1 of cats. [J].Neurosci.1983,3:1648-1669
    [113]Cabana T. and Martin G.F. Development of projections from somatic motor-sensory arrears of neocortex to the diencephalon and brainstem in the North American Opossum [J].comp.neurol.1986,251:506-516
    [114]Hoogland PV. Efferrent connections of the striatum in Tupinambis nigropunctatus[J].J Morphol.,1977,152:229-246
    [115]Voneida TT,Sligar CM. Efferrent projections of the dorsal ventricular ridge and the striatum in the tegu-lizard,Tupinambis nigropunctatus [J].Comp Neuro.,1979,186:43-64
    [116] Bangma GC .,Ten Donkelaa HJ. Afferent connections of the cerebellum in various types of reptiles[J].Comp Neuro.,1982,207:255-273
    [117]Craigie EH.Observations on the humming bird(Chrysolampis mosquitus Linn.,and Chlerostilbon caribaeus Lawr.) [J].Comp Neurol.,1928,45:223-357
    [118]Huber GC ,et al.the nuclei and fiber paths of the avain diencephalons,with consideration of telecephalic and certain mesencephalic centers and connections[J].Comp Neurol.,1929,48:1-225
    [119]Whitlock DG. A neurohistological and neurophysiological study of afferent fiber tract and receptive areas of avian cerebellum[J].Comp Neuro.,1952,97:567-635
    [120]Clark PGH.Some visual and other connections to the cerebellum of the pigeon[J].Comp Neuro.,1977,147:535-552
    [121]刘为民,鸡海马向小脑Ⅵ、Ⅶ、Ⅷ叶投射的研究初报[J].中国农业科学,1996,29(6):82-88
    [122]刘为民,鸡端脑向小脑投射的起始核[J].中国兽医学报,2001,21(5):501-504
    [123]Arends J.J.A. and Zeigler H.P. Organization of the Cerebellum in the Pigeon(Columba Livia):Ⅱ.Projections of the Cerebellar Nuclei[J]. The Journal of Comparative Neurology, 1991, 306:245-272
    [124]Arends J.J.A. and Zeigler H.P. Organization of the Cerebellum in the Pigeon(Columba Livia):Ⅰ.Corticonuclear and Corticovestibular Connections[J].The Journal of Comparative neurology,1991,306:221-244
    [125]Serrano P.A.,Ramus S.J.,Bennett E.L. and Rosenzweig M.R. Comparative study of roles of the lobus parolfactorius and intermediate medial hyperstriatum ventrale in memory formation in the chicken brain[J]. Pharmacology ,boichemistry and Behavior,1992,41(4): 761-766
    [126]Youngren O.M. and Phillips R.E. A stereotaxic atlas of the Brain of the three-day-oldDomestic chick[J].The Journal of Comparative Neurology,1978,181:567-600
    [127]Kuenzel W.J. and Masson M.A stereotaxic atlas of the brain of the chick[M]. Baltimore :Johns Hopkins Unicersity Press,1988:40-63
    [128] Szèkely A.D. and Krebs J.R. Efferent connectivity of the hippocampal formation of the zebra finch(Taenopygia guttata):An anterograde pathway tracing study using Phaseolus vulgaris leucoagglutinin[J]. The Journal of Comparative Neurology,1996,368:198-214
    [129]Erichsen J.T.,Bingman V.P. and Krebs J.R.The distribution of neuropepetides in the dorsomedial telencephalon of the pigeon(Columba livia):A basis for regional subdivisions[J]. The Journal of Comparative Neurology,1991,314:478-492
    [130]Medoff,S. Unpublished Master’s Thesis,Hahnemann Graduate School of Basic Medical Science,Philadelphia.Microscopic Slides Reviewed 1976-1977.Experiments Performed With Dr.M.J.C.Showers.1970.
    [131]Cotter,J.R.1971.Unpublished Master’s Thesis,Hahnemann Graduate School of Basic Medical Science,Philadelphia.Microscopic Slides Reviewed 1976-1977.Experiments Performed With Dr.M.J.C.Showers
    [132]Elizabeth,C.Crosth and Schnitzlein,H.N.Compartive Correlative Neuroanatomy of the Vertebrate Telencephlon,M.J.C.Showers.1982

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700