有机磷类、新烟碱类簇合物的设计、合成及其活性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在生物体系中,多位点结合比单位点结合更具优势。通常多效价能够引起一些蛋白受体的聚合,一些二效价簇合物能引起一些蛋白受体簇合成二聚体,这使得二效价配体比单效价的配体对受体有更强的亲和力,而且利用簇合效应还能找到具选择性的活性分子。通过簇合产生的多效价配体可与受体的多位点相互作用,从而产生协同效应,使其结合力和特异性增强,这样一种原理就是簇合效应。医药研究领域有很多通过簇合效应来增强药物亲和力的事例,但目前国内外关于簇合效应在新农药创制研究中应用却很少报道。鉴于簇合效应已在生物医药研究领域得到成功应用,我们认为将其用于新农药创制研究中也将是一种可行的方案。如果这种猜想得到验证,将为农药新品种的开发提供一条新途径。
     有机磷化合物是典型的乙酰胆碱酯酶(AChE)抑制剂。乙酰胆碱酯酶活性位点的结构表明,在其两端有特异性位点,在乙酰胆碱酯酶峡口的入口处主要由氨基酸Tyr70、Tyr121、Trp279和Asp72组成,这些氨基酸组成了AChE的外周阴离子位点。通过连接乙酰胆碱酯酶的催化位点外周位点,科学家们合成了一系列具有生物活性的乙酰胆碱酯酶双位点抑制剂。根据簇合效应,结合乙酰胆碱酯酶结构信息,我们设计并合成了20个有机磷的二效价簇合物,期望能同时结合乙酰胆碱酯酶的催化位点外周位点,旨在找到更具亲和力的乙酰胆碱酯酶抑制剂。
     对所合成的目标化合物进行了生物测定。初步结果显示,二效价有机磷簇合物对家蝇和蚜虫表现出一定的杀虫活性。点滴实验测得化合物PSG2(6a)、PSG3(6b)、PSDG(6c)对家蝇的LD50值分别为1.71,1.74,1.51μg/头;PSOL4(3i)、SPhOL4(9i)、SPhAL4(9b)分别为1.72、3.64、0.788μg/头;SPhAL7(9e)、SPhAL8(9f)、SPhAL9(9g)分别为1.15、2.62、19.0μg/头。不过二效价有机磷簇合物对甜菜夜蛾、棉铃虫、红蜘蛛等杀虫活性不是很理想。
     此外,我们又合成7个二效价吡虫啉簇合物,所有目标化合物通过1H-NMR和元素分析确认。初步生测结果表明部分目标化合物具有一定的杀虫活性,在100mg/L浓度下,IMAC4(12a)和IMAC6(12c)对麦长管蚜的平均致死率达78.4%和77.3%(24h),IMAC4(12a)对东亚飞蝗的致死率达77.5%(72h),但都低于对照药剂吡虫啉。
     以碘化乙酰硫代胆碱为底物,二硫双对硝基苯甲酸(DTNB)为显色剂,我们用传统的Ellman分光光度法,研究了二效价有机磷簇合物对家蝇AChE的抑制活性。化合物SPhAL7(9e)、SPhAL8(9f)、PSOL4(3i)、PSG3(6b)、PSDG(6c)、乙硫磷对乙酰胆碱酯酶的IC50分别为0.021、0.830、0.484、14.581、10.521、0.044mM。可以看出化合物SPhAL7(9e)、SPhAL8(9f)、PSOL4(3i)对乙酰胆碱酯酶有较好的抑制活性,尤其是SPhAL7(9e)对乙酰胆碱活性的抑制效果比乙硫磷还好。本文利用簇合效应原理,合成了一些对乙酰胆碱酯酶抑制活性较好的化合物,为今后的研究工作提供了很好的基础,值得进一步深入开展这方面的研究。
In biological systems, multivalent binding provides a broad range of benefits that are not achievable with the corresponding monovalent interactions. Multivalent interactions induce receptor clustering, such as the bivalent ligand mediated protein dimerization, wich would result in bivalent interaction is much tighter than monovalent interaction. And multivalent interactions can enhance ligand selectivity. Design and synthesis multivalent ligand to interact with the multiple sites of the receptor, in order to causes synergistic effect, result in a high-affinity system and enhance selectivity of the ligand, this theoretical hypothesis was described as the“cluster effect”. The activities of some multivalent drug molecules were significantly enhanced by their cluster effect. However, little has been reported about the applications of cluster effect in new pesticide discovery. Since the cluster effect has been applied in drug design, we believe that the theoretical hypothesis can serve as reference and guidance for the discovery of new agrochemical.
     Organophosphorusac act as classical acetylcholinesterase(AChE) inhibitors. The geometry of the active-site gorge of AChE, with specific sites at its two extremities, Tyr70, Tyr121, Trp279 and Asp72 lining the entrance gorge of AChE, that is peripheral anionic site of AChE(PAS). Through binding to both catalytic and peripheral sites of the enzyme, a series of dual binding site AChE inhibitors have been designed and synthesized.The cluster effect, combined with information about the structure of acetylcholinesterase, led us to design and synthesize 20 bivalent organphosphorus compounds as potential acetylcholinesterase inhibitors. We anticipated that the target compounds would bind to both catalytic and peripheral sites of the enzyme that leading to more stable AChE-organphosphorus complexes.
     The insecticidal activity of all target compounds was evaluated. In the preliminary bioassay test,some bivalent organphosphorus compounds have been showed insecticidal activity against cotton aphid(Aphis gossypii) and housefly(Musca domestica Linnaeus). Topical application method was used to test medium lethal quantity of Musca domestica, LD50 values of PSG2(6a), PSG3(6b) and PSDG(6c) were 1.71, 1.74, 1.51μg/No.;LD50 values of PSOL4(3i), SPhOL4(9i) and SPhAL4(9b) were 1.72, 3.64, 0.788μg/No.;LD50 values of SPhAL7(9e), SPhAL8(9f) and SPhAL9(9g) were 1.15, 2.62, 19.0μg/No. However, the activity of bivalent organphosphorus compounds was not so good on Helicoverpa armigera, Spodoptera exigua and Tetranychus cinnabarinus.
     In search for neonicotinoid insecticides with high activities, seven novel bivalent compounds were prepared from imidacloprid as precursor compound. Their structures were confirmed by 1H NMR and elemental analysis. The preliminary bioassay indicated that these compounds showed insecticidal activities. The average mortality of IMAC4 (12a)and IMAC6(12c) to macrosiphum avenae at the concentration of 100mg/L reached 78.4% and 77.3% respectively(24h); The mortality of IMAC4(12a) to locusta migratoria manilenis at the concentration of 100mg/L reached 77.5%(72h). But the activity of these compouds was not as good as imidacloprid, the control pesticide.
     We used acetylthiocholine idodide as the substrate of the enzymatic reaction and 5,5'-dithio-bis (2-nitrobenzoic acid) for the measurement of cholinesterase activity by the conventional spectrophotometric method of Ellman. The IC50 values of SPhAL7(9e), SPhAL8(9f), PSOL4(3i), PSG3(6b), PSDG(6c) and ethion were 0.021, 0.830, 0.484, 14.581, 10.521, 0.044mM respectively, the compounds SPhAL7(9e), SPhAL8(9f) and PSOL4(3i) showed good AchE inhibitory activity, especially SPhAL7(9e) was very good, even better than ethion. In summary, we designed and synthesised some bivalent compounds as potential AChE inhibitors by cluster effect, the study provides a basis for the further related work and were worth further studying.
引文
1. 陈凯先,罗小民,蒋华良.药物分子设计的发展.中国科学院院刊,2000,(4):265~269.
    2. 陈万义主编.新农药的研发—方法·进展.北京:化学工业出版社,2007,19~34.
    3. 陈万义,薛振祥,王能武.新农药研究与开发.北京:化学工业出版社,1995,16~65.
    4. 成万牍.全球正面临粮食危机.金融经济,2008,01:18~19.
    5. 程勇,余友华等.新一代治疗阿尔茨海默病的胆碱酯酶抑制剂多奈哌齐.中国新药杂志,2000,9:300.
    6. 丁云岗,黄育新.秋水仙碱治疗痛风性关节炎的安全性评价.中国基层医药,2006,13:1085~1086.
    7. 樊能廷编著.有机合成事典.北京:北京理工大学出版社,1992,2.
    8. 冯国民.浅谈禁用农药种类、原因与替代农药品种.烟台果树, 2007, 100:6~7.
    9. 关爱莹,胡耐冬,刘长令.在分子结构基础上的设计——意外发现演变为设计,使农用化学品创制规律化.世界农药,2003,25:1~4.
    10. 郭晶,高菊芳.乙酞胆碱酷酶的动力学机制及其应用.农药,2007,46:18~21.
    11. 孔繁祚.糖化学.北京:科学出版社,2005, 504~524.
    12. 匡永清,张生勇,蔚琳琳.N-(4-溴丁基)邻苯二甲酰亚胺的合成.化学试剂,2001,23:359;361.
    13. 李际均.全球化时代的中国国家安全.瞭望,2004,13:11~14.
    14. 李利华,赵蔡斌,闵锁田,李星彩.基于配体-受体理论的计算机辅助药物分子设计方法及应用.西北药学杂志,2007,22:282~285.
    15. 李正名.新农药创制的现状和发展趋势.世界农药,1999,21:1~4.
    16. 刘缠民,蒋继宏.关于吡啉啉对玉米田蝗虫群落毒力的研.徐州师范大学学报--自然科学版,2002,20:54~56.
    17. 刘志杰,江林, 李维忠, 韩玉真,来鲁华.蛋白质分子与配体结合过程构象变化的研究.化学学报,2000,58:772~776.
    18. 梅向东,杨国权,宁君.利用簇合效应发现和创制高效新农药的设想.农药学学报,2006,8:203~208.
    19. 仇缀白主编.药物设计学.北京:高等教育出版社,2001,224~227.
    20. 芮昌辉,孟香清,范贤林等.植物保护研究进展.北京:中国科学技术出版社,1995:311~315.
    21. 沈同,王镜岩.生物化学(上册).高等教育出版社,2002.
    22. 施明安.乙酞胆碱酯酶的晶体结构及功能位点.农药学学报,2000,2:1~7.
    23. 唐振华,陶黎明,李忠.新烟碱类杀虫剂选择作用的分子机理.农药学学报, 2006, 8:291~298.
    24. 王秋雨,金莉莉等.烟碱型乙酰胆碱受体及其亚单位的结构功能.细胞生物学杂志,2004,26:221~226.
    25. 消毒杀虫灭鼠手册编写组.消毒杀虫灭鼠手册.北京:人民卫生出版社,1980,218~219.
    26. 杨玉芳.蛋白质含量测定方法.明胶科学与技术,2007,27:98~101.
    27. 张帆,谢增鸿,樊祺泉,李兆强,卢煜.化学发光免疫分析试剂 6-[N-(4-氨基丁基)-N-乙基]氨基-2,3-二氢-1,4-酞嗪二酮(ABEI)合成的新路线.化学试剂,1992,14:207~208.
    28. 张壬午,吴玉霞,于维强.测定二化螟胆碱酯酶活力的快速方法.昆虫知识,1983,1:41~43.
    29. 张涛,董喜成,陈海峰,陈敏伯.Sulfonylurea 类 ALS/AHAS 抑制剂作用方式的分子对接研究和新抑制剂的虚拟筛选.化学学报,2006,64:899~905.
    30. 张一宾,张怿.世界农药新进展.北京:化学工业出版社,2006,124~144.
    31. 赵明根,韩江华,齐景韶.多缩乙二醇双对甲苯磺酸酯的新合成法.山西太学学报(自然科学版) ,1992,15:362~364.
    32. 赵旭东.家蝇乙酰胆碱酯酶敏感性研究及其应用[硕士学位论文] . 泰安:山东农业大学,2005.
    33. 赵英永,戴云等.马斯亮蓝 G-250 染色法测定草乌中可溶性蛋白质含量.云南民族大学学报(自然科学版),2006,15:235~237.
    34. 周广彦,苏华庆,王瑾玲,缪方明.农药生物合理设计的发展近况.天津师大学报(自然科学版),1999,19:29~32.
    35. Alonso D., Dorronsoro I. et al.. Donepezil-tacrine hybrid related derivatives as new dual binding site inhibitors of AChE. Bioorg. Med. Chem., 2005, 13: 6588~6597.
    36. Austin L., Berry W. K.. Two selective inhibitors of cholinesterase. Biochem. J., 1953, 54: 695~700.
    37. Awada A., Thodtmann R., Piccart M. J., Wanders J., Schrijvers A. H. G. J., Von Broen I.-M., Hanauske, A. R.. An EORTC-ECSG phase I study of LU 79553 administered every 21 or
    42 days in patients with solid tumours. Eur. J. Cancer, 2003, 39: 742~747.
    38. Bergmann F., Wilson I. B., Nachmansohn D.. The inhibitory effect of stilbamidine, curare and related compounds and its relationship to the active groups of acetylcholine esterase. Action of stilbamidine upon nerve impulse conduction. Biochim. Biophys. Acta., 1950, 6: 217~224.
    39. Berman H. A., Decker M. M., Nowak M. W., Leonard K. J., McCauley M., Baker W. M., Taylor P.. Site selectivity of fluorescent bisquaternary phenanthridinium ligands for acetylcholinesterase. Mol. Pharmacol., 1987, 31: 610~616.
    40. Bertozzi C R, Kiessling L L.. Chemical glycobiology. Science, 2001, 291: 2357~2364.
    41. Bhushan R. G., Sharma S. K., Xie Z., Daniels D. J., Portoghese P.S.. A Bivalent Ligand (KDN-21) Reveals Spinal δ and к Opioid Receptors Are Organized as Heterodimers That Give Rise to δ1 and к2 Phenotypes. Selective Targeting of δ-к Heterodimers. J. Med. Chem., 2004, 47: 2969~2972.
    42. Boyd M. R., Hallock Y. F. et al..Anti-HIV Michellamines from Ancistrocladus korupensis. J. Med. Chem., 1994, 37: 1740~1745.
    43. Bradford M. M.. A rapid and sensitive method for the quantification of microgram quantitiesof Protein using the principle of protein-dye binding. Anal. Biochem., 1976, 7: 248~254.
    44. Brana M. F., Cacho M., Garcia M. A. et al.. New Analogues of Amonafide and Elinafide, Containing Aromatic Heterocycles: Synthesis, Antitumor Activity, Molecular Modeling, and DNA Binding Properties. J. Med. Chem., 2004, 47, 1391~1399.
    45. Brana M. F., Ramos A.. Naphthalimides as anti-cancer agents: synthesis and biological activity. Curr. Med. Chem., 2001, 1: 237~255.
    46. Buijsman R. C., Basten J. E. M., van Dinther T. G., et al.. Design and synthesis of a novel synthetic NAPAP pentasaccharide conjugate displaying a dual antithrombotic action. Bioorg. Med. Chem. Lett., 1999, 9: 2013-2018.
    47. Casida J. E., Quistad G. B..Serine hydrolase targets of organophosphorus toxicants. Chem.-Biol. Interact., 2005, 157–158: 277~283.
    48. Casida J. E., Quistad G. B..Why insecticides are more toxic to insects than people: the unique toxicology of insects. J. Pestic. Sci., 2004, 29: 81~86.
    49. Chaires J. B., Leng F., Przewloka T., Fokt I., Ling Y.-H., Perez-Soler R., Priebe W.. Structure-Based Design of a New Bisintercalating Anthracycline Antibiotic. J. Med. Chem., 1997, 40: 261~266.
    50. Choi S. K. (ed.).Synthetic Multivalent Molecules: Concepts and Biomedical Applications. Hoboken, New Jersey: John Wiley & Sons, Inc., 2004, 20~21.
    51. Dale J., Kristiansen P. O.. Acta. Chem. Scand., 1972, 26: 1476~1481.
    52. Dean Y. M., Sumit S. M. et al.. Bivalent inhibitors of glutathione S-transferase: The effect of spacer length on isozyme selectivity. Bioorg. Med. Chem. Lett., 2006, 16: 3780~3783.
    53. Deglin J. H., Vallerand A. H.. Davis's drug guide for nurses, 3rd Ed. London: F. A. Davis Company, 1993.
    54. Doucet-Personeni C., Bentley P. D., Fletcher R. J., Kinkaid A., Kryger G., Pirard B., Taylor A., Taylor R., Taylor J., Viner R., Silman I., Sussman J. L., Greenblatt H. M., Lewis, T.. A Structure-Based Design Approach to the Development of Novel, Reversible AChE Inhibitors. J. Med. Chem., 2001, 44: 3203~3215.
    55. Dual Binding Site Acetylcholinesterase Inhibitors: Potential New Disease-Modifying Agents for AD. J. Mol. Neuro. sci., 2006, 30: 85~88.
    56. Ellman G L, Courtney K D, Andres V, et al.. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol., 1961, 7: 88~92.
    57. Ernst-Russell M., Elix J. A., et al.. Hybocarpone, a novel cytotoxic naphthazarin derivative from mycobiont cultures of the lichen Lecanora hybocarpa. Tetrahedron Lett., 1999, 40: 6321~6324.
    58. Fan E., Zhang Z., Minke W. E., Hou Z., Verlinde C. L. M. J., Hol W. G. J..High-affinity pentavalent ligands of ezcherichia coli heat-labile enterotoxin bymodular structure-based design. J. Am. Chem. Soc. 2000, 122: 2663~2664.
    59. Gervais B..Natural and Synthetic Biologically Active Dimeric Molecules: Anticancer Agents,Anti-HIV Agents, Steroid Derivatives and Opioid Antagonists. Curr. Med. Chem., 2006, 13: 131~154.
    60. Goldstein B., Wofsy C..Theory of equilibrium binding of a bivalent ligand to cell surface antibody: The effect of antibody heterogeneity on cross-linking. J. Math. Biol., 1980, 10: 347~366.
    61. Gorun V. L., Proinov V., Baltescu, et al..Modified Ellman Procedure for assay of cholinesterases in crude enzymatic preparation. Anal. Biochem., 1976, 86: 324~326.
    62. Hodge A. S., Humphrey D. R., Rosenberry T. L.. Ambenonium is a rapidly reversible noncovalent inhibitor of acetylcholinesterase, with one of the highest known affinities. Mol. Pharmacol. 1992, 41: 937~942.
    63. Jung M., Lee S., Ham J., Lee K., Kim H., Kim S. K..Antitumor Activity of Novel Deoxoartemisinin Monomers, Dimers, and Trimer. J. Med. Chem., 2003, 46: 987~994.
    64. Kagabu S., Itazu Y., Nishimura K.. 1,6-Bis[1-(2-chloro-5-thiazolylmethyl)-2-nitroimino- imidazolidin-3-yl]hexane and 1,3,5-tris[1-(6-chloronicotinyl)-2-nitroimino- imidazolidin-3- ylmethyl]benzene—Synthesis and insecticidal and neuroblocking activities in American cockroaches, Periplaneta Americana. J. Pest. Sci., 2006, 31: 146~149.
    65. Kagabu S., Iwaya K., Konishi H., Sakai A., Itazu Y., Kiriyama K., Nishimura K.. Synthesis of Alkylene-Tethered Bis-Imidacloprid Derivatives as Highly Insecticidal and Nerve-Exciting Agents with Potent Affinity to [3H]Imidacloprid-Binding Sites on Nicotinic Acetylcholine Receptor. J. Pest. Sci., 2002, 27: 249~256.
    66. Kamal A., Ramesh G., Laxman N., Ramulu P., Srinivas O., Neelima K., Kondapi A. K., Sreenu V. B., Nagarajaram H. A.. Design, Synthesis, and Evaluation of New Noncross-Linking Pyrrolobenzodiazepine Dimers with Efficient DNA Binding Ability and Potent Antitumor Activity. J. Med. Chem., 2002, 45: 4679~4688.
    67. Kamal A., Ramesh G., Srinivas O., Ramulu P., Laxman N., Rehana T., Deepak M., Achary M. S., Nagarajaram H. A.. Design, synthesis, and evaluation of mixed imine–amine pyrrolo benzodiazepine dimers with efficient DNA binding affinity and potent cytotoxicity. Bioorg. Med. Chem., 2004, 12: 5427~5436.
    68. Kamal A., Rao M. V., Laxman N., Ramesh G., Reddy G. S. K.. Recent Developments in the Design, Synthesis and Structure-Activity Relationship Studies of Pyrrolo[2,1-c][1,4] benzodiazepines as DNA-Interactive Antitumour Antibiotics. Curr. Med. Chem. – Anti-Cancer Agents, 2002, 2: 215~254.
    69. Kaneko T., Wong H., Doyle T. W.. A new and mild method for the reduction of secondary amides to carbinolamine ethers and imines: a conversion of oxotomaymycin to tomaymycin. Tetrahedron Lett., 1983, 24: 5165~5168.
    70. Kiechle F. L., Zhang X.. Apoptosis: biochemical aspects and clinical implications. Clin. Chim. Acta., 2002, 326: 27~45.
    71. Kiessling L, Gestwicki J, Strong L E.. Synthetic multivalent ligands in the exploration ofcell-surface interactions. Curr. Opin. Chem. Biol., 2000, 4: 696~703.
    72. Kim Y. J., Ichikawa M., Ichikawa Y.. A Rationally Designed Inhibitor of -1,3-Galactosyl transferase. J. Am. Chem. Soc., 1999, 121: 5829~5830.
    73. Kitov P. I., Sadowska J. M., Mulvey G., Armstrong G. D., Ling H., Pannu N. S., Read R. J., Bundle D. R.. Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands. Nature, 2000, 403: 669~672.
    74. Klemm J. D.,Schreiber S. L.,Grabtree G. R.. Dimerization as a regulatory mechanism in signaltransduction. Annu. Rev. Immunol., 1998, 16: 569~592.
    75. Kramer R. H., Karpen J. W.. Spanning binding sites on allosteric proteins with polymer-linked dimers. Nature, 1998, 395: 710~713.
    76. Krasinski A., Radic Z., Manetsch R., Raushel J., Taylor P., Sharpless K. B., Kolb H. C. . In situ selection of lead compounds by click chemistry: target-guided optimization of acetylcholinesterase inhibitors. J. Am. Chem. Soc., 2005, 127, 6686~6692.
    77. Kryger G., Silman I., Sussman J. L.. Structure of acetylcholinesterase complexed with E2020: implication for the design of new anti-Alzheimer drug. Structure, 1999, 7: 297~307.
    78. Lands A. M., Hoppe J. O., Arnold A., Kirchner F. K.. An investigation of the structure-activity correlations within a series of ambenonium analogs. J. Pharmacol. Exp. Ther., 1958, 123: 121~127.
    79. Lee Y. C., Lee R. T.. Carbohydrate-Protein Interactions: Basis of Glycobiology. Acc. Chem. Res., 1995, 28: 321~327.
    80. Lewis W. G., Green L. G., Grynszpan F., Radic, Z., Carlier P. R.. Taylor P., Finn M. G., Sharpless K. B.. Click chemistry in situ: acetylcholinesterase as a reaction vessel for the selective assembly of a femtomolar inhibitor from an array of building blocks. Angew. Chem. Int. Ed., Angew. Chem. Int. Ed., 2002, 41: 1053~1057.
    81. Lind R. J., Clough M. S., Reynolds S. E. et al.. [3H]Imidacloprid Labels High- and Low-Affinity Nicotinic Acetylcholine Receptor-like Binding Sites in the Aphid Myzus persicae (Hemipetem:Aphididae). Pestic. Biochem. Physiol., 1998, 62: 3~14.
    82. Luedtke N. W., Lui Q., Tor Y.. RNA-Ligand Interactions: Affinity and Specificity of Aminoglycoside Dimers and Acridine Conjugates to the HIV-1 Rev Response Element. Biochemistry, 2003, 42: 11391~11403.
    83. Mammen M, Choi S, Whitesides G.. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed., 1998, 37: 2754~2794.
    84. Mathias M., Verena H., Melanie G., Alicia P.-S., Heidrun M., August S., Ulrike H.. Antitrypanosomal activity of quaternary naphthalimide derivatives. Bioorg. Med. Chem. Lett., 2007, 17: 1590~1593.
    85. Matsuda H., Morikawa T., Oda M., Asao Y., Yoshikawa M.. Potent anti-metastatic activity of dimeric sesquiterpene thioalkaloids from the rhizome of Nuphar pumilum. Bioorg. Med. Chem.Lett., 2003, 13: 4445~4449.
    86. Matsuda K., Shimomura M., Ihara M., Akamatsu M., Sattelle D. B.. Neonicotinoids Show Selective and Diverse Actions on Their Nicotinic Receptor Targets: Electrophysiology, Molecular Biology, and Receptor Modeling Studies.. Biosci. Biotechnolo. Biochem., 2005, 69: 1442~1452.
    87. Meyer M. D., Decker M. W., Rueter L. E. et a1.. The identification of novel structural compound classes exhibiting high affinity for neuronal nicotinic acetylcholine receptors and analgesic efficacy in preclinical models of pain.Eur. J. Pharnacol., 2000,393:.171~177.
    88. Millership J. S., Shanks M. L..Prodrugs utilizing organosilyl derivation: an investigation of the long-term androgenic and myotrophic activities of silyl derivatives of testosterone. J. Pharm. Sci., 1988, 77: 116~119.
    89. Monte-Millán M., García-Palomero E. et al.. Dual Binding Site Acetylcholinesterase Inhibitors: Potential New Disease-Modifying Agents for AD. J. Mol. Neurosci., 2006, 30: 85~88.
    90. Neumeyer J. L.,Zhan A.,Xiong W.,Gu X.-H.,Hilbert J. E.,Knapp B. I.,Negus S. S.,Mello N. K.,Bidlack J. M.. Design and Synthesis of Novel Dimeric Morphinan Ligands for к and μ Opioid Receptors. J. Med. Chem., 2003, 46: 5162~5170.
    91. Pang Yuan-Ping.. Novel acetylcholinesterase target site for malaria mosquito control. PLoS ONE, 2006, 1: e58.
    92. Pang Y. P., Quiram P., Jelacic T., Hong F., Brimijoin S.. Highly potent, selective, and low cost bis-tetrahydroaminacrine inhibitors of acetylcholinesterase: steps toward novel drugs for treating Alzheimr’s disease. J. Biol. Chem., 1996, 271: 23646~23649.
    93. Pimentel D., Acquay H., Biltonen M. et al.. Environmental and economic costs of Pestieide use. Bioscience, 1992,42: 750~760.
    94. Portoghese P. S.. From models to molecules : opioid receptor dimers, bivalent ligands, and selective opioid receptor probes. J. Med. Chem., 2001 , 44: 2259~2269.
    95. Qian N., Kovach I. M.. Key active site residues in the inhibition of acetylcholinesterases by soman. FEBS Lett., 1993, 336: 263~266.
    96. Raspaglio G., Ferlini C., Mozzetti S., Prislei S., Gallo D., Das N., Scambia G.. Thiocolchicine dimers: a novel class of topoisomerase-I inhibitors. Biochem. Pharm., 2005, 69:113~121.
    97. Rice W.G., Supko J.G., Malspeis L., Buckheit R. W. Jr., Clanton D. J., Bu M., Gogliotti R., Bader J. P., Halliday S. M., Coren L., Sowder R. C. II, Arthur L. O., Henderson L. E.. Inhibitors of HIV Nucleocapsid Protein Zinc Fingers as Candidates for the Treatment of AIDS. Science, 1995, 270: 1194~1197.
    98. Robinson H., Priebe W., Chaires J. B., Wang A. H.-J.. Binding of Two Novel Bisdaunorubicins to DNA Studied by NMR Spectroscopy. Biochemistry, 1997, 36: 8663~8670.
    99. Shen Y. C., Prakash C. V. S., Guh J.-H.. New pentacyclic polyketide dimeric peroxides from aTaiwanese marine sponge Petrosia elastica. Tetrahedron Lett., 2004, 45: 2463~2466.
    100.Sussman J. L., Harel M., Frolow F., Oefner C., Goldman A., Toker L., Silman I..Atomic structure of acetylcholinesterase from Torpedo californica: a prototypic acetylcholine-binding protein.Science, 1991, 253: 872~879.
    101.Takahashi M., Koyano T., Kowithayakorn T., Hayashi M., Komiyama K., Ishibashi M..Parviflorene A, a novel cytotoxic unsymmetrical sesquiterpene–dimer constituent from Curcuma parviflora. Tetrahedron Lett., 2003, 44: 2327~2329.
    102.Thurston D. E.. Molecular Aspects of Anticancer Drug-DNA Interactions. London: The Macmillan Press, 1993, 54-88.
    103.Toume K., Takahashi M., Yamaguchi K., Koyano T., Kowithayakorn T., Hayashi M., Komiyama K., Ishibashi M.. Parviflorenes B–F, novel cytotoxic unsymmetrical sesquiterpene -dimers with three backbone skeletons from Curcuma parviflora. Tetrahedron, 2004, 60: 10817~10824.
    104.Turpin J. A., Song Y., Inman J. K., Huang M., Wallqvist A., Maynard A., Covell D. G., Rice W. G., Appella E.. Synthesis and Biological Properties of Novel Pyridinioalkanoyl Thiolesters (PATE) as Anti-HIV-1 Agents That Target the Viral Nucleocapsid Protein Zinc Fingers. J. Med. Chem., 1999, 42: 67~86.
    105.Villanora-Calero M. A., Eder J. P., Toppmeyer D. L. et al.. Phase I and Pharmacokinetic Study of LU79553, a DNA Intercalating Bisnaphthalimide, in Patients With Solid Malignancies. J. Clin. Oncol., 2001, 19: 857~869.
    106.Wang J., Chen X., Zhang W. et al.. Enhanced inhibition of human anti-Gal antibody binding to mammalian cells by synthetic R-Gal epitope polymers. J. Am. Chem. Soc., 1999,121: 8174~8181.
    107.Wang L. et al.. Development of dimeric modulators for anti-apoptotic Bcl-2 proteins. Bioorg. Med. Chem. Lett., 2008,18: 236~240.
    108.Weiss R. B., Sarosy G., Clagett-Carr K., Russo M., Leyland-Jones B.. Anthracycline analogs The past, present, and future. Cancer Chemother. Pharmacol., 1986, 18: 185~197.
    109.Wiernik P. H. ea al.. Anthracyclines. Current Status and New Developments. New York: Academic Press, 1980, 273~294.
    110.Wiesner P., Kayser H.. Characterization of nicotinic acetylcholine receptors from the insect Aphis craccivora,Myzus persicae and Locusta migratoria by radioligand binding assays: relation to thiamethoxam action. J. Biochem. Mol. Toxicol., 2000, 14: 221~230.
    111.Wright D., Usher L..Multivalent Binding in the Design of Bioactive Compounds. Curr. Org. Chem., 2001, 5: 1107~1131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700