肝脏微环境对肝脏NK和NKT细胞发育的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
NK细胞和NKT细胞前体来源于骨髓细胞,定向分化至自然杀伤细胞谱系,并发育成具有效应功能和异质性表型的成熟的NK细胞和NKT细胞。骨髓,胚胎胸腺,淋巴结,肝脏,脾脏和外周血中都可以检测到自然杀伤细胞前体;但是不成熟自然杀伤细胞(iNK)只能在骨髓,肝脏和脾脏中被检测到。这些发育中间体是如何离开骨髓在外周位点如肝脏、脾脏中完成发育成熟的过程仍然未知。肝脏中存在不成熟的NK细胞和NKT细胞。肝脏中不成熟的NK细胞具有特殊的表型,即持续性表达肿瘤坏死因子相关凋亡诱导配体(tumour necrosis factor-related apoptosis-inducing ligand, TRAIL),但是低水平表达其他成熟自然杀伤细胞表面标志,例如Ly49受体和CD11b.胸腺中不成熟NKT细胞不表达NK1.1标志,在外周经历发育分化成熟后表达NKl.1。肝脏是外周NKT细胞发育成熟的重要场所。在NK细胞和NKT细胞发育分化过程中,不同组织脏器中基质细胞通过分泌可溶性细胞因子等信号分子来影响其表型和功能。本研究主要使用流式细胞术探索了小鼠个体发生过程中肝脏中NK细胞的发育并且与脾脏NK细胞发育进行了比对。Y干扰素对肝脏NK细胞亚群分布以及功能的影响做了初步的研究。
     我们发现,CD27-CD11b-NK细胞前体主要聚集在成年小鼠肝脏而不是脾脏中小鼠个体发生时,在肝脏中,存在更多的不成熟的NK细胞,表达高水平的NKG2A和低水平的Ly49受体。肝脏中NK细胞表面刺激性受体和粘附分子的表达也与脾脏NK细胞不同。这些结果显示了肝脏内存在特异的NK细胞发育途径,并且环境微环境在NK细胞发育分化过程中起了重要作用。我们揭示出成年Y干扰素缺陷小鼠肝脏内成熟NK细胞的比例和数目都显著减少了。成年γ干扰素缺陷小鼠肝脏内聚集了特异的NK细胞亚群和表型。然而,成年Y干扰素缺陷小鼠肝脏和骨髓内Lin-CD122+NK前体细胞比例和数目都是正常的。进一步研究发现,γ干扰素缺陷导致小鼠肝脏内NK细胞活化分子CD69和功能分子的表达减弱。这些结果揭示了γ干扰素在维持肝脏独特微环境,影响肝脏NK细胞发育中起了重要作用。另外,我们发现肝脏中存在不成熟的NKT细胞亚群。对于小鼠个体发生时肝脏中NKT细胞发育阶段及亚群变化做了初步探索。
The precursors of NK cells and NKT cells are derived from the bone marrow;they are committed to the NK cell and NKT cell lineage and develop into mature NK cells with full effector function and heterogeneous phenotypes.NK cell precursors are found in different organs, such as bone marrow, fetal thymus, lymph node (LN), liver, spleen and peripheral blood, whereas immature NK (iNK) cells are found in the bone marrow, liver and spleen. It is unknown whether these developmental intermediates leave the bone marrow to complete their differentiation elsewhere, such as the liver and spleen.Immature NKT cells of thymus do not express NK1.1.They undergo mature process in periphery and then express NK1.1.As an lymphoid organ, liver is an important site for NKT cells maturing in periphery. Stromal cells in various organs send signals through cytokines that influence the ultimate phenotypes and functions of NK cell precursors.In our study, the development of NK cells in liver was explored and compared with NK cell development in spleen during mouse ontogeny by Flow cytometry.We also explored the impact of IFN-gamma on the distribution and function of hepatic NK cells.
     The CD27-CD11b-NK cell precursors accumulated predominantly in the adult liver and not in the spleen. In the liver, more immature NK cells were present, which express a higher level of NKG2A and lower levels of Ly49receptors. Additionally, different stimulatory receptors and adhesion molecules were expressed on NK cells in the liver and spleen during ontogeny. These results indicate that there might be a specific developmental pathway of NK cells in the liver and that the microenvironments play important roles in NK cell development and differentiation. Futhermore, we exhibited that the percentages and numbers of mature NK cells were declined significantly in the liver from adult IFN-gamma deficient mouse GKO mouse uniquely. Moreover, the NK cell subsets and phenotypes were specifically in the liver of IFN-gamma deficient mouse. However, Lin-CD122+NK progenitor cells develop normally in the liver and bone marrow of adult IFN-gamma deficient mouse. Furthermore, deficiency of IFN-gamma resulted to weak expressed of CD69and functional molecular by hepatic NK cells. All these data demonstrated that IFN-gamma may play important role to sustain the unique environment of liver and affect the development of hepatic NK cells.Futhermore, we found that there were a subset immature NKT cells in the liver, and we explored the developmental stages and subsets of hepatic NKT cells during mouse ontogeny.
引文
Adolf, G.R. (1985). Structure and effects of interferon-gamma. Oncology 42 Suppl 1,33-40.
    Andrews, D.M., and Smyth, M.J. (2010). A potential role for RAG-1 in NK cell development revealed by analysis of NK cells during ontogeny. Immunol Cell Biol 88,107-116.
    Antoniou, A.C., Kartsonaki, C., Sinilnikova, O.M., Soucy, P., McGuffog, L., Healey, S., Lee, A. Peterlongo, P., Manoukian, S., Peissel, B., et al. (2011). Common alleles at 6q25.1 and 1p11.2 are associated with breast cancer risk for BRCA1 and BRCA2 mutation carriers. Hum Mol Genet 20, 3304-3321.
    Baev, D.V., Peng, X.H., Song, L., Barnhart, J.R., Crooks, G.M., Weinberg, K.I., and Metelitsa, L.S. (2004). Distinct homeostatic requirements of CD4+ and CD4- subsets of Valpha24-invariant natural killer T cells in humans. Blood 104,4150-4156.
    Bajenoff, M., Breart, B., Huang, A.Y., Qi, H., Cazareth, J., Braud, V.M., Germain, R.N., and Glaichenhaus, N. (2006). Natural killer cell behavior in lymph nodes revealed by static and real-time imaging. J Exp Med 203,619-631.
    Baxter, A.G., Kinder, S.J., Hammond, K.J., Scollay, R., and Godfrey, D.I. (1997). Association between alphabetaTCR+CD4-CD8- T-cell deficiency and IDDM in NOD/Lt mice. Diabetes 46, 572-582.
    Bearden, I.G., Beavis, D., Besliu, C., Budick, B., Boggild, H., Chasman, C., Christensen, C.H., Christiansen, P., Cibor, J., Debbe, R., et al. (2005). Charged meson rapidity distributions in central Au+Au collisions at square root(sNN) = 200 GeV. Phys Rev Lett 94,162301.
    Bendelac, A. (1995). Positive selection of mouse NK1+ T cells by CD 1-expressing cortical thymocytes. J Exp Med 182,2091-2096.
    Bendelac, A., Savage, P.B., and Teyton, L. (2007). The biology of NKT cells. Annu Rev Immunol 25,297-336.
    Benlagha, K., Kyin, T., Beavis, A., Teyton, L., and Bendelac, A. (2002). A thymic precursor to the NK T cell lineage. Science 296,553-555.
    Benlagha, K., Wei, D.G., Veiga, J., Teyton, L., and Bendelac, A. (2005). Characterization of the early stages of thymic NKT cell development. J Exp Med 202,485-492.
    Bennett, I.M., Zatsepina, O., Zamai, L., Azzoni, L., Mikheeva, T., and Perussia, B. (1996). Definition of a natural killer NKR-P1A+/CD56-/CD16-functionally immature human NK cell subset that differentiates in vitro in the presence of interleukin 12. J Exp Med 184,1845-1856.
    Berzins, S.P., Cochrane, A.D., Pellicci, D.G., Smyth, M.J., and Godfrey, D.I. (2005). Limited correlation between human thymus and blood NKT cell content revealed by an ontogeny study of paired tissue samples. Eur J Immunol 35,1399-1407.
    Berzins, S.P., McNab, F.W., Jones, C.M., Smyth, M.J., and Godfrey, D.I. (2006). Long-term retention of mature NK1.1+ NKT cells in the thymus. J Immunol 176,4059-4065.
    Bevington, A., Brown, J., Butler, H., Govindji, S., K, M.K., Sheridan, K., and Walls, J. (2002). Impaired system A amino acid transport mimics the catabolic effects of acid in L6 cells. Eur J Clin Invest 32,590-602.
    Bezbradica, J.S., Hill, T., Stanic, A.K., Van Kaer, L., and Joyce, S. (2005). Commitment toward the natural T (iNKT) cell lineage occurs at the CD4+8+ stage of thymic ontogeny. Proc Natl Acad SciUS A 102,5114-5119.
    Bowen, D.G., McCaughan, G.W., and Bertolino, P. (2005). Intrahepatic immunity:a tale of two sites? Trends Immunol 26,512-517.
    Bradley, L.M., Dalton, D.K., and Croft, M. (1996). A direct role for IFN-gamma in regulation of Thl cell development. J Immunol 157,1350-1358.
    Briard, D., Brouty-Boye, D., Azzarone, B., and Jasmin, C. (2002). Fibroblasts from human spleen regulate NK cell differentiation from blood CD34(+) progenitors via cell surface IL-15. J Immunol 168,4326-4332.
    Burt, B.M., Plitas, G., Stableford, J.A., Nguyen, H.M., Bamboat, Z.M., Pillarisetty, V.G., and DeMatteo, R.P. (2008). CD1 lc identifies a subset of murine liver natural killer cells that responds to adenoviral hepatitis. J Leukoc Biol 84,1039-1046.
    Calne, R.Y., Sells, R.A., Pena, J.R., Davis, D.R., Millard, P.R., Herbertson, B.M., Binns, R.M., and Davies, D.A. (1969). Induction of immunological tolerance by porcine liver allografts. Nature 223,472-476.
    Chambers, B.J., and Ljunggren, H.G. (2010). Unique features of NK cell development during ontogeny revealed in studies of RAG-1-deficient mice. Immunol Cell Biol 88,105-106.
    Chan, A., Hong, D.L., Atzberger, A., Kollnberger, S., Filer, A.D., Buckley, C.D., McMichael, A., Enver, T., and Bowness, P. (2007). CD56bright human NK cells differentiate into CD56dim cells: role of contact with peripheral fibroblasts. J Immunol 179,89-94.
    Chen, S., Kawashima, H., Lowe, J.B., Lanier, L.L., and Fukuda, M. (2005). Suppression of tumor formation in lymph nodes by L-selectin-mediated natural killer cell recruitment. J Exp Med 202, 1679-1689.
    Chiossone, L., Chaix, J., Fuseri, N., Roth, C., Vivier, E., and Walzer, T. (2009). Maturation of mouse NK cells is a 4-stage developmental program. Blood 113,5488-5496.
    Chklovskaia, E., Nowbakht, P., Nissen, C., Gratwohl, A., Bargetzi, M., and Wodnar-Filipowicz, A. (2004). Reconstitution of dendritic and natural killer-cell subsets after allogeneic stem cell transplantation:effects of endogenous flt3 ligand. Blood 103,3860-3868.
    Chu, C.Q., Wittmer, S., and Dalton, D.K. (2000). Failure to suppress the expansion of the activated CD4 T cell population in interferon gamma-deficient mice leads to exacerbation of experimental autoimmune encephalomyelitis. J Exp Med 192,123-128.
    Coles, M.C., and Raulet, D.H. (1994). Class I dependence of the development of CD4+ CD8-NK1.1+ thymocytes. J Exp Med 180,395-399.
    Coles, M.C., and Raulet, D.H. (2000). NK1.1+ T cells in the liver arise in the thymus and are selected by interactions with class I molecules on CD4+CD8+ cells. J Immunol 164,2412-2418.
    Colucci, F., Caligiuri, M.A., and Di Santo, J.P. (2003). What does it take to make a natural killer? Nat Rev Immunol 3,413-425.
    Colucci, F., and Di Santo, J.P. (2000). The receptor tyrosine kinase c-kit provides a critical signal for survival, expansion, and maturation of mouse natural killer cells. Blood 95,984-991.
    Colucci, F., Samson, S.I., DeKoter, R.P., Lantz, O., Singh, H., and Di Santo, J.P. (2001). Differential requirement for the transcription factor PU.1 in the generation of natural killer cells versus B and T cells. Blood 97,2625-2632.
    Cooper, M.A., Bush, J.E., Fehniger, T.A., VanDeusen, J.B., Waite, R.E., Liu, Y., Aguila, H.L., and Caligiuri, M.A. (2002). In vivo evidence for a dependence on interleukin 15 for survival of natural killer cells. Blood 100,3633-3638.
    Cooper, M.A., Fehniger, T.A., and Caligiuri, M.A. (2001a). The biology of human natural killer-cell subsets. Trends Immunol 22,633-640.
    Cooper, M.A., Fehniger, T.A., Turner, S.C., Chen, K.S., Ghaheri, B.A., Ghayur, T., Carson, W.E., and Caligiuri, M.A. (2001b). Human natural killer cells:a unique innate immunoregulatory role for the CD56(bright) subset. Blood 97,3146-3151.
    Crispe, I.N. (2003). Hepatic T cells and liver tolerance. Nat Rev Immunol 3,51-62.
    Crispe, I.N. (2009). The liver as a lymphoid organ. Annu Rev Immunol 27,147-163.
    Dalton, D.K., Pitts-Meek, S., Keshav, S., Figari, I.S., Bradley, A., and Stewart, T.A. (1993). Multiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science 259,1739-1742.
    Davodeau, F., Peyrat, M.A., Necker, A., Dominici, R., Blanchard, F., Leget, C., Gaschet, J., Costa, P., Jacques, Y., Godard, A., et al. (1997). Close phenotypic and functional similarities between human and murine alphabeta T cells expressing invariant TCR alpha-chains. J Immunol 158, 5603-5611.
    Day, C.L., Kaufmann, D.E., Kiepiela, P., Brown, J.A., Moodley, E.S., Reddy, S., Mackey, E.W., Miller, J.D., Leslie, A.J., DePierres, C., et al. (2006). PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 443,350-354.
    de Villartay, J.P., Fischer, A., and Durandy, A. (2003). The mechanisms of immune diversification and their disorders. Nat Rev Immunol 3,962-972.
    Degli-Esposti, M.A., and Smyth, M.J. (2005). Close encounters of different kinds:dendritic cells and NK cells take centre stage. Nat Rev Immunol 5,112-124.
    Di Santo, J.P. (2006). Natural killer cell developmental pathways:a question of balance. Annu Rev Immunol 24,257-286.
    Di Santo, J.P. (2008). Natural killer cells:diversity in search of a niche. Nat Immunol 9,473-475.
    Di Santo, J.P., and Vosshenrich, C.A. (2006). Bone marrow versus thymic pathways of natural killer cell development. Immunol Rev 214,35-46.
    Doherty, D.G., and O'Farrelly, C. (2000). Innate and adaptive lymphoid cells in the human liver. Immunol Rev 174,5-20.
    Dorfman, J.R., and Raulet, D.H. (1998). Acquisition of Ly49 receptor expression by developing natural killer cells. J Exp Med 187,609-618.
    Dougan, S.K., Rava, P., Hussain, M.M., and Blumberg, R.S. (2007). MTP regulated by an alternate promoter is essential for NKT cell development. J Exp Med 204,533-545.
    Dunn, C., Brunetto, M., Reynolds, G., Christophides, T., Kennedy, P.T., Lampertico, P., Das, A., Lopes, A.R., Borrow, P., Williams, K., et al. (2007). Cytokines induced during chronic hepatitis B virus infection promote a pathway for NK cell-mediated liver damage. J Exp Med 204,667-680.
    Eberl, G., and MacDonald, H.R. (1998). Rapid death and regeneration of NKT cells in anti-CD3epsilon- or IL-12-treated mice:a major role for bone marrow in NKT cell homeostasis. Immunity 9,345-353.
    Egawa, T., Eberl, G., Taniuchi, I., Benlagha, K., Geissmann, F., Hennighausen, L., Bendelac, A., and Littman, D.R. (2005). Genetic evidence supporting selection of the Valphal4i NKT cell lineage from double-positive thymocyte precursors. Immunity 22,705-716.
    Emoto, M., and Kaufmann, S.H. (2003). Liver NKT cells:an account of heterogeneity. Trends Immunol 24,364-369.
    Esteban, L.M., Tsoutsman, T., Jordan, M.A., Roach, D., Poulton, L.D., Brooks, A., Naidenko,
    O.V., Sidobre, S., Godfrey, D.I., and Baxter, A.G. (2003). Genetic control of NKT cell numbers maps to major diabetes and lupus loci. J Immunol 171,2873-2878.
    Fehniger, T.A., Cooper, M.A., Nuovo, G.J., Cella, M., Facchetti, F., Colonna, M., and Caligiuri, M.A. (2003). CD56bright natural killer cells are present in human lymph nodes and are activated by T cell-derived IL-2:a potential new link between adaptive and innate immunity. Blood 101, 3052-3057.
    Ferber, I.A., Brocke, S., Taylor-Edwards, C., Ridgway, W., Dinisco, C., Steinman, L., Dalton, D., and Fathman, C.G. (1996). Mice with a disrupted IFN-gamma gene are susceptible to the induction of experimental autoimmune encephalomyelitis (EAE). J Immunol 156,5-7.
    Forestier, C., Park, S.H., Wei, D., Benlagha, K., Teyton, L., and Bendelac, A. (2003). T cell development in mice expressing CD1d directed by a classical MHC class Ⅱ promoter. J Immunol 171,4096-4104.
    French, A.R., and Yokoyama, W.M. (2003). Natural killer cells and viral infections. Curr Opin Immunol 15,45-51.
    Freud, A.G., Becknell, B., Roychowdhury, S., Mao, H.C., Ferketich, A.K., Nuovo, G.J., Hughes, T.L., Marburger, T.B., Sung, J., Baiocchi, R.A., et al. (2005). A human CD34(+) subset resides in lymph nodes and differentiates into CD56bright natural killer cells. Immunity 22,295-304.
    Freud, A.G., Yokohama, A., Becknell, B., Lee, M.T., Mao, H.C., Ferketich, A.K., and Caligiuri, M.A. (2006). Evidence for discrete stages of human natural killer cell differentiation in vivo. J Exp Med 203,1033-1043.
    Gadola, S.D, Silk, J.D., Jeans, A., Illarionov, P.A., Salio, M., Besra, G.S., Dwek, R., Butters, T.D., Platt, F.M., and Cerundolo, V. (2006). Impaired selection of invariant natural killer T cells in diverse mouse models of glycosphingolipid lysosomal storage diseases. J Exp Med 203, 2293-2303.
    Gadue, P., and Stein, P.L. (2002). NK T cell precursors exhibit differential cytokine regulation and require Itk for efficient maturation. J Immunol 169,2397-2406.
    Gallatin, W.M., Weissman, I.L., and Butcher, E.C. (1983). A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature 304,30-34.
    Galy, A., Travis, M., Cen, D., and Chen, B. (1995). Human T, B, natural killer, and dendritic cells arise from a common bone marrow progenitor cell subset. Immunity 3,459-473.
    Gao, B., Jeong, W.I., and Tian, Z. (2008). Liver: An organ with predominant innate immunity. Hepatology 47,729-736.
    Gapin, L., Matsuda, J.L., Surh, C.D., and Kronenberg, M. (2001). NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nat Immunol 2,971-978.
    Garcia-Peydro, M., de Yebenes, V.G., and Toribio, M.L. (2006). Notch1 and IL-7 receptor interplay maintains proliferation of human thymic progenitors while suppressing non-T cell fates. J Immunol 177,3711-3720.
    Gasser, S., Orsulic, S., Brown, E.J., and Raulet, D.H. (2005). The DNA damage pathway regulates innate immune system ligands of the NKG2D receptor. Nature 436,1186-1190.
    Geissmann, F., Cameron, T.O., Sidobre, S., Manlongat, N., Kronenberg, M., Briskin, M.J., Dustin, M.L., and Littman, D.R. (2005). Intravascular immune surveillance by CXCR6+ NKT cells patrolling liver sinusoids. PLoS Biol 3, e113.
    Godfrey, D.I., and Berzins, S.P. (2007). Control points in NKT-cell development. Nat Rev Immunol 7,505-518.
    Godin, I., and Cumano, A. (2002). The hare and the tortoise:an embryonic haematopoietic race. Nat Rev Immunol 2,593-604.
    Gombert, J.M., Herbelin, A., Tancrede-Bohin, E., Dy, M., Carnaud, C., and Bach, J.F. (1996). Early quantitative and functional deficiency of NK1+-like thymocytes in the NOD mouse. Eur J Immunol 26,2989-2998.
    Gottschalk, L.R., Bray, R.A., Kaizer, H., and Gebel, H.M. (1990). Two populations of CD56 (Leu-19)+/CD16+ cells in bone marrow transplant recipients. Bone Marrow Transplant 5, 259-264.
    Gregoire, C., Chasson, L., Luci, C., Tomasello, E., Geissmann, F., Vivier, E., and Walzer, T. (2007). The trafficking of natural killer cells. Immunol Rev 220,169-182.
    Grzywacz, B., Kataria, N., Sikora, M., Oostendorp, R.A., Dzierzak, E.A., Blazar, B.R., Miller, J.S., and Verneris, M.R. (2006). Coordinated acquisition of inhibitory and activating receptors and functional properties by developing human natural killer cells. Blood 108,3824-3833.
    Gumperz, J.E., Miyake, S., Yamamura, T., and Brenner, M.B. (2002). Functionally distinct subsets of CD Id-restricted natural killer T cells revealed by CDld tetramer staining. J Exp Med 195,625-636.
    Hammond, K., Cain, W., van Driel, I., and Godfrey, D. (1998). Three day neonatal thymectomy selectively depletes NK 1.1+T cells. Int Immunol 10,1491-1499.
    Hanna, J., Bechtel, P., Zhai, Y., Youssef, F., McLachlan, K., and Mandelboim, O. (2004). Novel insights on human NK cells'immunological modalities revealed by gene expression profiling. J Immunol 173,6547-6563.
    Hanna, J., Goldman-Wohl, D., Hamani, Y., Avraham, I., Greenfield, C., Natanson-Yaron, S., Prus, D., Cohen-Daniel, L., Arnon, T.I., Manaster, I., et al. (2006). Decidual NK cells regulate key developmental processes at the human fetal-maternal interface. Nat Med 12,1065-1074.
    Hanna, J., Wald, O., Goldman-Wohl, D., Prus, D., Markel, G., Gazit, R., Katz, G., Haimov-Kochman, R., Fujii, N., Yagel, S., et al. (2003). CXCL12 expression by invasive trophoblasts induces the specific migration of CD16-human natural killer cells. Blood 102, 1569-1577.
    Hata, K., Zhang, X.R., Iwatsuki, S., Van Thiel, D.H., Herberman, R.B., and Whiteside, T.L. (1990). Isolation, phenotyping, and functional analysis of lymphocytes from human liver. Clin Immunol Immunopathol 56,401-419.
    Hayakawa, Y., and Smyth, M.J. (2006). CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J Immunol 176,1517-1524.
    Herberman, R.B., Nunn, M.E., Holden, H.T., and Lavrin, D.H. (1975a). Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer 16,230-239.
    Herberman, R.B., Nunn, M.E., and Lavrin, D.H. (1975b). Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic acid allogeneic tumors. I. Distribution of reactivity and specificity. Int J Cancer 16,216-229.
    Herberman, R.B., and Ortaldo, J.R. (1981). Natural killer cells: their roles in defenses against disease. Science 214,24-30.
    Hoshino, T., Winkler-Pickett, R.T., Mason, A.T., Ortaldo, J.R., and Young, H.A. (1999). IL-13 production by NK cells:IL-13-producing NK and T cells are present in vivo in the absence of IFN-gamma. J Immunol 162,51-59.
    Huntington, N.D., Vosshenrich, C.A., and Di Santo. J.P. (2007). Developmental pathways that generate natural-killer-cell diversity in mice and humans. Nat Rev Immunol 7,703-714.
    Iizuka, K., Chaplin, D.D., Wang, Y., Wu, Q., Pegg, L.E., Yokoyama, W.M., and Fu, Y.X. (1999). Requirement for membrane lymphotoxin in natural killer cell development. Proc Natl Acad Sci U S A 96,6336-6340.
    Ikawa, T., Kawamoto, H., Fujimoto, S., and Katsura, Y. (1999). Commitment of common T/Natural killer (NK) progenitors to unipotent T and NK progenitors in the murine fetal thymus revealed by a single progenitor assay. J Exp Med 190,1617-1626.
    Iwai, T., Tomita, Y., Okano, S., Shimizu, I., Yasunami, Y., Kajiwara, T., Yoshikai, Y., Taniguchi, M., Nomoto, K., and Yasui, H. (2006). Regulatory roles of NKT cells in the induction and maintenance of cyclophosphamide-induced tolerance. J Immunol 177,8400-8409.
    Jacobs, R., Stoll, M., Stratmann, G., Leo, R., Link, H., and Schmidt, R.E. (1992). CD16-CD56+ natural killer cells after bone marrow transplantation. Blood 79,3239-3244.
    Jaleco, A.C., Blom, B., Res, P., Weijer, K., Lanier, L.L., Phillips, J.H., and Spits, H. (1997). Fetal liver contains committed NK progenitors, but is not a site for development of CD34+ cells into T cells. J Immunol 159,694-702.
    Jonjic, S., Babic, M., Polic, B., and Krmpotic, A. (2008). Immune evasion of natural killer cells by viruses. Curr Opin Immunol 20,30-38.
    Joyce, S., Woods, A.S., Yewdell, J.W., Bennink, J.R., De Silva, A.D, Boesteanu, A., Balk, S.P., Cotter, R.J., and Brutkiewicz, R.R. (1998). Natural ligand of mouse CD1d1:cellular glycosylphosphatidylinositol. Science 279,1541-1544.
    Keskin, D.B., Allan, D.S., Rybalov, B., Andzelm, M.M., Stern, J.N., Kopcow, H.D., Koopman, L.A., and Strominger, J.L. (2007). TGFbeta promotes conversion of CD16+ peripheral blood NK cells into CD 16- NK cells with similarities to decidual NK cells. Proc Natl Acad Sci U S A 104, 3378-3383.
    Kiessling, R., Klein, E., Pross, H., and Wigzell, H. (1975a). "Natural" killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur J Immunol 5,117-121.
    Kiessling, R., Klein, E., and Wigzell, H. (1975b). "Natural" killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5,112-117.
    Kim, S., Iizuka, K., Kang, H.S., Dokun, A., French, A.R., Greco, S., and Yokoyama, W.M. (2002). In vivo developmental stages in murine natural killer cell maturation. Nat Immunol 3,523-528.
    Kondo, M., Weissman, I.L., and Akashi, K. (1997). Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91,661-672.
    Koopman, L.A., Kopcow, H.D., Rybalov, B., Boyson, J.E., Orange, J.S., Schatz, F., Masch, R., Lockwood, C.J., Schachter, A.D., Park, P.J., et al. (2003). Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med 198,1201-1212.
    Kopcow, H.D., Allan, D.S., Chen, X., Rybalov, B., Andzelm, M.M., Ge, B., and Strominger, J.L. (2005). Human decidual NK cells form immature activating synapses and are not cytotoxic. Proc Natl Acad Sci U S A 102,15563-15568.
    Kubota, A., Kubota, S., Lohwasser, S., Mager, D.L., and Takei, F. (1999). Diversity of NK cell receptor repertoire in adult and neonatal mice. J Immunol 163,212-216.
    Lambolez, F., Arcangeli, M.L., Joret, A.M., Pasqualetto, V., Cordier, C., Di Santo, J.P., Rocha, B., and Ezine, S. (2006). The thymus exports long-lived fully committed T cell precursors that can colonize primary lymphoid organs. Nat Immunol 7,76-82.
    Lanier, L.L. (2005). NK cell recognition. Annu Rev Immunol 23,225-274.
    Lantz, O., and Bendelac, A. (1994). An invariant T cell receptor alpha chain is used by a unique subset of major histocompatibility complex class I-specific CD4+ and CD4-8-T cells in mice and humans. J Exp Med 180,1097-1106.
    Lassen, M.G., Lukens, J.R., Dolina, J.S., Brown, M.G., and Hahn, Y.S. (2010). Intrahepatic IL-10 maintains NKG2A+Ly49- liver NK cells in a functionally hyporesponsive state. J Immunol 184, 2693-2701.
    Lee, P.T., Putnam, A., Benlagha, K., Teyton, L., Gottlieb, P.A., and Bendelac, A. (2002). Testing the NKT cell hypothesis of human IDDM pathogenesis. J Clin Invest 110,793-800.
    Levitsky, H.I., Golumbek, P.T., and Pardoll, D.M. (1991). The fate of CD4-8-T cell receptor-alpha beta+ thymocytes. J Immunol 146,1113-1117.
    Li, W., Kim, M.G., Gourley, T.S., McCarthy, B.P., Sant'Angelo, D.B., and Chang, C.H. (2005). An alternate pathway for CD4 T cell development: thymocyte-expressed MHC class II selects a distinct T cell population. Immunity 23,375-386.
    Lin, G., Hagerstrand, I., and Lunderquist, A. (1984). Portal blood supply of liver metastases. AJR Am J Roentgenol 143,53-55.
    Lin, H., Nieda, M., Hutton, J.F., Rozenkov, V., and Nicol, A.J. (2006a). Comparative gene expression analysis of NKT cell subpopulations. J Leukoc Biol 80,164-173.
    Lin, H., Nieda, M., and Nicol, A.J. (2004). Differential proliferative response of NKT cell subpopulations to in vitro stimulation in presence of different cytokines. Eur J Immunol 34, 2664-2671.
    Lin, H., Nieda, M., Rozenkov, V., and Nicol, A.J. (2006b). Analysis of the effect of different NKT cell subpopulations on the activation of CD4 and CD8 T cells, NK cells, and B cells. Exp Hematol 34,289-295.
    Liu, Y., Goff, R.D., Zhou, D., Mattner, J., Sullivan, B.A., Khurana, A., Cantu, C.,3rd, Ravkov, E.V., Ibegbu, C.C., Altman, J.D., et al. (2006). A modified alpha-galactosyl ceramide for staining and stimulating natural killer T cells. J Immunol Methods 312,34-39.
    Lund, R.J., Loytomaki, M., Naumanen, T., Dixon, C., Chen, Z., Ahlfors, H., Tuomela, S., Tahvanainen, J., Scheinin, J., Henttinen, T., et al. (2007). Genome-wide identification of novel genes involved in early Th1 and Th2 cell differentiation. J Immunol 178,3648-3660.
    Maghazachi, A.A. (2003). G protein-coupled receptors in natural killer cells. J Leukoc Biol 74, 16-24.
    Mailliard, R.B., Alber, S.M., Shen, H., Watkins, S.C., Kirkwood, J.M., Herberman, R.B., and Kalinski, P. (2005). IL-18-induced CD83+CCR7+ NK helper cells. J Exp Med 202,941-953.
    Makino, Y., Kanno, R., Koseki, H., and Taniguchi, M. (1996). Development of Valpha4+ NK T cells in the early stages of embryogenesis. Proc Natl Acad Sci U S A 93,6516-6520.
    Maldonado, R.A., Soriano, M.A., Perdomo, L.C., Sigrist, K., Irvine, D.J., Decker, T., and Glimcher, L.H. (2009). Control of T helper cell differentiation through cytokine receptor inclusion in the immunological synapse. J Exp Med 206,877-892.
    Manoussaka, M.S., Smith, R.J., Conlin, V., Toomey, J.A., and Brooks, C.G. (1998). Fetal mouse NK cell clones are deficient in Ly49 expression, share a common broad lytic specificity, and undergo continuous and extensive diversification in vitro. J Immunol 160,2197-2206.
    Martin-Fontecha, A., Thomsen, L.L., Brett, S., Gerard, C., Lipp, M., Lanzavecchia, A., and Sallusto, F. (2004). Induced recruitment of NK cells to lymph nodes provides IFN-gamma for T(H)1 priming. Nat Immunol 5,1260-1265.
    Matsuda, J.L., Gapin, L., Sidobre, S., Kieper, W.C., Tan, J.T., Ceredig, R., Surh, C.D., and Kronenberg, M. (2002). Homeostasis of V alpha 14i NKT cells. Nat Immunol 3,966-974.
    Matsuda, J.L., Zhang, Q., Ndonye, R., Richardson, S.K., Howell, A.R., and Gapin, L. (2006). T-bet concomitantly controls migration, survival, and effector functions during the development of Valpha14i NKT cells. Blood 107,2797-2805.
    Matsuura, A., Kinebuchi, M., Chen, H.Z., Katabami, S., Shimizu, T., Hashimoto, Y., Kikuchi, K., and Sato, N. (2000). NKT cells in the rat: organ-specific distribution of NK T cells expressing distinct V alpha 14 chains. J Immunol 164,3140-3148.
    McNab, F.W., Berzins, S.P., Pellicci, D.G., Kyparissoudis, K., Field, K., Smyth, M.J., and Godfrey, D.I. (2005). The influence of CDld in postselection NKT cell maturation and homeostasis. J Immunol 175,3762-3768.
    Miller, J.S., Alley, K.A., and McGlave, P. (1994). Differentiation of natural killer (NK) cells from human primitive marrow progenitors in a stroma-based long-term culture system:identification of a CD34+7+ NK progenitor. Blood 83,2594-2601.
    Miller, J.S., and McCullar, V. (2001). Human natural killer cells with polyclonal lectin and immunoglobulinlike receptors develop from single hematopoietic stem cells with preferential expression of NKG2A and KIR2DL2/L3/S2. Blood 98,705-713.
    Mingari, M.C., Poggi, A., Biassoni, R., Bellomo, R., Ciccone, E., Pella, N., Morelli, L., Verdiani, S., Moretta, A., and Moretta, L. (1991). In vitro proliferation and cloning of CD3- CD16+ cells from human thymocyte precursors. J Exp Med 174,21-26.
    Moffett-King, A. (2002). Natural killer cells and pregnancy. Nat Rev Immunol 2,656-663.
    Morandi, B., Bougras, G., Muller, W.A., Ferlazzo, G., and Munz, C. (2006). NK cells of human secondary lymphoid tissues enhance T cell polarization via IFN-gamma secretion. Eur J Immunol 36,2394-2400.
    Moretta, L., Ferlazzo, G., Bottino, C., Vitale, M., Pende, D., Mingari, M.C., and Moretta, A. (2006). Effector and regulatory events during natural killer-dendritic cell interactions. Immunol Rev 214,219-228.
    Moroso, V., Metselaar, H.J., Mancham, S., Tilanus, H.W., Eissens, D., van der Meer, A., van der Laan, L.J., Kuipers, E.J., Joosten, I., and Kwekkeboom, J. (2010). Liver grafts contain a unique subset of natural killer cells that are transferred into the recipient after liver transplantation. Liver Transpl 16,895-908.
    Mowat, A.M. (2003). Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol 3,331-341.
    Mrozek, E., Anderson, P., and Caligiuri, M.A. (1996). Role of interleukin-15 in the development of human CD56+ natural killer cells from CD34+ hematopoietic progenitor cells. Blood 87, 2632-2640.
    Norris, S., Collins, C., Doherty, D.G., Smith, F., McEntee, G., Traynor, O., Nolan, N., Hegarty, J., and O'Farrelly, C. (1998). Resident human hepatic lymphocytes are phenotypically different from circulating lymphocytes. J Hepatol 28,84-90.
    Ochi, M., Ohdan, H., Mitsuta, H., Onoe, T., Tokita, D., Hara, H., Ishiyama, K., Zhou, W., Tanaka, Y., and Asahara, T. (2004). Liver NK cells expressing TRAIL are toxic against self hepatocytes in mice. Hepatology 39,1321-1331.
    Ohteki, T., and MacDonald, H.R. (1994). Major histocompatibility complex class I related molecules control the development of CD4+8- and CD4-8-subsets of natural killer 1.1+ T cell receptor-alpha/beta+ cells in the liver of mice. J Exp Med 180,699-704.
    Orange, J.S. (2002). Human natural killer cell deficiencies and susceptibility to infection. Microbes Infect 4,1545-1558.
    Ouyang, Q., Baerlocher, G., Vulto, I., and Lansdorp, P.M. (2007). Telomere length in human natural killer cell subsets. Ann N Y Acad Sci 1106,240-252.
    Passlick, B., Izbicki, J.R., Waydhas, C., Nast-Kolb, D., Schweiberer, L., and Ziegler-Heitbrock, H.W. (1991). Posttraumatic splenectomy does not influence human peripheral blood mononuclear cell subsets. J Clin Lab Immunol 34,157-161.
    Pellicci, D.G., Hammond, K.J., Uldrich, A.P., Baxter, A.G., Smyth, M.J., and Godfrey, D.I. (2002). A natural killer T (NKT) cell developmental pathway iInvolving a thymus-dependent NK1.1(-)CD4(+) CD Id-dependent precursor stage. J Exp Med 195,835-844.
    Phillips, J.H., Hori, T., Nagler, A., Bhat, N., Spits, H.; and Lanier, L.L. (1992). Ontogeny of human natural killer (NK) cells:fetal NK cells mediate cytolytic function and express cytoplasmic CD3 epsilon,delta proteins. J Exp Med 175,1055-1066.
    Phillips, J.H., and Lanier, L.L. (1987). Acquisition of non-MHC restricted cytotoxic function by IL 2 activated thymocytes with an "immature" antigenic phenotype. J Immunol 139,683-687.
    Prlic, M., Blazar, B.R., Farrar, M.A., and Jameson, S.C. (2003). In vivo survival and homeostatic proliferation of natural killer cells. J Exp Med 197,967-976.
    Prussin, C., and Foster, B. (1997). TCR V alpha 24 and V beta 11 coexpression defines a human NK1 T cell analog containing a unique ThO subpopulation. J Immunol 159,5862-5870.
    Pyz, E., Naidenko, O., Miyake, S., Yamamura, T., Berberich, I., Cardell, S., Kronenberg, M., and Herrmann, T. (2006). The complementarity determining region 2 of BV8S2 (V beta 8.2) contributes to antigen recognition by rat invariant NKT cell TCR. J Immunol 176,7447-7455.
    Ramos, S.B., Garcia, A.B., Viana, S.R., Voltarelli, J.C., and Falcao, R.P. (1996). Phenotypic and functional evaluation of natural killer cells in thymectomized children. Clin Immunol Immunopathol 81,277-281.
    Ranson, T., Vosshenrich, C.A., Corcuff, E., Richard, O., Muller, W., and Di Santo, J.P. (2003). IL-15 is an essential mediator of peripheral NK-cell homeostasis. Blood 101,4887-4893.
    Raulet, D.H. (2004). Interplay of natural killer cells and their receptors with the adaptive immune response. Nat Immunol 5,996-1002.
    Res, P., Martinez-Caceres, E., Cristina Jaleco, A., Staal, F., Noteboom, E., Weijer, K., and Spits, H. (1996). CD34+CD38dim cells in the human thymus can differentiate into T, natural killer, and dendritic cells but are distinct from pluripotent stem cells. Blood 87,5196-5206.
    Robertson, M.J. (2002). Role of chemokines in the biology of natural killer cells. J Leukoc Biol 71, 173-183.
    Rocha-Campos, A.C., Melki, R., Zhu, R., Deruytter, N., Damotte, D., Dy, M., Herbelin, A., and Garchon, H.J. (2006). Genetic and functional analysis of the Nkt1 locus using congenic NOD mice:improved Valphal4-NKT cell performance but failure to protect against type 1 diabetes. Diabetes 55,1163-1170.
    Rodewald, H.R., Moingeon, P., Lucich, J.L., Dosiou, C., Lopez, P., and Reinherz, E.L. (1992). A population of early fetal thymocytes expressing Fc gamma RⅡ/Ⅲ contains precursors of T lymphocytes and natural killer cells. Cell 69,139-150.
    Rosenberg, E.B., McCoy, J.L., Green, S.S., Donnelly, F.C., Siwarski, D.F., Levine, P.H., and Herberman, R.B. (1974). Destruction of human lymphoid tissue-culture cell lines by human peripheral lymphocytes in 51Cr-release cellular cytotoxicity assays. J Natl Cancer Inst 52, 345-352.
    Rosmaraki, E.E., Douagi, I., Roth, C., Colucci, F., Cumano, A., and Di Santo, J.P. (2001). Identification of committed NK cell progenitors in adult murine bone marrow. Eur J Immunol 31, 1900-1909.
    Rossi, M.I., Yokota, T., Medina, K.L., Garrett, K.P., Comp, P.C., Schipul, A.H., Jr., and Kincade, P.W. (2003). B lymphopoiesis is active throughout human life, but there are developmental age-related changes. Blood 101,576-584.
    Roth, C., Carlyle, J.R., Takizawa, H., and Raulet, D.H. (2000). Clonal acquisition of inhibitory Ly49 receptors on developing NK cells is successively restricted and regulated by stromal class I MHC. Immunity 13,143-153.
    Sagiv, Y., Bai, L., Wei, D.G., Agami, R., Savage, P.B., Teyton, L., and Bendelac, A. (2007). A distal effect of microsomal triglyceride transfer protein deficiency on the lysosomal recycling of CD1d. J Exp Med 204,921-928.
    Sanchez, M.J., Muench, M.O., Roncarolo, M.G., Lanier, L.L., and Phillips, J.H. (1994). Identification of a common T/natural killer cell progenitor in human fetal thymus. J Exp Med 180, 569-576.
    Sandberg, J.K., Stoddart, C.A., Brilot, F., Jordan, K.A., and Nixon, D.F. (2004). Development of innate CD4+ alpha-chain variable gene segment 24 (Valpha24) natural killer T cells in the early human feta1 thymus is regulated by IL-7. Proc Natl Acad Sci U S A 101,7058-7063.
    Sato, H., Nakayama, T., Tanaka, Y., Yamashita, M., Shibata, Y., Kondo, E., Saito, Y., and Taniguchi, M. (1999a). Induction of differentiation of pre-NKT cells to mature Valphal4 NKT cells by granulocyte/macrophage colony-stimulating factor. Proc Natl Acad Sci U S A 96, 7439.7444.
    Sato, T., Laver, J.H., Aiba, Y., and Ogawa, M. (1999b). NK cell colony formation from human fetal thymocytes. Exp Hematol 27,726-733.
    Schrantz, N., Sagiv, Y., Liu, Y., Savage, P.B., Bendelac, A., and Teyton, L. (2007). The Niemann-Pick type C2 protein loads isoglobotrihexosylceramide onto CD1d molecules and contributes to the thymic selection of NKT cells. J Exp Med 204,841-852.
    Schumann, J., Facciotti, F.; Panza, L., Michieletti, M., Compostella, F., Collmann, A., Mori, L. and De Libero, G. (2007). Differential alteration of lipid antigen presentation to NKT cells due to imbalances in lipid metabolism. Eur J Immunol 37,1431-1441.
    Schwarz, R.E., and Hiserodt, J.C. (1990). Effects of splenectomy on the development of tumor-specific immunity. J Surg Res 48,448-453.
    Shibuya, A., Nagayoshi, K., Nakamura, K., and Nakauchi, H. (1995). Lymphokine requirement for the generation of natural killer cells from CD34+ hematopoietic progenitor cells. Blood 85, 3538-3546.
    Shimamura, M., Ohteki, T., Beutner, U., and MacDonald, H.R. (1997). Lack of directed V alpha 14-J alpha 281 rearrangements in NK1+ T cells. Eur J Immunol 27,1576-1579.
    Shimozato, O., Ortaldo, J.R., Komschlies, K.L., and Young, H.A. (2002). Impaired NK cell development in an IFN-gamma transgenic mouse: aberrantly expressed IFN-gamma enhances hematopoietic stem cell apoptosis and affects NK cell differentiation. J Immunol 168,1746-1752.
    Shinkai, Y., Rathbun, G., Lam, K.P., Oltz, E.M., Stewart, V., Mendelsohn, M., Charron, J., Datta, M., Young, F., Stall, A.M., et al. (1992). RAG-2-deficient mice lack mature lymphocytes owing to inability to initiate V(D)J rearrangement. Cell 68,855-867.
    Sihvola, M., and Hurme, M. (1984). The development of NK cell activity in thymectomized bone marrow chimaeras. Immunology 53,17-22.
    Sirianni, M.C., Businco, L., Seminara, R., and Aiuti, F. (1983). Severe combined immunodeficiencies, primary T-cell defects and DiGeorge syndrome in humans: characterization by monoclonal antibodies and natural killer cell activity. Clin Immunol Immunopathol 28, 361-370.
    Sivakumar, P.V., Gunturi, A., Salcedo, M., Schatzle, J.D., Lai, W.C., Kurepa, Z., Pitcher, L. Seaman, M.S., Lemonnier, F.A., Bennett, M., et al. (1999). Cutting edge:expression of functional CD94/NKG2A inhibitory receptors on fetal NK1.1+Ly-49- cells: a possible mechanism of tolerance during NK cell development J Immunol 162,6976-6980.
    Sivori, S., Falco, M., Marcenaro, E., Parolini, S., Biassoni, R., Bottino, C., Moretta, L., and Moretta, A. (2002). Early expression of triggering receptors and regulatory role of 2B4 in human natural killer cell precursors undergoing in vitro differentiation. Proc Natl Acad Sci U S A 99, 4526-4531.
    Smyth, M.J., Cretney, E., Takeda, K., Wiltrout, R.H., Sedger, L.M., Kayagaki, N., Yagita, H., and Okumura, K. (2001). Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) contributes to interferon gamma-dependent natural killer cell protection from tumor metastasis. J Exp Med 193,661-670.
    Spits, H., Blom, B., Jaleco, A.C., Weijer, K., Verschuren, M.C., van Dongen, J.J., Heemskerk, M.H., and Res, P.C. (1998). Early stages in the development of human T, natural killer and thymic dendritic cells. Immunol Rev 165,75-86.
    Stern-Ginossar, N., Elefant, N., Zimmermann, A., Wolf, D.G., Saleh, N., Biton, M., Horwitz, E., Prokocimer, Z., Prichard, M., Hahn, G., et al. (2007). Host immune system gene targeting by a viral miRNA. Science 317,376-381.
    Stewart, C.A., Walzer, T., Robbins, S.H., Malissen, B., Vivier, E., and Prinz, I. (2007). Germ-line and rearranged Tcrd transcription distinguish bona fide NK cells and NK-like gammadelta T cells. Eur J Immunol 37,1442-1452.
    Takeda, K., Cretney, E., Hayakawa, Y., Ota, T., Akiba, H., Ogasawara, K., Yagita, H., Kinoshita, K., Okumura, K., and Smyth, M.J. (2005). TRAIL identifies immature natural killer cells in newborn mice and adult mouse liver. Blood 105,2082-2089.
    Takeda, K., Hayakawa, Y., Smyth, M.J., Kayagaki, N., Yamaguchi, N., Kakuta, S., Iwakura, Y., Yagita, H., and Okumura, K. (2001a). Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med 7,94-100.
    Takeda, K., Smyth, M.J., Cretney, E., Hayakawa, Y., Yamaguchi, N., Yagita, H., and Okumura, K. (2001b). Involvement of tumor necrosis factor-related apoptosis-inducing ligand in NK cell-mediated and IFN-gamma-dependent suppression of subcutaneous tumor growth. Cell Immunol 214,194-200.
    Tilloy, F., Di Santo, J.P., Bendelac, A., and Lantz, O. (1999). Thymic dependence of invariant V alpha 14+ natural killer-T cell development. Eur J Immunol 29,3313-3318. Trinchieri, G. (1989). Biology of natural killer cells. Adv Immunol 47,187-376.
    Tu, Z., Bozorgzadeh, A., Crispe, I.N., and Orloff, M.S. (2007). The activation state of human intrahepatic lymphocytes. Clin Exp Immunol 149,186-193.
    Van Rhijn, I., Koets, A.P., Im, J.S., Piebes, D., Reddington, F., Besra, G.S., Porcelli, S.A., van Eden, W., and Rutten, V.P. (2006). The bovine CD1 family contains group 1 CD1 proteins, but no functional CD1d. J Immunol 176,4888-4893.
    Vance, R.E., Kraft, J.R., Altman, J.D., Jensen, P.E., and Raulet, D.H. (1998). Mouse CD94/NKG2A is a natural killer cell receptor for the nonclassical major histocompatibility complex (MHC) class I molecule Qa-1(b). J Exp Med 188,1841-1848.
    Veinotte, L.L., Greenwood, C.P., Mohammadi, N., Parachoniak, C.A., and Takei, F. (2006). Expression of rearranged TCRgamma genes in natural killer cells suggests a minor thymus-dependent pathway of lineage commitment. Blood 107,2673-2679.
    Vosshenrich, C.A., Garcia-Ojeda, M.E., Samson-Villeger, S.I., Pasqualetto, V., Enault, L. Richard-Le Goff, O., Corcuff, E., Guy-Grand, D., Rocha, B., Cumano, A., et al. (2006). A thymic pathway of mouse natural killer cell development characterized by expression of GATA-3 and CD 127. Nat Immunol 7,1217-1224.
    Vosshenrich, C.A., Ranson, T., Samson, S.I., Corcuff, E., Colucci, F., Rosmaraki, E.E., and Di Santo, J.P. (2005). Roles for common cytokine receptor gamma-chain-dependent cytokines in the generation, differentiation, and maturation of NK cell precursors and peripheral NK cells in vivo. J Immunol 174,1213-1221.
    Vosshenrich, C.A., Sharara, L.I., Guy-Grand, D., Rajewsky, K., Muller, W., and Di Santo, J.P. (2000). Common cytokine receptor gamma chain (gammac)-deficient B cells persist in T cell-deficient gammac-mice and respond to a T-independent antigen. Eur J Immunol 30, 1614-1622.
    Walzer, T., Blery, M., Chaix, J., Fuseri, N., Chasson, L., Robbins, S.H., Jaeger, S., Andre, P., Gauthier, L., Daniel, L., et al. (2007). Identification, activation, and selective in vivo ablation of mouse NK cells via NKp46. Proc Natl Acad Sci U S A 104,3384-3389.
    Waskow, C., Paul, S., Haller, C., Gassmann, M., and Rodewald, H.R. (2002). Viable c-Kit(W/W) mutants reveal pivotal role for c-kit in the maintenance of lymphopoiesis. Immunity 17,277-288.
    Watt, S.V., Andrews, D.M., Takeda, K., Smyth, M.J., and Hayakawa, Y. (2008). IFN-gamma-dependent recruitment of mature CD27(high) NK cells to lymph nodes primed by dendritic cells. J Immunol 181,5323-5330.
    Wei, L.H., Olafsen, T., Radu, C., Hildebrandt, I.J., McCoy, M.R., Phelps, M.E., Meares, C., Wu, A.M., Czernin, J., and Weber, W.A. (2008). Engineered antibody fragments with infinite affinity as reporter genes for PET imaging. J Nucl Med 49,1828-1835.
    Wheelock, E.F. (1965). Interferon-like virus-inhibitor induced in human leukocytes by phytohemagglutinin. Science 149,310-311.
    Williams, N.S., Klem, J., Puzanov, I.J., Sivakumar, P.V., Bennett, M., and Kumar, V. (1999). Differentiation of NK1.1+, Ly49+ NK cells from flt3+ multipotent marrow progenitor cells. J Immunol 163,2648-2656.
    Williams, N.S., Moore, T.A., Schatzle, J.D., Puzanov, I.J., Sivakumar, P.V., Zlotnik, A., Bennett, M., and Kumar, V. (1997). Generation of lytic natural killer 1.1+, Ly-49-cells from multipotential murine bone marrow progenitors in a stroma-free culture:definition of cytokine requirements and developmental intermediates. J Exp Med 186,1609-1614.
    Xu, H., Chun, T., Colmone, A., Nguyen, H., and Wang, C.R. (2003). Expression of CDld under the control of a MHC class la promoter skews the development of NKT cells, but not CD8+ T cells. J Immunol 171,4105-4112.
    Yokoyama, W.M., and Plougastel, B.F. (2003). Immune functions encoded by the natural killer gene complex. Nat Rev Immunol 3,304-316.
    Yoshimoto, T., Bendelac, A., Hu-Li, J., and Paul, W.E. (1995). Defective IgE production by SJL mice is linked to the absence of CD4+, NK1.1+T cells that promptly produce interleukin 4. Proc Natl Acad Sci U S A 92,11931-11934.
    Young, H.A., Klinman, D.M., Reynolds, D.A., Grzegorzewski, K.J., Nii, A., Ward, J.M., Winkler-Pickett, R.T., Ortaldo, J.R., Kenny, J.J., and Komschlies, K.L. (1997). Bone marrow and thymus expression of interferon-gamma results in severe B-cell lineage reduction, T-cell lineage alterations, and hematopoietic progenitor deficiencies. Blood 89,583-595.
    Yu, H., Fehniger, T.A., Fuchshuber, P., Thiel, K.S., Vivier, E., Carson, W.E., and Caligiuri, M.A. (1998). Flt3 ligand promotes the generation of a distinct CD34(+) human natural killer cell progenitor that responds to interleukin-15. Blood 92,3647-3657.
    Yu, Y.Y., Kumar, V., and Bennett, M. (1992). Murine natural killer cells and marrow graft rejection. Annu Rev Immunol 10,189-213.
    Zamai, L., Ahmad, M., Bennett, I.M., Azzoni, L., Alnemri, E.S., and Perussia, B. (1998). Natural killer (NK) cell-mediated cytotoxicity:differential use of TRAIL and Fas ligand by immature and mature primary human NK cells. J Exp Med 188,2375-2380.
    Zhou, D., Cantu, C.,3rd, Sagiv, Y., Schrantz, N., Kulkarni, A.B., Qi, X., Mahuran, D.J., Morales, C.R., Grabowski, G.A., Benlagha, K., et al. (2004). Editing of CD1d-bound lipid antigens by endosomal lipid transfer proteins. Science 303,523-527.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700