茚酮类AChE抑制剂的设计、合成和构效关系研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:茚酮类AChE抑制剂的设计、合成和构效关系研究
     阿尔采默氏病(Alzheimer's disease,AD)目前已经成为继心脑血管疾病、恶性肿瘤、中风之后的第四大“杀手”。临床治疗AD最有效的是乙酰胆碱酯酶抑制剂(Acetylcholinesterase Inhibitor,AChE),但是已经上市的药物都存在一定的不足,因此研制新一代的AChE抑制剂是新药研究的迫切任务。
     通过对AChE晶体以及多奈哌齐-AChE复合物晶体结构的分析研究,从AChE具有外周和中心两个活性位点的结构特性出发,分别保留多奈哌齐中的二甲氧基茚酮(与外周位点结合)和利伐司替明中的苄基胺(与中心位点结合)药效团,通过氧原子或碳原子进行连接,设计并合成了苯氧茚酮、苯亚甲基茚酮和苄基茚酮类三类新型的AChE抑制剂48个。预期这些化合物能够同时作用于AChE的两个活性位点,不仅能显著抑制脑内乙酰胆碱的水解,提高ACh浓度,而且还能抑制由AChE引起的Aβ聚集,起到更好治疗AD的作用。
     这48个新化合物的体外AChE抑制活性实验表明:绝大多数化合物都具有较强的AChE抑制活性,其中3个化合物的IC_(50)达到30~50nmol/L,与多奈哌齐在同一数量级。
     为了进一步了解化合物与AChE蛋白的三维空间结合方式,以及为今后合理设计新的衍生物提供理论指导,选择苯氧茚酮类衍生物中活性最高的化合物53进行分子对接研究,发现分子可以通过4个主要官能团与酶进行结合,不仅能够同时作用于AChE的双活性中心,而且与酶的中间通道部分也有结合。并在此基础上开展了苯氧茚酮类衍生物的三维构效关系研究,分别用CoMFA和CoMSIA法建立了苯氧茚酮类化合物的3D-QSAR模型,相关系数R~2分别为0.999和0.984,说明模型具有较高的预测能力,对该类化合物的构效关系进行进一步的总结,为进一步的药物设计和结构优化提供了理论依据。
Part Ⅰ: Design, synthesis and QSAR study of indan-1-one derivatives as AChE inhibitorsAlzheimer's disease (AD) has been one of the most severe health problems of the elderly. Acetylcholinesterase (AChE) inhibitors are the first and the most developed group of drugs approved for AD symptomatic treatment. Unfortunatedly, all the drugs used in clinic only showed modest effects. So we are interested in searching for new AChE inhibitors.The crystallographic structure of AChE exhibits that it contains peripheral anionic site and central site. It has been pointed out recently that AChE may be responsible for several noncatalytic actions besides hydrolysis Ach, such as: accelerating β-amyloid peptide deposition, and this function only related with the peripheral anionic site (PAS). Therefore, molecules able to interact both central and peripheral binding sites may prevent the catalytic and noncatalytic actions of AChE. Following this reasoning, 5,6-dimethoxy-indan-1-one from donepezil (interacting with the peripheral site of AChE), dialkylbenzylamine from rivastigmine (interacting with the centric site of AChE) were chosed as the two pharmacophoric moieties, and linked with O, =CH and CH_2. Thus, series of 2-phenoxy-indan-1-one, 2-benzylidene-indan-1-one and 2-benzyl-indan-1-one derivatives were designed, synthesized and tested for their AChE inhibitory activity. Most of these derivatives exhibited high AChE inhibitory activity in vitro, and the IC50 values of three compounds were closed to that of Donepezil. The research of their bioactivity in vivo is going on.Compound 53 was picked out to carried out molecular docking study to understand the binding mode in AChE, and results showed that it made principal interactions along the active gorge of the enzyme through four major functional groups: phenyl and oxygen of indan-1-one, phenyl of benzyl group, charged nitrogen of pyrrolidine. On the basis of this founding, the CoMFA and CoMSIA models of 2-phenoxy-indan-1-one derivatives were built and explain the structure-activity relationships in detail. These results will give us some useful indications in the design of new drugs.
    Part II: Studies on the synthesis of DonepezilDonepezil was the most widely used AChE inhibitor in clinic. To study and improve the method of producing Donepezil, a novel and efficient method was developed to synthesize N-benzyl-4-formyl-piperidine, key intermediate of Donepezil. N-Benzyl -4-piperidone was reacted with dimethyloxo sulfonium methylide to get epoxide, followed by rearrangement in the presence of magnesium bromide etherate to give the aldehyde in high yield. Then it was condensed with 5,6-dimethoxy-indan-l-one to yield a,P-unsaturated ketone, followed by selective hydrogenation with 5% Pd/C and hydrochlorination to yield Donepezil. This synthesis route avoids using expensive reagents such as n-BuLi, LDA, and there is no need to use column chromatograph in all steps.
引文
1. Proctor GR, Harvey AL. Synthesis of tacrine analogues and their structure-activity relationship. Curr Med Chem, 2000, 7(3): 295-302.
    2. Recanatini M, Cavalli A, Belluti F, et al. SAR of 9-amino-1, 2, 3, 4-tetrahydroacridine-based acetylcholinesterase inhibitors: synthesis, enzyme inhibitory activity, QSAR, and structure-based CoMFA of tacrine analogues. Journal of medicinal chemistry, 2000, 43(10), 2007-2018.
    3.周金培,张惠斌,黄文龙.四氢吖啶类化合物的合成及其生物活性,中国药物化学杂志,2000,10(3):171-175。
    4. Barreiro EJ, Camara CA, Verli H, et al. Design, Synthesis, and Pharmacological Profile of Novel Fused Pyrazolo[4, 3-d]pyridine and Pyrazolo[3, 4-b][1, 8] naphthyridine Isosteres: A New Class of Potent and Selective Acetylcholinesterase Inhibitors. Journal of Medicinal Chemistry, 2003, 46(7): 1144-1152.
    5. Marco JL, De Los RC, Carreiras MC, et al. Synthesis and acetylcholinesterase/butyrylcholines-terase inhibition activity of new tacrine-like analogues. Bioorganic & medicinal chemistry, 2001, 9(3): 727-732.
    6. Marco JL, De Los RC, Carreiras MC, et al. Synthesis and acetylcholinesterase/butyrylcholinesterase inhibition activity of 4-amino-2, 3-diaryl-5, 6, 7, 8-tetrahydrofuro(and thieno)[2, 3-b]-quinolines, and 4-amino-5, 6, 7, 8, 9-pentahydro-2, 3-diphenylcyclohepta[e]furo(and thieno)-[2, 3-b]pyridines. Archiv der Pharmazie, 2002, 335(7): 347-353.
    7. Rampa A, Bisi A, Belluti F, et al. Acetylcholinesterase inhibitors for potential use in Alzheimer's disease: molecular modeling, synthesis and kinetic evaluation of 11H-indeno-[1, 2-b]-quinolin-10-ylamine derivatives. Bioorganic & medicinal chemistry, 2000, 8(3): 497-506.
    8. Marco-Contelles Jose, Leon Rafael, Morales Enrique, et al. Synthesis, electrochemical and biological studies on polyfunctionalized 4-ferrocenyl-4H-pyran and 4-ferrocenyl-1, 4-dihydropyri-dine derivatives. Tetrahedron Letters, 2004, 45(27): 5203-5205.
    9. Kryger G. Silman I, Sussman J L Structure of acetylcholinesterase complexed with E2020: implication for the design of new anti-Alzheimer drug, Structure, 1999, 7(3): 297-307.
    10. Andreani A, Cavalli Andrea, Granaiola Massimiliano, et al. Synthesis and Screening for Antiacetylcholinesterase Activity of (1-Benzyl-4-oxopiperidin-3-ylidene) methylindoles and-pyrroles Related to Donepezil. Journal of Medicinal Chemistry, 2001, 44(23): 4011-4014.
    11. Contreras J M, Parrot I, Sippl W, et al. Design, synthesis, and structure-activity relationships of a series of 3-[2-(1-benzylpiperidin-4-yl)ethylamino]pyridazine derivatives as acetylcholinesterase inhibitors. Journal of medicinal chemistry, 2001, 44(17): 2707-2718.
    12. Martinez A, Fernandez E, Castro Ana, et al. N-Benzylpiperidine derivatives of 1, 2, 4-thiadiazolidinone as new acetylcholinesterase inhibitors. European Journal of Medicinal Chemistry, 2000, 35(10): 913-922.
    13. Takeuchi Y, Shibata T, Suzuki E, et al. Preparation of 1-benzyl-4-[(5, 6-dimethoxy-2-fluoro-1-indanon)-2-yl]methylpiperidine as acetylcholinesterase inhibitor. PCT Int Appl, 2002, WO: 2002020482.
    14. Iimura Y, Kosasa T. Preparation of 4-substituted piperidine derivatives as acetylcholinesterase inhibiting remedies for senile dementia. 2001, WO:2001016105.
    15. Gutman LA, Shkolnik Eleonora, Tishin Boris, et al. Novel process and intermediates for production of donepezil and related compounds. PCT Int Appl, 2000, WO: 2000009483.
    16. Kwon YE, Kang JH, Lee HJ, et al. Preparation of piperidine derivatives, process for their preparation, and pharmaceutical compositions for Alzheimer's disease. PCT. WO03033489
    17. Martinez A, Lanot C, Perez C, et al. Lipase-catalysed synthesis of new acetylcholinesterase inhibitors: N-benzylpiperidine aminoacid derivatives. Bioorganic & medicinal chemistry, 2000, 8(4): 731-738.
    18. Basappa, Mantelingu K, Sadashiva MP, et al. A simple and efficient method for the synthesis of 1,2-benzisoxazoles. A series of its potent acetylcholinesterase inhibitors. Indian Journal of Chemistry, Section B: Organic Chemistry Including Medicinal Chemistry, 2004, 43B(9): 1954-1957.
    19. Polinsky R J. Clinical pharmacology of Rivastigmine: a new generation acetylcholinesterase inhibitor for the treatment of Alzheimer's disease Clin Ther, 1998, 20:634-647.
    20. Rampa A, Piazzi L, Belluti F, et al. Acetylcholinesterase inhibitors: SAR and kinetic studies on omega- [N-methyl -N-(3-alkylcarbamoyloxyphenyl)methyl] aminoalkoxyaryl derivatives. Journal of medicinal chemistry, 2001, 44(23): 3810-3820.
    21. Maria LB, Vincenza A, Manuela B, et al.Hexahydrochromeno[4,3-b]pyrrole Derivatives as Acetylcholinesterase Inhibitors. J Med Chem, 2001, 44:105-109.
    22. Maria LB, Manuela B, Andrea C, et al. Design, Synthesis, and Biological Evaluation of Conformationally Restricted Rivastigmine Analogues. J Med Chem, 2004, 47:5945-5952.
    23. Ildiko MB, Sandor M, Tivador T, et al. Preparation and acetylcholine esterase inhibitory activity of N-disubstituted carbamoyloxy flavone derivatives. PCT Int Appl, 2002, WO: 2002024676
    24. Shimshock SJ, Chesson SM, Mutlib AE. Preparation of isatin derivatives as acetylcholin -esterase inhibitors and analgesics. 2000, US: 6100276.
    25. Sumiaki K, Yoshio H, Kiyoharu N, et al. Total Synthesis of (-)-Galanthamine by Remote Asymmetric Induction Angewandte Chemic International Edition. 2004, 43 (20): 2659-2661.
    26. Greenblatt HM, Guillou C, Guenard D, et al. The Complex of a Bivalent Derivative of Galanthamine with Torpedo Acetylcholinesterase Displays Drastic Deformation of the Active-Site Gorge: Implications for Structure-Based Drug Design. Journal of the American Chemical Society, 2004, 126(47): 15405-15411.
    27. Raymond WK, Larry D, Veronica T. Galanthamine derivatives as Acetylcholinesterase inhibitors. 2001, US: 6323196.
    28. Bonnie D, Madeleine MJ. Compounds for the treatment of Alzeimer's disease.2001, US: 6268358.
    29. Jordis U, Froehlich J, Treu M, et al. Preparation of galanthamine analogs for pharmaceutical use as acetyl- and butyrylcholinesterase inhibitors. US: 2003/0199493;WO: 2001074820.
    30. Denyse H, Marie-The're'se M, Claude T, et al. Synthesis and Structure-Activity Relationships of Open D-Ring Galanthamine Analogues. Bioorganic & Medicinal Chemistry Letters, 2003, 2389-2391.
    31. Liang PH, Hsin LW, Pong SL, et al. Synthesis of galanthamine analogs as acetylcholinesterase inhibitors via intramolecular heck cyclization. Journal of the Chinese Chemical Society, 2003, 50(3A): 449-456.
    32. Alexander P, Stefan W. Matthias T, et al. Synthesis of 6H-benzofuro[3a,3,2,ef][3] benzazepine:an unnatural analog of (-) galanthamine. Tetrahedron, 2002, 58: 1513-1518.
    33. Treu M, Mereiter K, Hanetner C, et al. Carbocyclic Galanthamine Analogues. J Heterocycl Chem, 2002, 39(6): 1167-1171.
    34. Treu M, Mereiter K, Hanetner C, et al. Heterocycl Chem, 2002, 39(6): 1283-1288.
    35. He XC, Yu GL, Bai DL. Studies on analogues of huperzine A for treatment of senile dementia. Ⅳ. Asymmetric total synthesis of 14-nor-huperzine A and its inhibitory activity of acetylcholinesterase. Acta pharmaceutica Sinica, 2003, 38(5): 346-349.
    36. Camps P, Contreras J, Achab RE, et al. New syntheses of rac-Huperzine A and its rac-7-ethyl-derivative. Evaluation of several huperzine A analogues as acetylcholinesterase inhibitors. Tetrahedron, 2000, 56(26): 4541-4553.
    37. Zhou GC, Zhu DY. Synthesis of 5-substituted analogues of huperzine A. Bioorganic & Medicinal Chemistry Letters, 2000, 10(18): 2055-2057.
    38. Rajendran V, Rong SB, Saxena A, et al. Synthesis of a hybrid analog of the acetylcholin -esterase inhibitors huperzine A and huperzine B. Tetrahedron Letters, 2001, 42(32): 5359-5361.
    39. Rajendran V, Saxena A, Doctor BP, et al. Synthesis of more potent analogues of the acetylcholinesterase inhibitor, huperzine B. Bioorganic & Medicinal Chemistry Letters, 2002, 12(11): 1521-1523.
    40. Sunazuka T, Handa M, Nagai K, et al. Absolute stereochemistries and total synthesis of (+)-arisugacins A and B, potent, orally bioactive and selective inhibitors of acetylcholinesterase. Tetrahedron, 2004, 60(36): 7845-7859.
    41. Sunazuka T, Handa M, Nagai K, et al. The First Total Synthesis of (-)Arisugacin A, a Potent, Orally Bioavailable Inhibitor of Acetylcholinesterase. Organic Letters, 2002, 4(3): 367-369.
    42. Handa M, Sunazuka T, Nagai K, et al. Convergent synthesis of arisugacin skeletons and their acetylcholinesterase inhibitory activity. Journal of Antibiotics, 2001, 54(4): 382-385.
    43. Zhao Y, Ku YL, Lee SS. Mimetic preparation of analogs of Territrem B, A potent acetylcholin -esterase inhibitor. Chinese Chemical Letters, 2000, 11 (12): 1045-1048.
    44. Zhao Y, Ku YL, Lee SS. Preparation of AChE inhibitors from jujubogenin. Chinese Chemical Letters, 2000, 11(8): 671-674.
    45. Zhao Y, Ku YL, Hao XJ, et al. Preparation of analogs of, territrem B a potent AChE inhibitor. Tetrahedron, 2000, 56(45): 8901-8913.
    46. Zhao JH, Zhao F, Wang YG, et al. Synthesis of A/B ring analogs of territrem B and evaluation of their biological activities. Helvetica Chimica Acta, 2004, 87(7): 1832-1853.
    47. Obata R, Sunazuka T, Otoguro K, et al. Synthetic conversion of ACAT inhibitor to acetylcho -linesterase inhibitor. Bioorganic & Medicinal Chemistry Letters, 2000, 10(12): 1315-1316.
    48. Carlo M, Vincenza A, Maria LB, et al. Acetylcholinesterase Noncovalent Inhibitors Based on a Polyamine Backbone for Potential Use against Alzheimer's Disease. J Med Chem, 1998, 41: 4186-4189.
    49. Tumiatti V, Rosini M, Bartolini M, et al. Structure-Activity Relationships of Acetylcholinesterase Noncovalent Inhibitors Based on a Polyamine Backbone. 2. Role of the Substituents on the Phenyl Ring and Nitrogen Atoms of Caproctamine. Journal of Medicinal Chemistry, 2003, 46(6): 954-966.
    50. Tumiatti V, Andrisano V, Banzi R, et al. Structure-Activity Relationships of Acetylcholinesterase Noncovalent Inhibitors Based on a Polyamine Backbone. 3. Effect of Replacing the Inner Polymethylene Chain with Cyclic Moieties. Journal of Medicinal Chemistry, 2004, 47(26): 6490-6498.
    51. Bolognesi ML, Cavalli A, Andrisano V, et al. Design, synthesis and biological evaluation of ambenonium derivatives as AChE inhibitors. Farmaco, 2003, 58(9): 917-928.
    52. Andrisano V, Bartolini M, Bolognesi ML, et al. Preparation of 2,5-bis-diamine-[1,4] benzoquinone derivatives for the treatment of Alzheimer's disease and a process for their preparation and intermediates therefor. PCT Int Appl, 2003, WO: 2003087035.
    53. Pang Y.P.Bis-tetrahydroacridine inhibitors of acetycholinesterase.1997, WO: 9721681.
    54. Luisa S, Giuseppe C, Alessandra G, et al. Novel and Potent Tacrine-Related Hetero-and Homobivalent Ligands for Acetylcholinesterase and Butylcholinesterase. Bioorganic and Medicinal Chemistry Letters, 2001, 11: 1779-1782.
    55. Hu MK, Lu CF. A facile synthesis of bis-tacarine isosteres. Tetrahedron Letters, 2000, 41(11): 1815-1818.
    56. Hu MK, Wu LJ, Hsiao G, et al. Homodimeric tacarine congeners as acetylcholinesterase inhibitors. Journal of medicinal chemistry, 2002, 45(11): 2277-2282.
    57. Ana MG, Isabel DD, Laura RA, et al. Preparation of acridinamines as dual binding site acetylcholinesterase inhibitors for the treatment of Alzheimer's disease. WO: 2004032929
    58. Guillou C, Mary Aude, Renko DZ, et al. Potent acetylcholinesterase inhibitors: design, synthesis and structure-activity relationships of alkylene linked bis-galanthamine and galanthamine-galanthaminium salts. Bioorganic & Medicinal Chemistry Letters, 2000, 10(7): 637-639.
    59. Carlier PR, Du D, Han Y, et al. Dimerization of an inactive fragment of huperzine A produces a drug with twice the potency of natural porduct. Angew Chem Int Ed, 2000,39(10):1775-1777.
    60. Carlier PR, Han YF, Pang YP, et al. Preparation of dimeric quinolonyl amines related compounds as cholinesterase inhibitors. GB: 2360518.
    61. Jin GY, He XC, Zhang HY, et al. Synthesis of alkylene-linked dimers of (-)-huperzine A. Chinese Chemical Letters, 2002, 13(1): 23-26.
    62. Jin Gy, Luo XM, He XC, et al. Synthesis and docking studies of alkylene-linked dimers of (-)-huperzine A. Arzneimittel-Forschung, 2003, 53(11): 753-757.
    63. Kapkova P, Stiefl N, Suerig U, et al. Synthesis, biological activity, and docking studies of new acetylcholinesterase inhibitors of the bispyridinium type. Archiv der Pharmazie, 2003, 336(11): 523-540.
    64. Shao D, Zou CY, Luo C, et al. Synthesis and evaluation of tacarine-E2020 hybrids as acetylcholinesterase inhibitors for the treatment of Alzheimer's disease. Bioorganic & medicinal chemistry letters,2004, 14(18): 4639-4642.
    65. Isabel D, Diana A, Ana C, et al. Synthesis and Biological Evaluation of Tacrine-Thiadiazoli -dinone Hybrids as Dual Acetylcholinesterase Inhibitors. Arch Pharm, 2005, 338:18-23.
    66. Camps P, El Achab R, Morral J, et al. New tacrine-huperzine A hybrids (huprines): highly potent tight-binding acetylcholinesterase inhibitors of interest for the treatment of Alzheimer's disease. Journal of Medicinal Chemistry, 2000, 43(24): 4657-4666.
    67. Maria LB, Vincenza A, Manuela B, et al. Propidium-Based Polyamine Ligands as Potent Inhibitors of Acetylcholinesterase and Acetylcholinesterase-Induced Amyloid Aggregation. J Med Chem, 2005, 48: 24-27.
    68. Adrian K, Gitay K, Bernard P, et al. A Structure-Based Design Approach to the Development of Novel, Reversible AChE Inhibitors. J Med Chem, 2001, 44: 3203-3215.
    69. Song F, Yu X, D MH, et al. Synthesis and acetylcholinesterase inhibition of derivatives of huperzine B. Bioorganic & Medicinal Chemistry Letters, 2005,15: 523-526.
    70. Piazzi L, Rampa A, Bisi A, 3-(4{([Benzyl(methyl)amino]methyl}phenyl) -6,7-dimethoxy-2H-2-chromenone (AP2238) Inhibits Both Acetylcholinesterase and Acetylcholinesterase-Induced-Amyloid Aggregation: A Dual Function Lead for Alzheimer's Disease Therapy. Journal of Medicinal Chemistry, 2003, 46(12): 2279-2282.
    71. Toda N, Tago K, Marumoto SJ, et al. Design, synthesis and structure-Activity relationships of dual inhibitors of acetylcholinesterase and serotonin transporter as potential agents for Alzheimer's disease. Bioorganic & Medicinal Chemistry, 2003, 11(9): 1935-1955.
    72. Toda N, Tago K, Marumoto SJ, et al. A conformational restriction approach to the development of dual inhibitors of acetylcholinesterase and serotonin transporter as potential agents for Alzheimer's disease. Bioorganic & Medicinal Chemistry, 2003,11(20): 4389-4415.
    73. Koyama K, Marumoto SJ, Toda N, et al. Preparation of alkylcarbamic acid esters as acetylcholinesterase inhibitor and serotonin reuptake inhibitor. PCT Int Appl, 2002, WO: 2002059074;US: 2004067981.
    74. Michela R, Vincenza A, Manuela B, et al. Rational Approach To Discover Multipotent Anti-Alzheimer Drugs, J Med Chem, 2005, 48: 360-363.
    75. Jose TF, Leticia Mcano, Michel EF, et al. Synthesis, anticholinesterase activity and structure-activity relationships of m-Aminobenzoic acid derivatives. Bioorganic & medicinal chemistry letters, 2003, 13(10): 1825-1827.
    76. Namgoong SK, Lee JS, Shin JH, et al. Synthesis of new tetrakis(multifluoro-4-pyridyl)-porphyrin derivatives as the electric eel acetylcholinesterase inhibitors. Bulletin of the Korean Chemical Society, 2000, 21 (2): 264-266.
    77. Moon SC, Shin JH, Jeong BH, et al. Synthesis of tetrakis(multifluoro-4-pyridyl) porphine derivatives as acetylcholinesterase inhibitors. Bioorganic & Medicinal Chemistry Letters, 2000, 10(13): 1435-1438.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700