电场作用下火焰中碳烟颗粒的分布与聚积规律
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在对燃烧源可吸入颗粒物形成与控制的研究中,火焰内部颗粒物控制已经随着科学研究以及诊断技术的发展而受到更广泛的关注。明确机理并有效控制颗粒成核、生长、团聚及氧化四个重要阶段将对颗粒物的脱除以及定向生产起到重要作用。碳烟颗粒是化石燃料火焰中的首要颗粒物。经过数十载的研究,其形成各个阶段的机理尚未得到科学、全面的描述。本文将从碳烟颗粒荷电这一特性入手,通过人为外加一个均匀分布的静电场,放大荷电特性对碳烟颗粒运动、体积浓度及形貌的影响。采用近10年来兴起的碳烟颗粒特性在线诊断技术(LII,LE,TSPD-TEM)对静电场影响下的碳烟颗粒展开定量研究。
     首先确定并量化描述研究对象。选择国际通用的McKenna燃烧器作为产生碳烟均匀分布的火焰。运用激光诊断和热泳探针采样技术确定了碳烟均匀分布特性与流量、当量比之间的关系,并通过对出口速度和火焰传播速度的计算给予进一步解释。建立了一个参数u量化碳烟分布的均匀程度。利用Maxwell电磁场计算软件确定了能产生均匀分布静电场的电极尺寸。
     通过激光诊断技术间接测量了荷电碳烟在上极板的沉积速率。得出火焰中的碳烟颗粒绝大多数荷电且有至少超过50%荷正电的半定量结论。碳烟颗粒在火焰中的滞留时间将随电场的电性和电场强度而改变。
     在确定了颗粒荷电电性后,测量了静电场影响下火焰中碳烟颗粒的绝对体积浓度以及形貌尺寸的变化,并通过对颗粒受力的计算,得出电场力与曳力随燃气流速、当量比、颗粒形貌、尺寸变化的规律,进一步解释了实验结果。证明了颗粒在形成初期(粒径小于100 nm的一次颗粒和团聚体),主要受到曳力作用,电场力主要改变颗粒运动方向;在颗粒团聚、氧化阶段(粒径约在100 ~ 200 nm),将主要受到电场力作用,脱离原流体运动,滞留时间改变,最终导致颗粒形貌特性的改变。
     最后通过测量闪变点和放电点,定量描述了电场对碳烟颗粒影响的极限情况,并在实验中发现了正电场作用下的二次稳定现象。
In last 20 years, the research on the formation and control of combustion generated inhalable particles was conducted in more details. The state-of-art diagnostic processes provided better ways to do the on-line research. Soot is the most initial and important particle generated by combustion. However, it is important to note that no previous study has been reported on which a one dimensional flame is aligned normal to a uniform electric field. This has inhibited capacity to isolate the separate effects of the field and contributed to the lack at a quantitative study of the electrophoretic effect (without ionic wind) on soot particles. To meet these needs, the present research aims to investigate the effects of a uniform electric field on a series of one dimensional laminar premixed ethylene/air flames by using the state-of-art on-line diagnostic technologies (LII, LE and TSPD-TEM).
     The first aim is to find the uniform flame and electric field we need. Laser diagnostic technologies and thermophoretic sampling system were used to describe the uniformity of the soot distribution in the flames; and electric field was calculated to find the right set up scale to make it uniform.
     The second aim is to assess whether positively or negatively charged soot particles dominate in a flame. This was assessed by laser extinction, used to measure the variation of soot volume fraction due to the deposition under an electric field. It is found that more than 50% of charged soot particle in the flame are positive. The presence of electric field can affect the residence time of charged soot particles.
     The third aim is to measure the variation of soot volume fractions and particle morphology with change in the residence time induced by an electric field. Laser induced incandescence and thermophoretic sampling particles diagnostics were used. Drag force, electric force and thermopherotic force were calculated to provide a quantitative explanation for the experiment results. It is found that for the particles which smaller than 100 nm, drag force is the dominant force and the electric force can only change the fly direction of the soot; while for particles bigger than 100 nm (ususlly smaller than 200 nm in the flame), the number of charge will remarkably increase and the electric force will be the dominant force instead of drag force.
     The forth aim is to assess the effect on flame flicker of an applied electric field as a function of equivalence ratio. This was examined by determining the flickering points and the discharge points. The re-stabilization was found in a positive electric field, indicated the remarkable effect of the electric force.
引文
艾育华,周怀春,卢晶,李芳. 2006.发射CT法测量层流乙烯扩散火焰中温度与烟黑浓度分布的实验研究.工程热物理学报,第27卷,第4期:717-719.
    E.霍华德, P.E.赫斯基思. 1986.气体中的颗粒.北京:化学工业出版社.
    耿辉,翟振辰,桑艳,林志勇,周进. 2006.利用OH-PLIF技术显示超声速燃烧的火焰结构.国防科技大学学报,第28卷,第2期:1-6.
    关小伟,刘晶儒,黄梅生,胡志云,张振荣,叶锡生. 2005.
    PLIF法定量测量甲烷-空气火焰二维温度场分布.强激光与粒子束,第17卷,第2期:173-176.
    环保总局中国环境状况公报. 2008.
    黄斌. 2006.静电对滤料过滤可吸入颗粒物的影响研究. [博士论文].北京:清华大学热能工程系.
    李红,曾凡刚,邵龙义,时宗波. 2002.可吸入颗粒物对人体健康危害的研究进展.环境与健康杂志,第19卷,第1期:85-89.
    全国电力工业统计快报. 2008.
    阮晓东,刘志皓,瞿建武. 2005.粒子图像测速技术在两相流测量中的应用研究.浙江大学学报(工学版),第39卷,第6期:785-788.
    桑建人,刘玉兰. 2005.银川市可吸入颗粒物(PM_(10))来源解析.气象科学,第25卷,第1期:40-47.
    申晓春. 1997.声诱湍流和声凝聚的研究. [硕士论文].北京:清华大学力学系.
    孙聿峰. 1989.气溶胶技术.黑龙江科学技术出版社,ISBN 7-5388-0506-0.
    王飞,严建华,马增益,李宁,岑可法. 2006.运用激光诱导发光法测量碳黑粒子浓度的模拟计算.中国电机工程学报,第26卷,第7期:6-11.
    王玮,汤大刚,刘红杰,岳欣,番志,丁焰. 2000.中国PM2.5污染状况和污染特征的研究.环境科学研究,第13卷,第1期:1-5.
    王宇,姚强. 2005.电场控制火焰中细颗粒生成及分布的研究进展.煤炭转化,第28卷,第4期,86-92页.
    王宇,姚强,何旭,马骁,宋蔷,李水清. 2008.用LII法测量电场影响下火焰碳烟颗粒浓度的分布变化.中国电机工程学报,第28卷,第8期:34-39.
    王岳,雷宇,张培元,张孝谦,Konig,J., Hinrichs, O., Eigenbrod, C. 2001.用OH-PLIF研究浮力对预混V形火焰的作用.工程热物理学报,第22卷,第3期,382-385.
    新井纪男. 2001.燃烧生成物的发生与抑止技术.北京:科学出版社.
    薛元. 2002.细颗粒在流动与温度边界层中的运动规律研究:[硕士论文].北京:清华大学热能系.
    许宏庆,杨京龙,刘欣,谭江成. 1993.应用PIV技术测量二维瞬时流场.空气动力学学报,第11卷,第4期:409-414.
    杨世铭,陶文铨. 1998.传热学,高等教育出版社.
    张金成. 2001.超细颗粒在湍流热边界层内运动特性的实验研究. [硕士论文].北京:清华大学热能系.
    周怀春,江波,卢晶,娄春. 2007.多波长光谱法检测乙烯火焰中温度和碳黑生成.华中科技大学学报(自然科学版),第35卷,第12期,107-110.
    周见广,臧述升,翁史烈,葛冰. 2005.扩散燃烧流场测量的PIV应用研究.燃烧科学与技术,第11卷,第1期:92-95.
    周涛,杨瑞昌. 2004.应用微通道热泳脱除可吸入颗粒物的可行性研究.环境科学学报,第24卷,第6期:1079-1083.
    朱先磊,张远航,等. 2005.北京市大气细颗粒物PM_(2.5)的来源研究.环境科学研究,第18卷,第5期:1-5.
    Axelsson B., Collin R., Bengtsson P.E. 2001. Laser-induced incandescence for soot particle size and volume fraction measurements using on-line extinction calibration. Appl. Phys. B, 72: 367-372.
    Ayranci I., Vaillon R., Selcuk N., Adnre F., Escudie D. 2006. Determination of soot temperature, volume fraction and refractive index from flame emission spectrometry. Journal of Quantitative Spectroscopy and Radiative Transfer, 104, 266-276.
    Balthasar M., Mauss F., and Wang H. 2002. A Computational Study of the Thermal Ionization of Soot Particles and Its Effect on Their Growth in Laminar Premixed Flames. Combustion and Flame, 129:204-216.
    Bergstrom R. W., Russell P. B., and Hignett P. 2002. On the wavelength dependence of the absorption of black carbon particles: Predictions and results from the TARFOX experiment and implications for the single scattering albedo. Journal of Atmospheric Science, 59(3): 567-577.
    Beyer V., Greenhalgh D. A. 2006. Laser induced incandescence under high vacuum conditions. Appl. Phys. B 83(4): 455-467.
    Bockhorn H. 1994. Soot formation in combustion: mechanisms and models. Berlin: Springer.
    Bohm H., Lamprecht A., Atakan B., and Kohse-Hoinghaus, K. 2000. Modeling of a fuel-rich premixed propene-oxygen-argon flame and comparison with experiments. Physics Chemistry Chemistry Phsics, vol. 2: 4956-4961.
    Bohm H., Kohse-Hoinghaus K., Lacas F., Rolon C., Darabiha N., Candel S. 2001. On PAH formation in strained counterflow diffusion flames. Combustion and Flame, 124: 127-136.
    Calcote H. F. 1981. Mechanisms of soot nucleation in flames—A critical review.Combustion and Flames, 42: 215-242.
    Cha M.S., Lee S.M., Kim K.T., Chung S.H. 2005. Soot suppression by nonthermal plasma in coflow jet diffusion flames using a dielectric barrier discharge. Combustion and Flame, 141: 438-447.
    Chellian H. K., Wanigarathne P. C., Lentati A. M., Krauss R. H., Fallon G. S. 2003. Effect of sodium bicarbonate particle size on the extinction condition of non-premixed counterflow flames. Combustion and Flame, 134: 261-272.
    Chen X., Xu D. Y. 2002. Thermophoresis of a near-wall particle at great Knudsen numbers. Aerosol Science and Technology. 36(1): 39-47.
    Chylek P., Lesins G. B., Videen G., Wong J. G. D., Pinnick R. G., Ngo D., and Klett J. D. 1996. Black carbon and absorption of solar radiation by clouds. Journal of Geophysical Research, 101(D18), 23: 365-371.
    Colbeck I., Appleby L., Hardman E. J., and Harrison R. M. 1990. The optical properties and morphology of cloud-processed carbonaceous smoke. Journal of Aerosol Science, 21: 527-538.
    D’Alessio A., Di Lorenzo A., Borghese A., Beretta F., Masi D. 1977. Study of the soot nucleation zone of rich methane-oxygen flames. 16th Symposium on Combustion: 695-708.
    Dasch C. J. 1984. New soot diagnostics in flames based on laser vaporization of soot. Proc. Combustion Institute, vol. 20: 1231-1237.
    Eckbreth A. C. 1977. Effects of Laser-modulated Particle Incandescence on Raman Scattering Diagnostics[J]. Appl. Phys., 48(11): 4473-4479.
    Frenklach M., Clary D. W., Gardiner Jr W. C., and Stein S. E. 1985. Detailed kinetic modeling of soot formation in shock-tube paralysis of acetylene. process to Combustion Institute, 20: 887-901.
    Frenklach M. and Warnatz J. 1987. Detailed modeling of PAH in a sooting low-pressure acetylene flame. Combustion Science and Technology, 51: 265-283.
    Fujita O., Ito K. 2002. Observation of soot agglomeration process with aid of thermophoretic force in a microgravity jet diffusion flame. Experimental Thermal and Fluid Science, 26: 305-311.
    Gaydon A. G., and Wolfhard H. G. 1979. Flames, Their Structure, Radiation and Temperature. 4th ed, Chapman & Hall, London: 232.
    Gord J. R., Meyer T. R., Roy S., Gogineni S. P. 2004. Studies of hydroxyl distribution and soot formation in turbulent spray flames. 12th International Symposium on Applications of Laser Techniques to Fluid Mechanics Lisbon, Portugal, July 12-15.
    Han D., Mungal M. G. 2003. Simultaneous measurements of velocity and CHdistributions. Part 1: jet flames in co-flow. Combustion and Flame, 132:565-590.
    Han D., Mungal M. G. 2003. Simultaneous measurements of velocity and CH distributions. Part 2: deflected jet flames. Combustion and Flame, 133:1-17.
    Hinds C. W. 1998. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles. New York: JOHN WILEY &SONS, INC.
    Hu L., Wang S. M., Zhang B., Zeng Y. W. 2006. Structural changes in soot particles induced by diode laser irradiation. Carbon, 44: 1725-1729.
    Hwang J. Y., Chung S. H. 2001. Growth of soot particles in counterflow diffusion flames of ethylene. Combustion and Flame, 125: 752-762.
    Jeffrey M. D., James F. D., and Campbell D. C. 2000. Reaction zone structure in turbulent nonpremixed jet flames—from CH-OH PLIF images. Combustion and Flame, 122: 1-19.
    Jonathan H. F., Peter A. M. K., and Robert W. B. 1999. Measurements of conditional velocities in turbulent premixed flames by simultaneous OH-PLIF and PIV. Combustion and Flame, 116: 220-232.
    Kammler H. K., Pratsinis S.E., Morrison P.W., Hemmerling B. 2003. Flame temperature measurements during electrically assisted aerosol synthesis of nanoparticles. Combustion and Flame 128: 369-381.
    Katharina K. H., Jay B. J. 2002. Applied Combustion Diagnostics. Taylor and Francis. Katta V.R., Roquemore W. M., Menon A., Lee S. Y., Santoro R. J., Litzinger T. A. 2009. Impact of soot on flame flicker. Proceedings of the Combustion Institute 32: 1343-1350.
    Katzer M., Weber A. P., Kasper G. 2001. The Effects of Electrical Fields on Growth of Titania Particles Formed in a CH4-O2 Diffusion Flame. Journal of Aerosol Science, 32: 1045-1067.
    Kim C. H., El-Lenthy A. M., Xu F., and Faeth G. M. 2004. Soot surface growth and oxidation in laminar diffusion flames at pressures of 0.1-1.0 atm. Combustion and Flame 136: 191-207.
    Kim S. H., Woo K. S., Liu B. Y. H., Zachariah M. R. 2005. Method of measuring charge distribution of nanosized aerosols. Journal of Colloid and Interface Science 282: 46-57.
    Kock B. F., Kayan C., Knipping J., Orthner H. R., Roth P. 2005. Comparison of LII and TEM sizing during synthesis of iron particle chains. Proceedings of the Combustion Institute 30: 1689-1697.
    Kohse-Hoinghaus K. and Jefferies J. B. 2002. Applied Combustion Diagnostics. Taylor & Francis: 294-296.
    Kono M., Carleton F. B., Jones A. R., and Weinberg F. J. 1989. The Effect of Non-Steady Electric Fields on Sooting Flames. Combustion and Flame, 78: 357-364.
    Koshland C. P. 1996. Impacts and control of air toxics from combustion. 26th symposiyum (international) on combustion, The Combustion Institute, Pittsburg: 2049-2065.
    Krishnan S. S., Lin K. C., Faeth G. M. 2000. Optical Properties in the visible of overfire soot in large buoyant. Journal of Heat Transfer, 122: 517-524.
    Lee S. M., Yoon S. S., Chung S. H. 2004. Synergistic effect on soot formation in counterflow diffusion flames of ethylene-propane mixtures with benzene addition. Combustion and Flames 136: 493-500.
    Lee E. J., Oh K. C., Shin H. D. 2005. Soot formation in inverse diffusion flames of diluted ethane. Fuel 84: 543-550.
    Lighty J.S., Veranth J. M. 2000. Combustion aerosols: Factors governing their size and composition and implications to human health. Journal of the Air and Waste Management Association.50(9): 1565-1618.
    Liu F. S., Guo H. S., Smallwood G. J., Gulder O. L. 2002. Effects of gas and soot radiation on soot formation in a coflow laminar ethylene diffusion flame. Journal of Quantitative Spectroscopy & Radiative Transfer 73: 409-421.
    Liu F. S., Thomson K. A., Smallwood G. J. 2008. Effects of soot absorption and scattering on LII intensities in laminar coflow diffusion flames. Journal of Quantitative Spectroscopy & Radiative Transfer 109: 337-348.
    Maricq M. M., Harris S. J. and Szente J. J. 2003. Soot size distributions in rich premixed ethylene flames. Combustion and Flame, 132: 328-342.
    Maricq M. M. 2004. Size and Charge of Soot Particles in Rich Premixed Ethylene Flames. Combustion and Flame, 137: 340-350.
    Maricq M. M. 2005. The dynamics of electrically charged soot particles in a premixed ethylene flame. Combustion and Flame, 141: 406-416.
    Maricq M. M. 2006. On the electrical charge of motor vehicle exhaust particles. Journal of Aerosol Science, 37: 858-874.
    Maricq M. M. 2007. Coagulation dynamics of fractal-like soot aggregates. Journal of Aerosol Science, 38: 141-156.
    McCrain L. L., Roberts W. L. 2005. Measurements of the soot volume field in laminar diffusion flames at elevated pressures. Combustion and Flame 140: 60-69.
    Megaridis C. M., Griffin D. W. and Konsur B. 1996. Soot-field structure in laminar soot-emitting microgravity nonpremixed flames. Twenty-sixty symposium on combustion, The Combustion Institute: 1291-1299.
    Melton L. A. 1984. Soot diagnostics based on laser heating. Applied Optics, vol. 23: 2201-2208.
    Migliorini F., Iuliis S. D., Cignoli F., Zizak G. 2008. How“flat”is the rich premixed flame produced by your McKenna burner? Combustion and Flame 153 (3): 384-393.
    Murr L. E., Soto K. F. 2005. A TEM study of soot, carbon nanotubes, and related fullerene nanophlyhegra in common fuel-gas combustion sources. Materials Characterization 55: 50-65.
    Oh K. C., Lee U. D., Shin H. D., Lee E. J. 2005. The evolution of incipient soot particles in an inverse diffusion flame of ethane. Combustion and Flame 140: 249-254.
    Oh K. C., Shin H. D. 2006. The effect of exygen and carbon dioxide concentration on soot formation in non-premixed flames. Fuel 85: 615-624.
    Ohisa H., Kimura I. and Horisawa H. 1999. Control of Soot Emission of A Turbulent Diffusion Flame by DC or AC Corona Discharges. Combustion and Flame, 116: 653-661.
    Pandey P., Pundir B. P., Panigrahi P. K. 2007. Hydrogen addition to acetylene-air laminar diffusion flames: Studies on soot formation under different flow arrangements. Combustion and Flame 148: 249-262.
    Pitts W. M. 1996. Thin-filament pyrometry in flickering laminar diffusion flames. Twenty-sixth symposium (international) on combustion/the Combustion Institute: 1171-1179.
    Qamar N. H., Nathan G. J., Alwahabi Z. T., King K. D. 2005. The effect of global mixing on soot volume fraction: Measurements in simple jet, precessing jet and bluff body flames. Proceeding of the Combustion Institute, 30: 1493-1500.
    Qamar N. H., Vallee P., Nathan G. J., Alwahabi Z. T., King K. D, Wilkins C. 2002. Investigating the influence of global mixing rate on soot formation in turbulent jet flames. Third Australian Conference on laser diagnostics in fluid mechanics and combustion, proceeding, T. McIntyre, Ed., The University of Queensland, ISBN:1-86-499659-5: 71-78.
    Reist C. P. 1993. Aerosol science and technology. New York: McCraw-Hill. Richter H., Howard J. B. 2000. Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways. Progress in Energy and Combustion Science 26: 565-608.
    Roberts V. J., Hayhurst A. N., Knight D. E., Taylor S. G. 2000. The origin of soot in flames: Is the nucleus an ion? Combustion and Flame 120: 578-584.
    Rumminger M. D. and Linteris G. T. 2002. The role of particles in the inhibition of counterflow diffusion flames by iron pentacarbonyl. Combustion and Flame, 128:145-164.
    Saito M., Sato M., Sawada K. 1997. Variation of Flame Shape and Soot Emission by Applying Electric Field, Short Communication. Journal of Electrostatics, 39: 305-311.
    Saito M., Arai T. and Arai M. 1999. Control of Soot Emitted from Acetylene Diffusion Flames by Applying an Electric Field. Combustion and Flame, 119: 356-366.
    Santoro R. J., Semerjian H. G., Dobbins R. A. 1983. Soot particle measurements in diffusion flames. Combustion and Flame 51: 203-218.
    Schulz B. F. K., Max H., Hope M., Stefan W., Bas B., Rainer S., Greg S. 2006. Laser-induced incandescence: Recent trends and current questions. Appl. Phys. B 83 (3): 333-354.
    Sheng C., Shen X. 2006. Modelling of acoustic agglomeration processes using the direct simulation Monte Carlo method. Journal of Aerosol Science. 37(1): 16-36.
    Shim S. H., Shin H. D. 2002. Transition morphology of deposits on SiC fibers in propane/air laminar diffusion flames. Combustion and Flame 131: 210-218.
    Shim S. H., Ahn K. Y., Jeong S. H., Keel S. I., Shin H. D. 2004. Study of deposit morphology in a propane diffusion-flame under fuel-rich conditions. Applied Energy 79: 179-189.
    Singh S. K., Agarwal A. K., Sharma M. 2006. Experimental investigations of heavy metal addition in lubrication oil and soot deposition in and EGR operated engine. Applied Thermal Engineering 26: 259-266.
    Smallwood G. J., Clavel D., Gareau D. 2002. Concurrent Quantitative Laser Induced Incandescence and SMPS Measurements of EGR Effects on Particulate Emissions from a TDI Diesel Engine. SAE, 01: 2715-2726.
    Smooke M. D., Long M. B., Connelly B. C., Colket M. B., Hall R. J. 2005. Soot formation in laminar diffusion flames. Combustion and Flame 143: 613-628.
    Sorokin A., Arnold F. 2004. Electrically Charged Small Soot Particles in the Exhaust of An Aircraft Gas-Turbine Engine Combustor: Comparison of Model and Experiment. Atmospheric Environment, 38: 2611-2618.
    Tait N. P., Greenhalgh D. A. 1993. PLIF imaging of fuel fraction in practical devices and LII imaging of soot. Ber. Bunsenges. Phys. Chem. 97: 1619-1624.
    Tandon P., Boek H. 2003. Experimental and theoretical studies of flame hydrolysis deposition process for making glasses for optical planar devices. Journal of Non-Crystalline Solids 317: 275-289.
    Tandon P., Terrell J. P., Fu X. D., Rovelstad A. 2003. Estimation of particle volume fraction, mass fraction and number density in thermophoretic deposition systems.International Journal of Heat and Mass Transfer 46: 3201-3209.
    Therssen E., Bouvier Y., Schoemaecker-Moreau C., Mercier X., Desgroux P., Ziskind M., Focsa C. 2007. Determination of the ratio of soot refractive index function E(m) at the two wavelengths 532 and 1064 nm by laser induced incandescence. Applied Physics B lasers and optics, Vol 89, Issue2/3: 417-427.
    Thomson K. A., Gulder O. L., Weckman E. J., Fraser R. A., Smallwood G. J., Snelling D. R. 2005. Soot concentration and temperature measurements in co-annular, nonpremixed CH4/air laminar flames at pressures up to 4 MPa. Combustion and Flame 140: 222-232.
    Vander Wal R. L. 1996. Laser induced incandescence: detection issues. NASA contractor report 19847.
    Vander Wal R. L. 1997. LIF-LII measurements in a turbulent gas-jet flame. Experiments in Fluids 23: 281-287.
    Vander Wal R. L. 1998. Soot precursor carbonization: Visualization using LIF and LII and comparison using bright and dark field TEM. Combustion and Flame 112: 607-616.
    Vander Wal R. L., Jensen K. A. 1998. Laser-induced incandescence: excitation intensity. Applied Optics Vol. 37, No. 9: 1607-1616.
    Vander Wal R. L., Ticich T. M., Stephens A. B. 1999. Can soot primary particle size be determined using laser induced incandescence? Combustion and Flame 116: 291-296.
    Walsh K. T., Fielding J., Smooke M. D., Long M. B. 2000. Experimental and computational study temperature, species, and soot in buoyant and non-buoyant coflow laminar diffusion flames. Proceedings of the Combustion Institute, Volume 28: 1973-1979.
    Wang Y., Yao Q. 2007. Deposit morphology on SiC fibers in methane-acetylene/air laminar diffusion flames. Korean J. Chem. Eng., 24(2): 305-310.
    Watson K. A., Lyons K. M., Donbar J. M., and Carter C. D. 2000. Simultaneous Rayleigh imaging and CH-PLIF measurements in a lifted jet diffusion flame. Combustion and Flame 123: 252-265.
    Weeks R. W. and Duley W. W. 1974. Aerosol particle sizes from light emission during excitation by TEA CO2 laser pulses. Journal of Applied Physics, vol. 45: 4661-4662.
    Weinberg F., Carleton F., Dunn-Rankin D. 2008. Electric field-controlled mesoscale burners. Combustion and Flame 152: 186-193.
    Wentzel M., Gorzawski H., Naumann K. H., Saathoff H., Weinbruch S. 2003. Transmission electron microscopically and aerosol dynamical characterization ofsoot aerosols. Aerosol Science 34: 1347-1370.
    Wilson M. M., Alexer V. S., Lawrence A. K. 2004. High-Rate Flame Synthesis of Vertically Aligned Carbon Nanotubes Using Electric Field Control. Carbon, 42: 599-608.
    Yan Y., Yang H. F., Zhang F. Q., Tu B., Zhao D. Y. 2007. Low-temperature solution synthesis of carbon nanoparticles, onions and nanoropes by the assembly of aromatic molecules. Carbon 45: 2209-2216.
    Zake M., Turlajs D., Purmals M. 2000. Electric Field Control of NOx Formation in the Flame Channel Flows. Global Nest: the Int J, Vol 2, No1: 99-108.
    Zhao H., Liu X. F., Tse S. D. 2008. Control of nanoparticle size and agglomeration through electric-field-enhanced flame synthesis. Journal of Nanoparticle Research, 10: 907-923.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700