Hartmann共振管及超音速气体雾化喷嘴流场数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
喷射雾化是上世纪七十年代发展起来的一项冶金工艺,由于它能够生产高性能的冶金产品,近年来在世界各地得到了广泛和快速发展。其中,超音速气体雾化技术由于生成的产品质量较好而得到了较多的研究和关注。这项技术的关键之处在于它能够产生高频振动的超音速气流,其中高频振动的产生原因是由于超音速气体雾化喷嘴内Hartmann共振管结构的存在。因此,对Hartmann共振管中高频振动的产生机理的研究是对超音速气体雾化喷嘴内共振现象进行研究的基础。近年来,由于Hartmann共振管装置在流动的主动控制方面的应用得以广泛开展,对其共振原理的研究也随之得到了非常多的关注。其中,核心问题也是亟待解决的问题,是Hartmann共振管在几种共振模式之间转换的机理问题,以及随之带来的共振管工作的稳定性问题。但由于问题本身的困难程度,到目前为止,它还没有得到彻底的解决。对于超音速气体雾化喷嘴内部流场的研究开展得比较有限,对其的两个重要功能:高频脉动气流和超音速气流的产生机理的理论和数值研究目前在文献中还未见到,鉴于这项技术正日益得到重视和应用,因此,对其的研究具有重要性和现实意义。
     本论文中,首先通过对前人相关研究的调研和总结,介绍了Hartmann共振管现象的发现和理论、实验、数值模拟的研究进展,并重点介绍了Brocher等人(1970)提出的对于回流模式的“有限循环”理论,作为计算工作的理论依据和参照。
     本文中的计算工作主要分为两个部分:
     (一)Hartmann共振管流场的数值模拟
     (1)采用基于Roe解法的有限体积法,对Hartmann共振管流场进行了数值模拟,首先通过对一个Hartmann共振管的基本算例的数值模拟,分析了流场在回流模式下振动时流场结构的变化过程,研究了压缩波和膨胀波在管内的传播和反弹及向外场传播的过程,讨论了振动随共振管管长和射流马赫数的变化趋势,将结果同理论和实验趋势相对照,验证了计算结果对于物理问题的正确性。
     (2)首次研究和分析了激励器作用下共振管共振模式的转换及其机理。并将本文的研究和前人的研究相结合,探讨了激励器对振动促进作用主要的三个方面:1.放宽了回流模式振动的产生对物理参数的要求;2有助于振动在回流模式下的产生和保持.;3.有效提高了振动强度。
     (二)超音速气体雾化喷嘴(USGA喷嘴)流场的数值模拟
     (1)采用同样的数值方法,对超音速气体雾化喷嘴(USGA喷嘴)流场进行了数值模拟,研究了USGA喷嘴内的共振现象,分析了气流在USGA喷嘴内的共振管和二级共振管结构中的往复流动过程以及压缩波和膨胀波在两管内的传播和反弹的过程,对USGA喷嘴内气流振动的产生机理进行了研究和解释,即喷嘴内的Hartmann共振管和二级共振管在回流模式下振动的共振。通过对数值结果的研究,探讨了二级管对流场的振动所起的促进作用,这主要体现在两方面,即共振效应和对回流模式的促进作用,并研究了振动随管长及射流马赫数的变化趋势。
     (2)通过数值模拟研究了超音速气体雾化喷嘴中的“自适应喉部”的形成及其造成的气流从亚音速向超音速转变的现象,解释了造成这一现象的原因是由于出流导管壁面附近的涡结构的存在,并用数值结果呈现了自适应喉部结构的所在位置和流场结构。
     (3)通过数值结果推断了USGA喷嘴内的共振现象和自适应喉部现象产生的临界马赫数的大小。
     对于USGA喷嘴内的流场振动的研究和对超音速脉动气流产生的机理分析在前人的文献中从未见到,对于工程应用具有指导意义。
Spray atomization is a metallurgic technology developed in the 1970s.Because of its capability of producing high quality metallurgic products,the technology has been been developed quickly and extensively worldwide.Ultra-sonic gas atomization particularly attracted more research and attentions due to superior products quality. The key to this technology is that it can generate high frequency pulsating ultra-sonic gas flow which is caused by existence of Hartmann resonance tube structure in ultra-sonic gas atomization nozzle.Therefore,research on mechanism of generation of high frequency oscillation in Hartmann resonance tube is the foundation of research on resonance phenomenon in ultra-sonic gas atomization nozzle.In recent years,as Hartmann resonance tube device is widely applicated in active flow control,extensive attentions have been attracted to the principle of resonance.The key and impending problem is the mechanism of Hartmann resonance tube shifting between several resonance modes as well as working reliability of resonance tube along with it. However,until now the problem has not been totally solved due to its difficulty. Research on flow field inside ultra-sonic gas atomization nozzle is comparatively limited.Theoretical and numerical research on mechanism of the generation of its two major functions,hitch frequency pulsating gas flow and ultra-sonic gas flow could not be seen in current literature.As this technology is being increasingly valued and applied,research on it is important and practical.
     In this dissertation,firstly previous related research is summarized and research progress on discovery,theory,experiments and numerical simulation of Hartman resonance tube phenomenon is introduced.Limit circle theory for the jet regurgitant mode raised by Brocher(1970)is emphasized as theoretical foundation and reference of computation.
     Computational work of this dissertation mainly consists of two parts:
     Ⅰ.Numerical simulation of flow in the Hartmann resonance tube
     (1)Finite volume method based on Roe solver is adopted to conduct numerical simulation for Hartmann resonance tube flow field.Through numerical simulation of a basic computational case of Hartmann resonance tube,evolution of flow field in the jet regurgitant mode is analyzed,process of propagation,reflection of compression wave and expansion wave inside the tube and propagation toward external flow field are studied.Variation trends of oscillation along with resonance tube length and jet Mach number are discussed and the results are compared with theoretical and experimental trends to validate the computational results for physical problems.
     (2)For the first time,resonance mode shifting and its mechanism of resonance tube under influence of actuator is studied and analyzed.Research in this dissertation is combined with work of previous researchers to probe into the three main aspects of oscillation strengthening by actuator:1.Requirement for physical parameters for the generation of oscillation in the jet regurgitant mode is mitigated;2 Favorable for generation and maintenance of oscillation in the jet regurgitant mode;3.Oscillation intensity is effectively enhanced.
     Ⅱ.Numerical simulation of flow in the ultra sonic gas atomization nozzle
     (1)The same numerical method is adopted to conduct numerical simulation for flow in the ultra-sonic gas atomization(USGA)nozzle.Resonance phenomenon in USGA nozzle is studied,and reciprocating gas flow in resonance tube and secondary resonance tube structure inside USGA nozzle and propagation and reflection process of compression wave and expansion wave in the two tubes are analyzed.Generation mechanism of pulsating gas flow inside USGA nozzle is studied and explained,that is the resonance of oscillations in Hartman resonance tube and secondary resonance tube in the jet regurgitant mode.By studying numerical results,strengthening of flow field oscillation by secondary tube is analyzed,which mainly demonstrates in two aspects, resonance effect and strengthening of jet regurgitant mode.Variation trends of oscillation along with resonance tube length and jet Mach number are also studied.
     (2)The formation of "self-adjusting throat" in the USGA nozzle and the consequent phenomenon of the trasition of gas flow from subsonic to supersonic are studied by numerical simulation.The reason for this phenomenon is explained by the exsistence of vortex structure adhering on the wall of outflow duct.The location and flow structure of the self-adjusting throat are represented by numerical results.
     (3)The critical jet Mach numbers of the occurrences of resonance phenomenon and self-adjusting throat phenomenon in the USGA nozzle are speculated by numerical results.
     The study of the flow oscillation in the USGA nozzle and the analysis of the mechanism of generation of supersonic pusating gas flow have not been seen in previous literature.The study acts as the guidance for practical application.
引文
[1] Hartmann J., Om en ny Metode til Frembringelse af Lydsvinginger[J], Kgl. Danske Vidensk. Selsk. Math.-fys. Medd. p13,1919. (Danish paper)
    [2] Hartmann J. and Trolle B., A new Acoustic Generator, J. Sci. Instr., 4, p101-111, 1927.
    [3] Sprenger H. S., Zurich Uber Thermische Effekte in Resonanzohren[J], Mitteilungen aus dem Institut fur Aerodynamik an der E.T.H., 21, p18-35, 1954. (German paper)
    [4] Morch K.A., A theory for the mode of operation of the Hartmann air jet generator[J]. J. Fluid Mech., 20, pl41-159,1964.
    
    [5] Thompson P.A., Jet-driven resonance tube[J], AIAA J., 2, p1230-1233, 1964.
    [6] Brocher E., Maresca A., Bournay M.H., Fluid dynamics of the resonance tube[J]. J. Fluid Mech., 43, p369-384, 1970.
    [7] Kawahashi M., Suzuki M., Generative Mechanism of Air Column Oscillations in a Hartmann-Sprenger Tube Excited by an Air Jet Issuing from a ConvergentNozzle[J]. Journal of Applied Mathematics and Physics, 30, p797-810, 1979.
    [8] Jungowski W.M., Grabitz G., Self-sustained oscillation of a jet impinging upon a Helmholtz resonator[J], J. Fluid Mech., 179, p77-103, 1987.
    [9] Sarohia V, Back L.H., Experimental investigation of flow and heating in a resonance tube[J], J. Fluid. Mech., 94, p649-672, 1979.
    [10] Hartmann J., The Hartmann Acoustic Generator[J], Engineering, 6, p491-492, 1936.
    [11]Grant N.J., Rapid Solidification of Metallic Particulates[J], Journal of Metals, 35, p20, 1983.
    [12]Bogdanoff D.W., Advanced Injection and Mixing Techniques for Scramjet Combustors[J], Journal of Propulsion and Power, 10, No.2, pl83-190,1994.
    [13] Raman G., Khanafseh S., Cain A.B., Development of high bandwidth actuators for aeroacoustic control[J], AIAA Paper 2002-0664, 2002.
    [14]Raman G., Mills A., Development of Powered Resonance Tube Actuators for Aircraft Flow Control Applications [J], Journal of Aircraft, Vol.41, No.6, 1306-1314,2004.
    [15]Stanek M.J., Raman G., Kibens V., et al, Suppression of Cavity Resonance Using High Frequency Forcing - The Characteristic Signature of Effective Devices[J], AIAA Paper 2001-2128, 2001.
    [16]Marchese V.P., Rakowsky E.L., Bement L.J., A Fluidic Sounding Rocket Motor Ignition System[J], Journal of Spacecraft and Rockets, 10, No.11, p731-734, 1973.
    [17]Radebaugh R., A review of pulse tube refrigeration[J]. Adv. Cryo. Eng. B, 1990; 35:1191-205.
    [18] Tang K., Chen G.B., Jin T., Bao R., Kong B., Qiu L.M., Influence of resonance tube length on performance of thermoacoustically driven pulse tube refrigerator[J],Cryogenics 45(2005),185-191.
    [19]Smith T.J.B.,Powell A.,Experiments concerning the Hartmann whistle[J],Dept.of Engin.Univ.of Calif.,Rep.,64-42,1964.
    [20]Brocher E.,Duport E.,Resonance Tubes in a Subsonic Flowfield[J],AIAA J.,26,No.3,p548-552,1988.
    [21]Thompson M.C.,Hourigan K.,Welsh M.C.,Acoustic Sources in a Tripped Flow past a Resonance Tube[J],AIAA J.,30,No.6,p1484-1491,1992
    [22]Sobieraj G.B.,Szumowski A.P.,Experimental Investigations of an Underexpanded Jet from a Convergent Nozzle Impinging on a Cavity[J],Journal of Sound and Vibration,149(3),p375-396,1991.
    [23]Iwamoto J.,Kabashi,et al,On thermal effects of Hartmann-Sprenger tubes with various internal geometries[C],Oscillatory Flows in Ducts,Euromech 73,Aix-en-Provence,1976.
    [24]Kawahashi M.,Suzuki M.,Thermal effects in a Hartmann-Sprenger Tube[J],Bulletin of the Japan Society of Mechanical Engineers,22,p685-692,1979.
    [25]Wu J.H.,Ostrowski T.,Neemeh R.A.,Acoustic performance of a cylindrical disk-type resonator[J],Journal of Sound and Vibration,60,p151-156,1978.
    [26]Kawahashi M.,Suzuki M.,Studies of resonance tube with a secondary resonator[J],Bulletin of the Japan Society of Mechanical Engineers,17,p595-602,1974.
    [27]Kawahashi M.,Suzuki M.,Temperature separation produced by a Hartmann-Sprenger tube coupling a secondary resonator[J],Journal of Heat and Mass Transfer,24,p1951-1958,1981.
    [28]Jungowski,W.M.,Sobieraj G.B.,Hartmann-Sprenger generator as a sound source of a discrete frequency[J],Bulletin of the Staszie University of Mining and Metallurgy,728,p137-145,1979.
    [29]Savory L.E.,Experiments with the Hartmann acoustic generator[J],Engineering,170,p99-100,136-138,1950.
    [30]Rozenberg L.D.,Sources of High-intensity Ultrasound[M],Moscow:Science Press,1967.
    [31]孙飞虹,张建华,张存宏,郭楚文,共振腔消声器在煤矿风井噪声治理中的应用[J],能源环境保护,Vol.18,No.6,Dec.2004,
    [32]Wilson,J.and Paxson,D.E.,Unsteady Ejector Performance:An Experimental Investigation Using A Resonance Tube Driver[J],AIAA paper 2002-3632,July,2002.
    [33]Przirembel C.E.G.,Fletcher L.S.,Aerothermodynamics of a Simple Resonance Tube[J],AIAA Journal VOL.15,NO.1,JANUARY 1977.
    [34]Kerschen E.J.,Analytical modeling of the resonant frequencies of a powered resonance tube[C],Division of Fluid Dynamics of the American Physical Society Meeting,Nov.,San Diego,CA,USA,2001.
    [35]Kastner J.,Samimy M.,Development and Characterization of Hartmann Tube Based Fluidic Actuators for High Speed FlowControl[J],American Institute of Aeronautics and Astronautics Paper 2002-0128,2002.
    [36]李秉勋,二维超音速不足膨胀喷流与渐缩空穴管交互作用之研究[D],国立 成功大学航空太空工程研究所硕士论文,2002.
    [37]萧智深,二维音速不足膨胀喷流与渐缩空穴管交互作用之研究[D],国立成功大学航空太空工程研究所硕士论文,2003.
    [38]Bouch D.J.,Cutler A.D.,INVESTIGATION OF A HARTMANN-SPRENGER TUBE FOR PASSIVE HEATING OF SCRAMJET INJECTANT CASES[J],AIAA-2003-1275.
    [39]Sarpotdar S.Raman G.,Cain A.B.Powered resonance tubes:resonance characteristics and actuation signal directivity[J],Experiments in Fluids(2005)39:1084-1095.
    [40]Murugappan S.,Gutmark E.,Parametric study of the Hartmann-Sprenger tube[J],Experiments in fluids(2005)38:813-823.
    [41]Chang S.M.,Lee S,ONTHE JET REGURGITANTMODEOF A RESONANT TUBE[J],Journal of Sound and Vibration(2001)246(4),567-581.
    [42]Hamed A.,Das K.and Basu D.,Numerical Simulation of Unsteady Flow in Resonance Tube[J],AIAA-2002-1118,2002.
    [43]Hamed A.,Das K.and Basu D.,Numerical Simulation and Parametric Study of Hartmann-Sprenger Tube Based Powered Device[J],AIAA-2003-0550,2003.
    [44]Hamed A.,Das K.and Basu D.,Characterization of Powered Resonance Tube for High Frequency Actuation[J],FEDSM2003-45472,2003.
    [45]Bush,R.H.,Power,G.D.Towne,C.D.,1998,WIND:The production solver for the NPARC alliance[J],AIAA Paper 1998-0935.
    [46]Castleman R.A.The Mechanism of the Atomization of Liquids[J].J.Res.Natl.Nur.Stand,1931,6:369-376.
    [47]Taylor G.I.Generation of Ripples by Wind Blowing Over a Viscous Fluid[C].G.I.Taylor.The Scientific Papers of Geoffery Ingram Taylor.Cambridge:Cambridge University Press,1963.244-254.
    [48]Bradley D.On the Atomization of Liquid by High-Velocity Gases(Ⅰ)[J].J.Phys.D:Appl.Phys.1973,6:1724-1736.
    [49]Bradley D.On the Atomization of Liquid by High-Velocity Gases(Ⅱ)[J].J.Phys.D:Appl.Phys.1973,6:2267-2272.
    [50]Lawley A.Atomization of specialty alloy powder[J].J Metals,1981,33(1):13-18.
    [51]Lawley A.Atomization-The Production of Metal Powders[M].Princeton,New Jersey:Metal Powder Industries Federation,1993.20-62.
    [52]See J.B.Johnson G.H.Interactions between nitrogen jets and liquid lead and tin streams[J].Powder Technology,1978,21(5):119-126.
    [53]Lubanska H.Correlation of Spray ring data for gas atomization of liquid metals [J].J Metals,1970,22(2):45-50.
    [54]Grant N.J.Rapid solidification of metallic particulates[J].J Metals,1983,35(4):20-27.
    [55]Unal A.Effect of processing variables on particle size in gas atomization of rapidly solidified aluminium powders[J].Material Science and Technology,1987,3(12):1029-1036.
    [56]Unal A.Influence of nozzle geometry in gas atomization of rapidly solidified aluminium alloys[J].Material Science and Technology,1988,4(10):909-915.
    [57]Rayleigh L.On the Instability of Jets[J].Proc.London.Math.Soc,1879,10:361-371.
    [58]张璟,无穷域问题的谱方法研究[D],上海大学博士学位论文,2003.
    [59]苏海容,胡国辉,周哲玮,自由射流不同速度剖面下界面稳定性的伪谱分析[J].应用数学和力学,2004,25(12):1211-1219.
    [60]马峥,周哲玮.气流雾化问题中的流动稳定性研究[J].应用数学和力学,1999,20(10):991-995.
    [61]Veistinen M.K.,Lavernia E.J.,Baram J.C.and Grant N.J.,Jet Behavior in Ultrasonic Gas Atomization[J],The International Journal of Powder Metallurgy,Volume 25,No.2,1989,89-92.
    [62]Zhou Z.W.,Tang X.D.,The Effect of the Pulsation in Gas Flow on the Stability of Melted Metal Jet[C],Fourth International Conference on Spray Forming,USA,1999.
    [63]Rai G,Lavernia E J,Grant N J.Powder size and distribution in ultrasonic gas atomization[J].Journal of Metals,1985,37(8):22-26
    [64]郑晓娟,周哲玮.均匀轴向磁场对射流界面稳定性的影响[J].上海大学学报,2003,9(2):156-161.
    [65]王艳霞,胡国辉,周哲玮,圆管内含周期脉动分层流的Floquet稳定性分析[J],应用数学和力学,27卷第8期(2006年第8期),1011-1019.
    [66]Mansour A.,Chigier N.,Shih T.and Kozarek R.L.,The effects of the Hartman cavity on the performance of the USGA nozzle needed for Aluminum spray forming[J],Atomization and Sprays,1998(1):1-24.
    [67]Brocher E.,Duport E.,Resonance Tubes in a Subsonic Flowfield[J],AIAA Journal,vol.26,No.5,May 1988.
    [68]Harlow F.H.and Welch J.F.,Numerical calculations of time-dependent viscous incompressible flow of fluid with free surface[J],Phys.Fluids,1965,8:2182-2189.
    [69]McDonald P W.The Computation of transonic flow through two dimensional gas turbine cascades[J].ASME paper71-GT-89,1971.
    [70]MacCormack R W,Paullay A J.Computational efficiency achieved by time splitting of finite difference operators[J],AIAA paper,72-154,1972.
    [71]Patanka S.V,传热和流体流动的数值方法[M],安徽科学技术出版社,1984.
    [72]Harten A,Engquist B.,Osher S.,and Chakravathy R.,Uniformly high order accurate essentially non-oscillatory schemes,Ⅲ[J],J.Comput.Phys.,1987,71:231-303.
    [73]Liu X.D.,Osher S.,Convex ENO high order multi-dimensional schemes without field by field decomposition or staggered girds[J],J.Comput.Phys.,1998,142:304-338.
    [74]Roe P.L.,Approximate Riemann Solvers,Parameter Vectors,and Difference Schemes,Journal of Computational Physics[J],1981;43:357-372.
    [75]Chorin A.J.,A numerical method for solving incompressible viscous flow problems[J],J.Comput.Phys.,1967,2:12-26.
    [76]Van Leer B.,Towards the ultimate conservative difference scheme V.,A second order sequel to Godunov's method[J],J.Comput.Phys.,1979,32:101.
    [77]Godunov S.K.and Ryabenkii V.S.,Theory of Difference Schemes,An Introduction to the underlying Theory[M],North-Holland,1987.
    [78]Harten A.,High resolution schemes for hyperbolic conservation laws[J],J.Comput.Phys.,1983,49:357-393.
    [79]Van Leer B.,Thomas J.L.,Roe P.L.,Newsome R.W.,A COMPARISON OF NUMERICAL FLUX FORMULAS FOR THE EULER AND NAVIER-STOKES EQUATIONS[J],AIAA-1987-1104.
    [80]Strang G.,On the construction and comparison of difference schemes[J],SIAM J.Numer.Anal.,1968;5:506-517.
    [81]LeVeque R.J.,Finite Volume Method for Hyperbolic Problems[M],Cambridge University Press,2002.
    [82]Kawahashi M.,Bobobe R.,Brocher E.,Oscillation modes in single-step Hartmann-Sprenger tubes[J],J.Acoust.Soc.Am.75(3),March 1984.
    [83]Przirembel C.E.G.,Fletcher L.S.,Wolf D.E.,Thermodynamic Characteristics of a Blunt Two-Dimensional Resonance Tube[J],AIAA JOURNAL VOL.15,NO.7,JULY 1977.
    [84]Rockwell D.Naudascher E.,SELF-SUSTAINED OSCILLATIONS OF IMPINGING FREE SHEAR LAYERS[J],Ann.Rev.Fluid Mech.,1979.11:67-94.
    [85]Massa F.,Ultrasonic Transducers for Use in Air[C],PROCEEDINGS OF THE IEEE,VOL.53,NO.10,OCTOBER,1965.
    [86]FURTHER EXPLORATION OF NOISE SOURSES IN A MACH 1.3 JET[J],Hileman J.,Caraballo E.,Thurow B.and Samimy M.,AIAA-2003-1199.
    [87]An Overview of the Development of High Bandwidth Powered Resonance Tube Actuators:Experiments and Simulations[J],Raman G.,Sarpotdar S.,Tassy J.,AIAA-2004-2856.
    [88]Khanafseh S.M.,HIGH BANDWIDTH POWERED RESONANCE TUBE ACTUATORS WITH FEEDBACK CONTROL[D],master thesis of Illinois Institute of Technology,2002.
    [89]Kastner J.,Samimy M.,Effects of Forcing Frequency on the control of an Impinging High-Speed Jet[J],AIAA-2003-0006.
    [90]Mohring W.,Muller E-A.,Obermeier F.,Problems in flow acoustics[J],Review of Modern Physics,Vol.55,No.3,July 1983,707-724.
    [91]Stanek M.J.,Jet Noise Suppressor[P],United States Patent 6571549.
    [92]Stanek M.J.,High frequency pulsed fuel injector[P],US patent No.973161.
    [93]Stanek M.J.,Aircraft Weapons Bay High Frequency Acoustic Suppression Apparatus[P],United States Patent 6571549
    [94]Stanek M.J.,Raman G.,Kibens V.,Ross J.A.,Odedra J.,Peto J.W.,Control of cavity resonance through very high frequency forcing[J],AIAA-2000-1905.
    [95]潘文全主编,流体力学基础(上、下)[M],机械工业出版社,1982
    [96]童秉刚,孔祥言,邓国华,气体动力学[M],高等教育出版社,1990
    [97]赵学瑞,廖其奠主编,粘性流体力学[M],机械工业出版社,1993
    [98]刘儒勋,舒其望著计算流体力学的若干新方法[M],,科学出版社,2003
    [99]朱自强等编著,应用计算流体力学[M],北京航空航天大学出版社,1998
    [100]马铁犹编著,计算流体动力学[M],北京航空学院出版社,1986
    [101]奚梅成编著,刘儒勋审校,数值分析方法[M],中国科学技术大学出版社,1995
    [102]尹协远,孙德军.旋涡流动的稳定性[M].北京:国防工业出版社,2003.26-32.
    [103]Versteeg H.K.,Malalasekera W.,An Introduction to computational fluid dynamics The finite volume method[M],Addison Wesley Longman Limited,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700