基于模糊数学的机械零件表面结构几何特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机械零件的表面结构与其使用性能密切相关,是评定机械零件加工表面质量的重要指标,尤其随着现代机械制造技术向精密化和微型化方向的发展,对表面结构几何特征的识别以及评定的研究越来越为工程技术界所重视,并成为当今前沿的研究课题。世界各国为了使其机械产品的质量处于领先水平,对表而结构的几何特征都在进行着更广泛深入的研究。
     机械零件的加工表面是由一系列不同间距和高度的峰和谷组成的不规则几何形状叠加在一起的复杂表而结构,其几何特征由表面粗糙度和表面波纹度共同构成。山于两者均存在于同一形体上,其表面功能各不相同,两者所形成的工艺因素也各不相同,为了研究和分析表面的加工工艺以及控制和提高产品质量,必须分别测量和评定表面粗糙度和表而波纹度。然而表而粗糙度与表面波纹度二者具有交融成分,几何参数分界线之间存在模糊性;表而结构几何特征各评定参数在描述表面结构几何形状特性时所提供的信息以及各参数之间的相关程度都具有模糊性;单参数在表征表面不同性能方而有其独特的优点,三维表面结构信息更能反映加工表面的实际特征,即单参数与三维综合参数二者在表征加工表面的性能时都是不可缺少的,而它们之间的关系也是具有模糊性的。目前,如何将存在于同-表面的表面粗糙度与表面波纹度的融合成分截然分离以分别对其进行评定;在众多参数中如何选用评定参数能够最准确、最完美地表征实际轮廓表面的几何特征(包括高度、间距及形状);三维综合参数中包含了哪些单参数的信息,如何从综合参数中获得单参数信息,或者已知单参数的信息,如何获取三维综合参数信息,以实现三维综合参数信息和单参数信息的相互转换等,对于这些具有模糊性的问题只有定性分析而无定量分析。若对这些模糊性问题进行定量分析,用传统的数理统计的数学方法已经远不能满足要求。针对于此,本论文提出了一种全新的研究表面结构几何特征的方法——以模糊数学理论为基础分析研究表面结构几何特征。主要研究内容有:
     1.采用模糊数学理论直接从实际表面定量分离表面粗糙度和表面波纹度,测得符合评定质量的实际的参数值;并对表面粗糙度与表面波纹度的相关程度做定量分析。
     2.以模糊数学理论为基础,分别对表面结构几何特征的幅度参数、间距参数及形状参数等评定参数进行模糊综合评定;定量分析各评定参数在表征表面结构的表面特征和使用性能时所提供的有用信息以及参数之间的相关程度,明确各评定参数之间的相关性和使用特性
     3.提出一种全新的加权法——模糊聚类分析加权法,对所测得的粗糙度参数值进行加权,所加权重经过模糊综合评判后成功地实现了三维综合参数信息和单参数信息的相互转换。对已建立的模糊综合评判和模糊聚类分析模式采用C#.NET语言成功地编制了软件程序。经实验证明取得了满意的结果。
     4.采用光纤式光散射法测量表面粗糙度,提出了一种准直型光纤传感器。该测量系统几乎可以不受测头到被测表而距离变化和环境光线的影响,特别是基本消除了光源光强波动对输出结果的影响。实验表明,取得的结果也完全符合P.Beckmann等专家的光散射理论。
     本文采用模糊数学理论,直接从实际表面对表面结构几何特征融合成分进行定量分离,对评定参数的单参数相关程度以及单参数与三维综合参数相关性等方面进行定量分析,完全打破了传统方法,解决了传统的数理统计学所不能解决的模糊性问题。这种分析问题的方法不仅适用于计量领域,对其它科学领域均具有普遍意义,所建立的数学模型和所编制的软件程序具有广泛的实用价值。
The surface structure of Mechanical parts is closely related to its performance, which is an important indicator of evaluating the surface quality of mechanical parts, specially, with the development of the precision and miniaturization of modern machinery manufacturing technology, the identification and assessment of geometric features of the surface structure gets more and more attention in the field of the engineering technology and becomes the leading-edge research. In order to make the mechanical products at the leading-level in the world, researches on the geometric features of the surface structure are being conducted extensively.
     The machined surface of the mechanical parts is a kind of complex surface, which consists of a series of different spacing and height of the peaks and troughs with the irregular geometric shape, its geometric characteristics depend on both the surface roughness and the surface waviness. However, both of the geometric properties exist in the identical substance and their surface features vary, and also the technique factors caused by machining the two are different, for the purpose of researching and analyzing the processing techniques of surface and also the controlling and improving the product quality, the assessment and measurement of surface roughness and surface waviness has to be done respectively. However, there are the blend of the geometric components between the surface roughness and surface waviness and the fuzziness of the boundary between the two geometric parameters; the information and the correlation between the geometric parameters provided by the assessment parameters of the surface structure geometric characteristics when describing its characteristics are fuzzy; the single parameter has its unique advantages on the characterization of the different properties of the surface, and the information of the three-dimensional surface structure can reflect its actual characteristics of the machined surface better, that is to say, the single parameter and the three-dimensional comprehensive parameter are indispensable representing the performance of machined surface, but the relationship between the two is fuzzy. At present, there are the below fuzzy issues:the blend components of surface roughness and surface waviness existing in the identical surface can be entirely separated to evaluate them respectively; the assessment parameters are choosed from the parameters to indicate the geometric characteristic of the actual profile surface more accurately and perfectly (including height, spacing and shape); the single parameter information contained in the three-dimensional comprehensive can be gotten or the three-dimensional comprehensive can be gotten according to the foregone single parameter information to realize the exchange of the two. Nevertheless, the fuzzy issues only can be analyzed qualitatively, rather than quantitatively. It cannot meet the requirements to quantitatively ananlyze the fuzzy questions by the means of the traditional methods of mathematical statistic. In contrast, the new method of researching the geometric characteristics of the surface structure is put forward——which is based on the fuzzy mathematics theory to research the geometric characteristics of the surface structure.The main contents are:
     1. Quantitatively separate roughness from waviness of the actual surface directly adopting the fuzzy mathematics theory, get the actual values of the parameters according with the assessment quality; and analyze the correlation of the surface roughness and the surface waviness quantitatively.
     2. Evaluate the amplitude parameters, spacing parameters and shape parameters, etc. of the geometric characteristics of the surface structure with the method of fuzzy comprehensive evaluation based on the fuzzy mathematics theory respectively; quantitatively analyze the useful information and the correlation among the parameters provided by the assessment parameters indicating the surface characterization and the operational performance of the surface structure, confirm the correlation and the operational performance among the assessment parameters.
     3. Propose a new weighting method-the weighted method of the fuzzy clustering analysis, the values of roughness parameters measured are weighted, the weight makes the three-dimensional integrated parameter information and the single parameter information exchange by the fuzzy comprehensive evaluation successfully. The established fuzzy comprehensive evaluation and the fuzzy cluster analysis model are adopted by C #. NET language and the software program have been developed successfully. It is proved to obtain the satisfying results by experiments.
     4. Measure the surface roughness by the optical-type light scattering method, the collimating optical fiber sensors is proposed. The measurement system is seldom influenced by the distance change measured and the environment light, in particular, it basically eliminates the affect that light intensity fluctuations have on the output results. Experiments show that the results obtained accord with the light scattering theory proposed by P. Beckmann and other experts.
     The paper is based on the fuzzy mathematics theory to quantitatively separate the blend components of surface strcture geometric features from the actual surface directly, also to the correlation of the single parameters and the correlation of the single parameter and the three-dimensional comprehensive parameter of the assessing parameters, it breaks the traditional methods completely and solves the fuzzinees problems which can not be solved by the means of the traditional methods of mathematical statistic. The analysis method not only applies to the measuring field, but also has universal meaning to other scientific fields, and the established mathematical models and the software programs have a wide range of practical value.
引文
[1]毛起广.表面粗糙度的评定和测量[M].北京:机械工业版社,1991,1-201.
    [2]袁长良,丁志华,武文堂.表面粗糙度及其测量[M].北京:机械工业出版社,1989,1-180.
    [3]王欣玲,张洪.表面结构测试技术研究[J].机械工业标准化与质量,2000,(2):19--23.
    [4]ISO 4287:1997 Geometrical Product Specification(GPS)—Surface Texture Profile Method—Terms,Definitions and Parameters of Surface Texture[S].国际标准化组织, 1997.
    [5]GB/T 3505—2000,表面结构轮廓法—表面结构的术语、定义及参数[S].北京:中国标准出版社,2000.
    [6]JB/T9924—1999,磨削表面波纹度[S].北京:机械科学研究院出版,1999.
    [7]林滨,黄新雁,魏莹等.加工表面形貌测量理论、方法及评价[J].制造业自动化,2006,,28(8):14-18.
    [8]翠长彩,蒋向前.高斯滤波器对表面结构分离及其参数评定的实现[J].湖北汽车工业学院学报,2009,23(2):47-51.
    [9]李成贵,袁长良,张国雄.分形理论在表面计量学中的应用[J].现代计量测试,2000,(1):13-19.
    [10]杨练根,谢铁邦,蒋向前等.表而形貌的Motif评定方法及其发展[J].中国机械工程,2002,13(21):1862-1865.
    [11]ISO 12085:1996 Geometrical Product Specification(GPS)—Surface texture:Profile method—Motif parameters[S].国际标准化组织,1996.
    [12]M.Dietzseh,K.Papenfu B,T Hartmann.(ISO 12085)—a Suitable Description for Functional,manufactural and Metrological Requirements[J]. Int.J.Mach,Tools Manufact, 1998,38(5-6):625-632.
    [13]李惠芬,蒋向前,李柱.小波理论的发展及其在表面功能评定中的应用[J].现代计量测试,2001,(5):5-8.
    [14]王中宇,孟浩,付继华.表面综合形貌误差的灰色分离方法[J].仪器仪表学报,2008,29(9):1810-1815.
    [15]Wang Zhongyu,Hao Meng,Fu Jihua.Novel Method for Evaluating Surface Roughness by Grey Dynamic Filtering[J].Measurement,2010,(43):78-82.
    [16]GB 3505-83表面粗糙度术语表面及其参数[S].北京:中国标准出版社,1983.
    [17]ISO/DIS 10479-1993表面波纹度词汇[S].国际标准化组织,1993.
    [18]GB/T 16747—1997表面波纹度词汇[S].北京:中国标准出版版社,1997.
    [19]杨国光.近代光学测试技术[M].杭州:浙江大学出版社,2005,1-9.
    [20]M.Stedman, Keven Lindsey. Limits of Surface Measurement by Stylus Instruments [J]. Proc SPIE,1988,1009:56-61.
    [21]唐文彦,张军.触针法测量表面粗糙度的发展及现状[J].机械工艺师,2000,(11):40—42.
    [22]Huang Cheng Chung. Optical heterodyne roughness measurement system [P].United States Patent, US4848908,1989-07-18.
    [23]周肇飞.无接触高分辨率扫描式激光轮廓仪[P].中国专利,CN86106872,1988-05-11.
    [24]古丽蓉,王佳.一种测量表面粗糙度的激光外差十涉仪[J].仪器仪表学报,1990,11(2).
    [25]G.Binng, H.Rohrer, etc.. Tunneling through a controllable vacuum gap [J]. Applied Physical Letters,1981(40):178-180.
    [26]G.Binng, H.Rohrer, etc.. Atomic Force Microscope [J]. Physical Review Letters,1986, 56(9):930-933.
    [27]杨国光.近代光学测试技术[M].杭州:浙江大学出版社,2005,575-596.
    [28]胡俊标.表面波纹度在磨损过程中变化机理研究[J].机械制造,2001,39(6):30-32.
    [29]Nara J. About the Standardization and Spectral Measurement of Surface Waviness [J]. Bulletin of National Research Laboratory of Metrology,1971, (23):687-693.
    [30]马仪波.表而波纹度的研究[J].煤矿机械,2008,29(10):89-90.
    [31]吴云鹏,李红梅.波纹度对球轴承振动噪声的影响[J].黑龙江科技学院学报,2009,19(1):69-72.
    [32]李克强.车床导轨磨削波纹度的研究[J].兰州铁道学院学报,1993,12(2):40-45.
    [33]徐立铣.平面磨削振动及工件表面波纹度的试验研究[J].制造技术与机床,1990,(1):19-21.
    [34]赖玉明,曹硕生.高速低粗糙度外圆切入磨削波纹度试验[J].广西机械,1997,(2)26-30.
    [35]罗太景.滑动轴承工作表面波纹度的分析与质量控制,轴承,2006,No.1:18-19
    [36]罗太景.轴、孔磨削表面波纹度的分析与质量控制[J].新技术新工艺,2008,(4)30-31.
    [37]Devries W.R.. A Three-dimensional Model of Surface Asperities Developed Using Moment Theory [J]. Eng. Ind., Trans, ASME,1982, (104):243-248.
    [38]Tsukada T, Sasjima K.. Three-dimension Technique for Surface Asperities [J]. Wear, 1981,(71):1-14.
    [39]Teague E C., Scire F E.. Three-dimension Stylus Profilometry [J]. Wear,1982, (83):1-12.
    [40]De Chiffre L., Strohzek Nielsen H.. A Digital System for Surface Roughness Analysis of Plane and Cylindrical Parts [J]. Prec, Eng.,1987,9 (2):59-64.
    [41]毛起广,商思田,王景新.一种新型的表面粗糙度测量系统计量学报[J].1989,10(4):267-272.
    [42]高咏生,李柱.表面统计粗糙度理论与评定方法[J].计量学报,1987,8(2):134-139.
    [43]蒋庄德,赵卓贤.形状误差、波度和表面粗糙度划分的谱分析法[J].计量学报,1989,10(3):170-175.
    [44]强锡富,唐文彦,于英满.表面粗糙度三维测量系统[J].仪器仪表学报,1988,9(2):141-148.
    [45]Dong W.P., Sullivan P.J., Stout K.J. Comprehensive Study of Parameters for Characterization 3-D Surface Topography [J]. Wear,1994,178(1):29-60.
    [46]Thmoas T.R, J.Math. Trends in MetrologyInt [J]. Tools Manufact,1998,38 (5/6):1-3.
    [47]Lonarde P.M., Trumpold H., De Chiffre.L.. Progress in 3D Surface Microtopography Characterization [J]. Annals of the CIRP,1996,45 (2):589-597.
    [48]李成贵,张国雄,袁长良.三维表面粗糙度的均一性研究[J].计量学报,1999,20(1):32-36.
    [49]李成贵,张国雄,袁长良.三维表而粗糙度的等方性评定[J].机械工程学报,1999,35(1):15-19.
    [50]李成贵,董申.三维表面粗糙度参数的矩表征[J].计量学报,2001,22(3):168-173.
    [51]李成贵,李行善.三维表面料粗糙度均方根波长评定[J].北京航空航天大学学报,2002,28(2):190-193.
    [52]林滨,黄新雁,魏莹等.加工表面形貌测量理论、方法及评价[J].制造业自动化,2006,28(8):14-18.
    [53]Fahl C. F. Motif Combination — a New Approach to Surface Profile Analysis [J].W ear, 1982 (83):165-179.
    [54]Paul J.S.. The Mathematics of Motif Combination and Their Use for Function, Simulation [J]. Int.J.M ach.Tools Manufact,1992,32(1/2):69-73.
    [55]ISO4287-1996. Geometrical Product Specification (GPS)-Sueface Texture Profile Method-Terms, Definitions and Parameters of Surface Textrue [S]. 国际标准化组织, 1996.
    [56]李成贵,董申,韩红玉.MOTIF—表面结构的又一表征方法[J].计量技术,1999(12):18-20.
    [57]杨练根,刘小军,王选择等.表面形貌的2D-MOTIF方法及其算法实现[J].三峡大学学报(自然科学版),2006,28(3):241-243.
    [58]Vincenzo Nioba, Gennaro Nasti, Giuseppe Quaremba. A Problem of Emphasizing Features of a Surface Roughness by Means the Discrete Wavelet Transform [J].Journal of Materials Processing Technology,2005,164-165:1410-1415.
    [59]陈庆虎.表面计量的小波频谱理论与方法研究[D].武汉,华中理工大学,1998.
    [60]陈庆虎,李柱.表面粗糙度提取的小波频谱法[J].机械工程学报,1999,35(3):541-543.
    [61]Chen Qinghu, Yang Shnian, Li Zhu.. Surface Roughness Evaluation by Using Wavelets Analysis [J]. Precision Engineering,1999, (23):209-212.
    [62]蒋向前,Blunt L..三维表面测量的发展[J].工程设计,2000,4(25):98-100.
    [63]Jiang X.Q., Blunt L., Stout K.J.. Three-Dimensional Surface Characterization for Orthopaedic joint prostheses [J]. Journal of Instn.Mech.Engrs.1999,(Part H 213):49-68.
    [64]Jiang X.Q., Blunt L., Stout K.J.. Development of a Lifting Wavelet Representation for Characterization of SurfaceTopography [J]. Proc.R.Soc.Lond,2000, (A456):2283-2313.
    [65]Jiang X.Q., Blunt L., Stout K.J.. Application of the Lifting Wavelet to Surface Roughness [J]. Precision Enginnering,2001,25(2):83-89.
    [66]Mandelbrot B.B.. The fractal geometry of nature [M]. New York:Freeman, 1982,361-366.
    [67]Feder J.. Frectals [J]. New York:Plenum Press,1988, (3):6-288.
    [68]Thomas T.R., Thomas A.P.. Engineering Surface as Fractals, Fractal Aspects of Materials [M]. Pittsburgh:Materials Research Society,1996,75-77.
    [69]Majumdar A, Tien C L.. Fractal Characterization and Simulation Roughness Surface [J]. Wear,1990,136(2):313-327.
    [70]J, Lopez, G. Hansali.. Fractal-Based Characterization for Engineered Surface Topography [J]. Int. J. Mach. Tools Manuf.,1995,35(2):211-218.
    [71]李成贵,张国雄,袁长良.分形维数与表面粗糙度参数的关系[J].工具技术,1997,31(12):36-38.
    [72]费斌,王海容,蒋庄德.机械加工表面分形特性研究[J].西安交通大学学报,1998.32(5):83-86.
    [73]史立新.分形理论在机械加工表面分析中的应用[J].农机化研究,2000(2):112-114.
    [74]李成贵,董申.三维表面形貌的分形维数计算方法[J].航空精密制造技术,2000,36(4):36-40.
    [75]王安良.机械加工表面形貌分形特征的计算方法[J].中国机械工程,2002,13(8)714-718.
    [76]董霖,张永相.多重分形表面特征的小波分析方案[J].表面技术,2004,33(3):59-60.
    [77]王建军,魏宗信.粗糙表面轮廓分形维数的计算方法[J].工具技术,2006,17(1)73-80.
    [78]何维军,王渊,赵福令.基于分形维数的CFRP切削加工表面三维形貌评定方法[J]. 计量学报,2009,30(4):297-301.
    [79]葛世荣,Tonderk.粗糙表面分形特征分形表达研究[J].摩擦学学报,1997,17(1):73-80.
    [80]李成贵,袁长良,张国雄.分形理论在表面计量学中的应用[J].现代计量测试,2000,1:13-19.
    [1]ISO 4287:1997 Geometrical Product Specification(GPS)—Surface Texture Profile Method—Terms,Definitions and Parameters of Surface Texture[S].国际标准化组织, 1997.
    [2]GB/T3505—2000,表面结构轮廓法——表面结构的术语、定义及参数[S].北京:中国标准出版社,2000.
    [3]JB/T9924—1999,磨削表面波纹度[S].北京:机械科学研究院出版,1999.
    [4]袁长良,丁志华,武文堂.表面粗糙度及其测量[M].北京:机械工业出版社,1989,1-180.
    [5]GB/T16747—1997表面波纹度词汇[S].北京:中国标准出版社,1997.
    [6]毛起广.表面粗糙度的评定和测量[M].北京:机械工业出版社,1991,1-201.
    [7]丁志华,王嘉玲.齿轮公差及其选用[M].北京:国防工业出版社,1987,85-102.
    [8]杨纶标,高英仪.模糊数学原理及应用[M].广州:华南理工大学出版社,2001,2-81.
    [9]邹开其,靳正大.模糊数学方法[M].大连:大连海运学院出版社,1990,1-24.
    [10]曹一波,谢小鹏.齿轮全寿命过程轮齿形貌变化的试验研究[J].润滑与密封,2008,33(4):4-7,62.
    [11]周锦文,李洪友,王晓明.齿轮表面质量对其使用性能和寿命影响的研究[J].机械科学与技术,2004,23(4):468-470.
    [12]宋文德.齿轮传动技术的现状与展望[J].上海机床,1994,(1):40-41,29.
    [13]苏芳.滚齿加工中影响齿面粗糙度的原因及消除方法[J].科技资讯,2006,(25)94.
    [14]王颂文.剃齿拉毛原因及其控制[J].机械工程师,2004,(5):76.
    [15]罗太景.齿轮齿廓形状偏差的质量控制[J].机械传动,2008,32(4):97-98,103.
    [16]历始忠.IS01328-1:1995圆柱齿轮精度制应用指南[M].北京:化学工业出版社,2008,178-180.
    [17]罗太景.齿轮表面波纹度的质量控制[J].机械传动,2006,30(1):84-85.
    [18]罗太景.齿轮轮齿表面粗糙度的评定分析与质量控制[J].2009,33(5):95-98.
    [1]GB 3505—83表面粗糙度术语表面及其参数[S].北京:中国标准出版社,1983.
    [2]GB/T1031—1995表面粗糙度参数及其数值[S].北京:中国标准出版社,1995.
    [3]ISO 4287:1997 Geometrical Product Specification (GPS)-Surface Texture Profile Method-Terms, Definitions and Parameters of Surface Texture [S]. 国际标准化组织, 1997.
    [4]GB/T3505—2000,表面结构轮廓法——表面结构的术语、定义及参数[S].北京:中国标准出版社,2000.
    [5]毛起广.表面粗糙度的评定和测量[M].北京:机械工业出版社,1991,1-201.
    [6]袁长良,丁志华,武文堂.表面粗糙度及其测量[M].北京:机械工业出版社,1989,1-180.
    [7]ISO/DIS 10479-1993表面波纹度词汇[S].国际标准化组织,1993.
    [8]GB/T16747—1997表面波纹度词汇[S].北京:中国标准出版社,1997.
    [9]JB/T9924—1999,磨削表面波纹度[S].北京:机械科学研究院出版,1999.
    [10]李晓沛.简明公差标准应用手册[M].上海:上海科学技术出版社,2005,227-261.
    [11]李岩,花国梁.精密测量技术[M].北京:中国计量出版社,2001,228-240.
    [12]袁长良,丁志华.表面粗糙度“平均间距”的功率谱与回归分析[J].太原理工大学学报,1980,(1):33-39.
    [13]张琳娜.精度设计与质量控制基础[M].北京:中国计量出版社,2007,81-105.
    [14]张维强,步春媛.与形状特性有关的表面粗糙度新参数研究[J].农业工程学报,1999,15(4):28-31.
    [15]张泰昌.轮廓支承长度率的简便测量与评定[J].实用测试技术,1996,(4):27-30.
    [16]蔡艳,汪哲能.表面粗糙度参数对密封性能的影响分析[J].机械工业,2009,(6):40-42.
    [17]杨纶标,高英仪.模糊数学原理及应用[M].广州:华南理工大学出版社,2001,51-146.
    [18]邹开其,靳正大.模糊数学方法[M].大连:大连海运学院出版社,1990,32-91.
    [19]汪培庄.模糊集合论及其应用[M].上海:上海科学技术出版社,1998,54-123.
    [20]李洪兴,汪培庄.模糊数学[M].北京:国防工业出版社,1994,41-218.
    [21]韩立岩,汪培庄.应用模糊数学[M].北京:首都经济贸易大学出版社,1998,148-160.
    [1]袁长良,丁志华,武文堂.表面粗糙度及其测量[M].北京:机械工业出版社,1989,113-178.
    [2]Tian Gui Yun, Lu Rong Sheng, Duke Gledhill. Surface Measurement Using Active Vision and Light Scattering [J].Optics and Leasers in Engineering,2007,45:131-139.
    [3]Zahide Yilbas, M.S.J.Hasmi. Surface Roughness Measurement Using an Optical System [J].Journal of Materials Procssing Technology,1999,88:10-22.
    [4]White D.J. Stylus Contact Method for Surface Metrology Ascendany [J].Measurement Control,1998,31(2):48-50.
    [5]Poon C.Y, Bhushan B. Comparison of Surface Roughness Measurement by Stylus Profiler, AFM Non-contact Optical Profiler [J].Wear,1995,190:76-88.
    [6]J.D.Garrat, D.J.Nettledon. A Stylus Instrument for Roughness and Profile Measurement of Ultra-fine Surfaces [J].Int. J. Mach. Tools Manuf.,1992,32(1-2):233-238.
    [7]Lonarde P.M, Trumpold H., Chiffre L.De. Progess in 3D Surface Microtopography Characterization [J]. Annals of the CIRP.1996,45(2):589-598.
    [8]Bining G, Rohrer R, etc.. Tunneling Through a Controllable Vacuum Gap [J]. Applied Physics Letters,1981, (40):178-180.
    [9]G.Binng, Quate C.F, Gerder Ch.. Atomic Force Microscope [J]. Physical Review Letters, 1986,56(9):930-933.
    [10]Bowen D.K, Wormington M. Measurement of Surface Roughness and Topography at nanometers Levels by Diffuse X-ray Scattering [J].Annals of the CIRP,1994,43 (1): 497-500.
    [11]Huang Cheng Chung. Optical heterodyne roughness measurement system [P].United States Patent, US4848908,1989-07-18.
    [12]周肇飞.无接触高分辨率扫描式激光轮廓仪[P].中国专利,CN86106872,1988-05-11.
    [13]古丽蓉,王佳.一种测量表面粗糙度的激光外差干涉仪[J].仪器仪表学报,1990,11(2):36-39.
    [14]M.J.Downs, M.W.H.Giverm, etc.. Optical System for Measuring the Profiles of Super-Smooth Surfaces [J]. Prec. Eng.,1985,7 (4):211-215.
    [15]Johannesh G. Technology and Applications of Grating Interferometers in High-precision Measurement [J]. Prec. Eng.,1992,14 (3):147-154.
    [16]朱健军,钟渊,刘泊.表面三维形貌测量及其评定的研究[J].哈尔滨理工大学学报,2009,14(1):43-46.
    [17]滕家绪,胡仲翔,朱磊等.基于CCD的三维表面粗糙度测量系统研究[C]//教育部学位管理与研究生教育司.2008年全国博士生学术会议,光学测试新理论、新技术.长春,长春理工大学出版:2008,120-124.
    [18]李晓华,王卫华,赵建才.现代精密工程测量技术及新进展[C]//2007'全国测绘科技信息交流会暨信息网成立30周年庆典论文集,2007,56-59.
    [19]杨培中,蒋寿伟.表面粗糙度三维评定的研究[J].机械设计与研究,2002,18(2):64-67.
    [20]李成贵,李行善.三维表面微观形貌的测量方法[J].宇航计测技术,2000,20(4):2-10.
    [21]蒋向前,L. Blunt.三维表面测量的发展[J].工程设计,2000,4(25):98-100.
    [22]李成贵,董申.3D表面粗糙度的测量方法分析[J].航空精密制造技术,1999,32(2): 28-32.
    [23]黎向前,朱明铨.现代精密测量技术现状及发展[J].航空工艺技术,1999,(3):45-48.
    [24]梁嵘,李达成.表面微观形貌测量及其参数评定的发展趋势[J].光学技术,1998,(9):66-68.
    [25]余晓芬,俞建卫.表面粗糙度三维表征参数的研究与测量[J].合肥工业大学学报(自然科学版),1996,19(1):88-94.
    [26]Ersin Kayahan, Hasan Okten, Fikret Hacizade, etc.. Measurement of Surface Roughness of Metals Using Binary Speckle Image Analysis [J].Tribology International,2010, 43:307-311.
    [27]B.Dhanasekar, N.Krishna Mohan, Basanta Bhnduri, etc.. Evaluation of Surface Roughness Based on Monochromatic Speckle Correlation Using Image Processing [J].Precision Engineering,2008,32:196-206.
    [28]B.Dhanasekar, B.Ramamoorthy. Digital Speckle Interferometry of Assessment of Surface Roughness [J].Optics and Lasers in Engineering,2008,46:272-280.
    [29]Ulf Persson. Surface Roughness Measurement on Machined Surfaces Using Angular Speckle Correlation [J].Materials Processing Technology,2006,180:233-238.
    [30]Zhao Xuezeng, Gao Zhao. Surface Roughness Measurement Using Speckle-Average Analysis of Objective Speckle Pattern in Specular [J]. Optics and Lasers in Engineering, 2009,47:1309-1316.
    [31]Lioudmila Tchvialeva. Igor Markhvida, Haishan Zeng, etc.. Surface Roughness Measurement by Speckle Contrast under the Illumination of Light with Arbitrary Speckle Profile [J].Optics and Lasers in Engineering,2010,48:774-778.
    [32]尼启良,陈波.散射法表面粗糙度测量[J].光学精密工程,2001,9(2):151-154.
    [33]董友耕.加工中及在线测量表面粗糙度方法评述[J].机床与液压,2010,38(1):120-123.
    [34]Umberto Minoni, Fabio Cavalli. Surface Quality Control Device for On-line Applications [J]. Measurement,2008, (41):774-782.
    [35]王政平,张锡芳,张艳娥.表面粗糙度光学测量方法研究进展[J].传感器与微系统,2007,26(9):4-6.
    [36]李粉兰,唐文彦,段海峰,郝建国.非接触式表面粗糙度测量研究新进展[J].激光与红外,2007,37(6):498-502.
    [37]付风岚,谭海燕.零件表面粗糙度的激光在线测量[J].激光与红外,2007,37(5):412-414.
    [38]Lu R.S, Tian G.Y. On-line Measurement of Surface Roughness by Leaser Light Scattering [J].Meas Sci Technol,2006,17:1-7.
    [39]K.Vacharanukul, S.Mekid. In-process Dimensional Inspection Sensors [J]. Measurement, 2005,38:204-218.
    [40]Tay C.J, Wang S.H, Quan C, etc.. In Siut Surface Roughness Measurement Using a Laser Scattering Method [J]. Optics Communications,2003,218:1-10.
    [41]Kim.H.Y. Shen.Y.F., Ahn.J.H.. Development of a Surface Roughness Measurement System Using Reflected Laser Beam [J]. Journal of Materials Processing Technology, 2002, (131):662-667.
    [42]Tay.C.J, Wang S.H., Quan.C, etc.. In Situ Surface Roughness Measurement Using a Laser Scattering Method [J]. Optics Communications,2003, (218):1-10.
    [43]Wong P.L, Li K.Y. In-process Roughness Measurement on Moving Surfaces [J].Optics &. Laser Technology,1999,31:543-548.
    [44]Wang W, Wang P.L, Luo J.B, etc.. A New Technique for Roughness Measurement on Moving Surface, [J].Tribo Int,1998,31(5):281-28?.
    [45]Persson U. In-process Measurement of Surface Roughness Using Light Scatterign [J].Wear,1998,215:54-57.
    [46]Beckmann P, Spizzichino A.The Scattering of Electromagnetic Waves from Rough Surfaces [M].London:Pergamon Press,1963:2-43.
    [47]杨国光.近代光学测试技术[M].杭州:浙江大学出版社,2005,387-429.
    [48]杨纶标,高英仪.模糊数学原理及应用[M].广州:华南理工大学出版社,2001,94-156.
    [49]邹开其,靳正大.模糊数学方法[M].大连:大连海运学院出版社,1990,41-91.
    [50]毛起广.表面粗糙度的评定和测量[M].北京:机械工业出版社,1991,1-201.
    [1]金增伟.Talysurf-6型触针式轮廓仪测量表面质量的特点[J].实验室研究与探索,1997,(4):48-51.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700