上海环城林带群落生态学与生态效益及景观美学评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市森林是由人类和自然过程相互作用所形成的复杂生态系统,其结构和功能是城市森林的首要特征,了解城市森林的结构及其与功能的关系、协调城市森林多种功能的发挥是更好地管理城市森林生态系统的关键。
     本研究以上海城市森林的重要组成部分环城林带为对象,在对环城林带进行全面群落调查和典型群落功能测定的基础上,从群落类型和结构特征,生态效益以及景观美学效益三个方面进行分析研究,以阐明环城林带的结构特征和健康状况,探究群落结构与生态效益和景观美学效益之间的关系,揭示影响生态效益和景观美学效益发挥的主要因子,既为上海环城林带结构优化和生态系统服务功能的提升提供理论依据,也为城市森林的建设和改造实践提供参考。主要结论如下:
     共记录维管植物87科184属226种,但少数树种主导整个林带,在树种构成上具有明显的集聚性。并且乡土树种应用比例低,乡土树种和外来树种的比例仅为1:3。群落类型丰富,分为7种植被类型,67个群落类型,以落叶阔叶林和常绿阔叶林为主,但缺乏地带性植被类型。群落物种多样性低,乔木层的平均物种数为1.68,灌木层平均物种数为0.92。群落结构过于简单,多呈中间稀疏两头多的“哑铃型”特征,以“乔木+自然草本”模式最多。主要建群种的种群结构以单峰型更新类型为主,只有少部分树种呈现间歇型,大多数群落难以实现自我更新,且生长势水平一般,从发展趋势上看是衰退的。林分密度过高,树木生长受限,呈现出随密度增加,树木胸径和冠幅减小的格局,并由此推断目前群落的最适密度为1000株/hm2左右,最适合树木的生长。
     群落多样性低下、生长不良主要是由于种植模式和管护方式造成的,由于大量引种外来种,忽视了乡土树种的应用,加之多采用纯林式的种植模式,造成群落的地带性差,结构不合理,而密植的种植模式增加了个体间的竞争,导致生长不良,同时高强度的管理和养护,清除了乔灌木幼苗和枯枝落叶层,造成了群落更新维持能力下降,养分归还能力差。此外上海地区土壤类型以高盐碱、高粘性为主,地势较低而地下水位较高,地形比较单一,促使上述问题更为突出。
     在群落类型划分的基础上,选取典型的植物群落对其调节温湿度、提供负离子、抑菌、降噪、净化大气和土壤改良6个方面的生态效益进行测定,并结合群落结构参数,探究影响生态效益的关键结构特征。
     在夏季,落叶针叶林池杉群落除抑菌功能以外,在其他功能上均具有较好的效果,而落叶阔叶林最差,其他类型的群落居中。在冬季,常绿阔叶林女贞群落在各方面均具有较高的生态效益,其次为常绿落叶阔叶混交林,而落叶阔叶林、针阔混交林和落叶针叶林表现较差。植物群落对土壤的改良作用主要表现在表层(0-20cm),其中落叶阔叶林悬铃木群落和落叶针叶林池杉群落的效果较好。
     在夏季,除土壤改良外,其他效益中的降温、增湿、空气负离子、降噪4种效益的大小受群落结构因子调控,这其中最显著的是叶面积指数、郁闭度和林分密度,叶面积指数与上述4种效益均呈显著正相关,而郁闭度和林分密度与其中的部分效益呈正相关。冬季,除土壤改良外,各种生态效益的大小均与群落结构因子相关,其中主要因子为叶面积指数、郁闭度和疏透度。整体上,叶面积指数、郁闭度越大,疏透度越小时,群落效益就越大。
     叶面积指数和郁闭度在一定程度上体现植物叶量,反映了光合、蒸腾等生理代谢活动的强度,同时,这两个因子在夏冬两季均与多项生态效益呈显著正相关,因此,叶面积指数和郁闭度是指示群落生态效益高低的重要结构参数。
     在群落类型划分的基础上,选取典型的植物群落评判各季相景观的美景度,并结合群落结构参数,探究影响景观美学效益的关键结构特征。
     不同植被类型中,落叶针叶林在不同季节均表现出最高的美景度,竹林的美景度最低。针叶林中,常绿针叶林的美景度四季均低于落叶针叶林;阔叶林中,落叶阔叶林的美景度在春季和夏季高于常绿落叶林,常绿阔叶林在秋季和冬季高于落叶阔叶林;混交林中,除秋季外,针阔混交林的美景度均高于常绿落叶阔叶混交林;林内景观平均和林外景观均表现为夏季最高,冬季最低。
     影响环城林带林内景观的结构因子主要为胸径因子(平均胸径和胸径变异系数)、郁闭度和疏透度。在春季,随着树木胸径的增长美景度增加;在夏季,郁闭度高会提升植物群落的美景度;在秋季,胸径变异较小的群落具有更好的观赏性;而在冬季,疏透度对林内景观美景度贡献最大。
     除结构特征外,群落的季相特征也是影响群落美景度的重要因子,在不同的季节,影响群落美景度的季相特征也会不同。黄色、紫色等明度较高的色相和开花量适中的群落在春季美景度最佳。在夏季生长势好、林冠层变化较小、树干清晰度的群落具有较高的美景度,观花相比于非观花可以显著提高夏季群落的美景度。彩叶色调变异性会影响群落秋季的美景度,色彩越纯,美景度越高。在冬季,具有深颜色树皮的群落美景度最高。
     群落外貌特征对林外景观美景度有显著的影响,其中林冠线对林外景观美景度贡献最大,其次为林缘线。林冠线起伏不大,竖向结构层次丰富会提高林外美景度,具有自然形林缘线的林外景观美景度最高。
     夏季,落叶针叶林池杉群落除抑菌效益外,其他生态效益和美景度均最大;常绿阔叶林、针阔混交林和常绿落叶阔叶混交林生态效益和景观美学效益的表现均低于落叶针叶林;落叶阔叶林虽然美景度较高,但生态效益却最低。
     冬季,常绿阔叶林女贞群落的各种生态效益和美景度均较高。落叶阔叶林、针阔混交林和常绿落叶阔叶混交林在生态效益和景观美学效益上表现均低于常绿阔叶林;落叶针叶林生态效益较差,但美景度最高。
     从群落结构特征对生态效益和景观美学效益的影响上看,夏季,郁闭度是影响群落生态效益和美学效益的主要因子,并且郁闭度越高,生态效益和美学效益越高,即通过提高群落的郁闭度,可以使生态效益和美景度得到同步增加。
     冬季,疏透度是影响两种效益发挥的主要因子,并呈现群落越紧密,生态效益越高,而群落越疏透,美景度越高,疏透度并没有对两种效益产生一致性的影响。在进行生态效益测定的群落中,郁闭度和疏透度呈显著负相关,即通过提高群落的郁闭度,也会使冬季生态效益增加。由于结构特征和季相特征均可以影响美景度,因此,可以通过增加群落中具有深颜色树皮的树种来提高冬季美景度,保证群落在冬季具有较好的生态效益同时也具有较高的美景度。
Urban forests are complex ecosystems created by the interaction of anthropogenic and natural processes. Structure and function are the first features of an urban forest to be studied. One key to better management of urban forest ecosystem is to understand urban forest structure and its relationship to forest functions, and to coordinate the multiple functions of urban forest.
     As an important part of urban forests in Shanghai, "The Shanghai Green Belt" was selected as an object in this study. In this paper, the researches were mainly developed from the following three aspects, community types and structural characteristics, ecological benefits and aesthetic benefits, based on survey of plant communities and measurement of typical communities' functions. The purpose of this research was to clarify the structural characteristics and health status of the Shanghai Green Belt, to explore the impacts of community structure on ecological benefits and aesthetic benefits, and to reveal the major structural factors. This study could provide theoretical basis for the Shanghai Green Belt structure optimization and ecosystem services improvement. Meanwhile, it also could provide models for the construction and improvement of urban forests. The main conclusions were as follows:
     The flora of vascular plant in the study area consisted of 226 species and varieties,184 genera and 87 families. But a few species dominated the whole belt, the ratio of native trees only 25%. There were 67 community types, which were divided into 7 vegetation types, most of them were deciduous broad-leaved forest and evergreen broad-leaved forest, however, few of them were zonal vegetation types. The species diversity of these communities was low. The result showed that the average number of species in the tree layer was 1.68, and in the shrub layer was 0.92. The community structure was excessively simple, featured as the dumbbell that was sparse in the middle and dense on both sides, most of which was the model of "tree with natural herb". The population structure of edificators was mainly the unimodal regeneration type, only a few species were sporadic type. Most populations could not recruit well, and lots of trees are in poor growth, causing declining in structure developing. The high stand density had limited the growth. The results indicated that, diameter at breast height (DBH) and crown diameter would decrease with the increased density, and it was inferred that the optimum density for the growth of the current community was about 1,000 individuals/hm2.
     Because of the inappropriate planting pattern and management regime, the species diversity in various communities was low. As the introduced exotic species received more attention than native species, and more application of the monoculture pattern, the community structure was unreasonable. Dense planting pattern intensified competition and further resulted in poor growth. At the same time, high intensity of management removed seedlings and litter, causing the decreased viability of community regeneration and poor ability of nutrient return. In addition, the problems were deteriorated due to the saline and cohesive soil, low terrain, high groundwater level and homogeneous landform in Shanghai.
     On the basis of community type classification, typical communities were selected for ecological benefits measurement, which was evaluated from the aspects of temperature and humidity amelioration, negative-ion supply, antibacterial function, noise reduction, air pollution reduction and soil improvement. Combined with community structural parameters, the key structural characteristics that influenced the ecological benefits were explored.
     In summer, deciduous coniferous forest Taxodium distichum var. imbricarium Comm. performed well on these ecological functions except for antibacterial function, while deciduous broad-leaved forest provide the fewest ecological benefits. In winter, evergreen broad-leaved forest Ligustrum lucidum Comm. provided the most ecological benefits in every aspect. The next one was evergreen and deciduous broad-leaved forest, and the performances of deciduous broad-leaved forest, broad-leaved and coniferous mixed forest and deciduous coniferous forest were not that good. The soil improvement effect of plant communities mainly arised in the surface of soil (0-20cm), where deciduous broad-leaved forest Platanus x hispanica Comm. and deciduous coniferous forest Taxodium distichum var. imbricarium Comm. deserved better assessment.
     In summer, except for soil improvement, other benefits, such as temperature and humidity amelioration, negative-ion supply and noise reduction, were mainly controlled by leaf area index (LAI), canopy closure and stand density. LAI and the above four benefits were significantly positively correlated. While the canopy closure and stand density just showed positive correlation with some of the benefits. In winter, except for soil improvement, other ecological benefits were mainly associated with LAI, canopy closure and canopy porosity. Hence, the plant community with higher LAI, greater canopy closure and lower canopy porosity will perform greater ecological benefits.
     To some extent, LAI and canopy closure indicated the amount of leaves, which indirectly associated with the intensity of photosynthesis and transpiration. These two factors showed significant positive correlation with ecological benefits. Therefore, LAI and canopy closure were the important structural parameters that indicated the ecological benefits of plant community.
     On the basis of community type classification, typical communities were selected for aesthetic assessment of each seasonal landscape. Combined with community structural parameters, the key structural characteristics that impact the aesthetic benefits were explored.
     The scenic beauty estimation (SBE) values of deciduous coniferous forest were the highest in all four seasons among different vegetation types, and SBE values of bamboo forest were the lowest. Among the coniferous forests, the SBE values of evergreen coniferous forest were lower than deciduous coniferous forest in all four seasons. Among the broad-leaved forests, the SBE values of deciduous broad-leaved forest were higher than evergreen deciduous forest in spring and summer, but reversely in autumn and winter. Among mixed forests, except for autumn, the SBE values of broad-leaved and coniferous mixed forest were higher than evergreen and deciduous broad-leaved mixed forest. The average SBE values of in-forest and outer-forest landscape were both the highest in summer, and the lowest in winter.
     The structural factors that impacted in-forest landscape of the Shanghai Green Belt were mainly average DBH and variation coefficient of diameter, canopy closure and canopy porosity. In spring, the communities with greater DBH had higher SBE values. In summer, the high level of canopy closure could improve the SBE values of plant community. In autumn, the communities with lower variation coefficient of diameter had higher SBE values. In winter, canopy porosity had greatest effect on SBE values of in-forest landscape.
     In addition to structural characteristics, the seasonal characteristics of plant community were also important factors that impacted the community SBE values. The seasonal characteristics influencing the community SBE values were diverse in different seasons. The communities marked with high brightness color such as yellow or purple and moderate amount of bloom, had the higher SBE values in spring. In summer, the communities, which shown better growth vigor, smaller changes in forest canopy and clearer trunk, had higher SBE values. Flowering trees could significantly improve the SBE values of community in summer. Color variation of the colorful leaves could impact the SBE values of community in autumn, and the purer the color was, the higher SBE values would be. In winter, the community with dark bark had the highest SBE values.
     Physical characteristics of the community had a significant impact on the outer-forest landscape. Forest canopy line provided the bigger contribution to the SBE values, followed by the forest edge line. Undulating canopy line and complex structural layers would increase the outer-forest SBE values, and community with natural forest edge shape had the highest outer-forest SBE values.
     In summer, except for antibacterial function, deciduous coniferous forest Taxodium distichum var. imbricarium Comm. provided the best ecological benefits and aesthetic benefits. The ecological benefits and aesthetic benefits of evergreen broad-leaved forest, broad-leaved and coniferous mixed forest, and evergreen and deciduous broad-leaved mixed forest were lower than deciduous coniferous forest. The SBE values of deciduous broad-leaved forest was higher, but ecological benefits were lowest.
     In winter, evergreen broad-leaved forest Ligustrum lucidum Comm. performed well in ecological benefits and aesthetic benefits. The ecological benefits and aesthetic benefits of deciduous broad-leaved forest, broad-leaved and coniferous mixed forest, and evergreen and deciduous broad-leaved mixed forest were lower than evergreen broad-leaved forest. The ecological benefits of deciduous coniferous forest were lower, but the SBE value was the highest.
     The relationship between the community structure and the ecological benefits and aesthetic benefits, shown us that canopy closure was positively related with both two benefits in summer, which means that by increasing the canopy closure of community, the ecological benefits and aesthetic benefits can both be optimized.
     In winter, the main structural parameter related with these two benefits was canopy porosity. The compacter the community was, the greater the ecological benefits would be provided. The sparser the community was, the higher the aesthetic benefits were. Canopy porosity did not made accordant effect on these two benefits. Canopy closure showed a significant negative correlation with canopy porosity. In consequence, by increasing the canopy closure of plant community, the ecological benefits can also be raised in winter. As structural characteristics and seasonal characteristics could impact aesthetic benefits, the trees with dark bark could be applied to increase SBE values in winter and to guarantee the aesthetic benefits as well as ecological benefits.
引文
Aerts, R.,& Chapin Ⅲ, F.S. (2000). The mineral nutrition of wild plants revisited:a re-evaluation of processes and patterns. Advances in Ecological Research,30,1-67.
    Akbari, H. (2002). Shade trees reduce building energy use and CO2 emissions from power plants. Environmental Pollution,116, S119-S126.
    Akbari, H.,& Taha, H. (1992). The impact of trees and white surfaces on residential heating and cooling energy use in four Canadian cities. Energy,17,141-149.
    Amati, M.,& Yokohari, M. (2006). Temporal changes and local variations in the functions of London's green belt. Landscape and Urban Planning,75,125-142.
    American Forests. (2002). CITYgreen:calculating the value of nature. Washington. D.C.
    Arthur, L.M. (1977).Predicting scenic beauty of forest environments:some empirical tests. Forest Science,23,151-160.
    Aylor, D.E. (1972). Noise reduction by vegetation and ground. Journal of the Acoustical Society of America,51,197-205.
    Barradas,V.L. (2000). Energy balance and transpiration in an urban tree hedgerow in Mexico City. Urban Ecosystems,4,55-67.
    Beckett, K.P., Freer-Smith, P.H.,& Taylor, G. (1998).Urban woodlands:Their role in reducing the effects of particulate pollution. Environmental Pollution,99,347-360.
    Bengston, D.N.,& Youn, Y.C. (2006). Urban containment policies and the protection of natural areas:the case of Seoul's greenbelt. Ecology and Society,11,3.
    Bijsterveld, K. (2003). "The city of din":decibels, noise, and neighbors in the Netherlands, 1910-1980. Osiris,18,173-193.
    Bolund, P.,& Hunhammar, S. (1999). Ecosystem services in urban areas. Ecological Economics, 29,293-301.
    Bonan, G.B. (2000).The microclimates of a suburban Colorado(USA) landscape and implications for planning and design. Landscape and Urban Planning,49,97-114.
    Briggs, D.J.,& France, J. (1980).Landscape evaluation:a comparative study. Journal of Environmental Management,10,263-275.
    Bristow, M., Nichols, J.D.,& Vanclay, J.K.(2006).Improving productivity in mixed-species plantations. Forest Ecology and Management,233,193-194.
    Brown, T.C.,& Daniel, T.C. (1986).Predicting scenic beauty of timber stands. Forest Science,32, 471-487.
    Brush, R.O. (1979).The attractiveness of woodlands:perceptions of forest landowners in Massachusetts. Forest Science,25,495-506.
    Buhyoff, G.J.,& Leuschner, W.A. (1978). Estimating psychological disutility from damaged forest stands. Forest Science,24,424-432.
    Buhyoff, G.J.,& Wellman, J.D. (1983).Landscape preference metrics, an international comparison. Journal of Environmental Management,16,181-190.
    Buhyoff, G.J., Hull IV, R.B., Lien, J.N., et al. (1986).Prediction of scenic quality for southern pine stands. Forest Science,32,769-778.
    Buhyoff, G.J., Wellman, J.D.,& Daniel, T.C. (1982).Predicting scenic quality for mountain pine beetle and western spruce budworm damaged vistas. Forest Science,28,827-838.
    Carter, M.R. (2002). Soil quality for sustainable land management:organic matter and aggregation interactions that maintain soil functions. Agronomy Journal,94,38-47.
    Chapin Ⅲ, F.S.(1980). The mineral nutrition of wild plant. Annual Review of Ecology and Systematics,11,233-260.
    Chapin Ⅲ, F.S., Matson, P.A.,& Mooney, H.A. (eds.) (2002). Principles of Terrestrial Ecosystem Ecology. Springer Verlag, New York.
    Chen, S.S.,& Jim, C.Y. (2008a). The Urban Forest of Nanjing City:Key Characteristics and Management Assessment. In:Carreiro, M.M., Song, Y.C.,& Wu, J.G. (eds). Ecology, Planning, and Management of Urban Forests,259-278, Springer Verlag, New York.
    Chen, W.Y.& Jim, C.Y. (2008b). Evaluation and valuation of the diversified ecosystem services provided by urban forests. In:Carreiro, M.M., Song, Y.C.,& Wu, J.G. (eds). Ecology, Planning, and Management of Urban Forests,53-83, Springer Verlag, New York.
    Clay, G.R.,& Smids, R.K.(2004). Assessing the validity and reliability of descriptor variables used in scenic highway analysis. Landscape and Urban Planning,66,239-255.
    Costanza, R., d'Arge, R., Groot, R., et al. (1997). The value of the world's ecosystem services and natural capital. Nature,387,253-260.
    Daily, G.C. (eds) (1997)Nature's Services:Societal Dependence on Natural Ecosystems. Island Press, Washington, DC.
    Daniel, T.C.,& Boster, R.S. (1976). Measuring Landscape Esthetics:The Scenic Beauty Esthetics
    Method. USD A, Forest Service, Research Paper, RM-167, Rocky Mountain Forest and Range Experiment Station.
    Daniel, T.C.,& Michael, M.M. (2001). Representational validity of landscape visualizations:the effects of graphical realism perceived scenic beauty of forest vistas. Journal of Environmental Psychology,21,61-72.
    Daniel, T.C.,& Vining, J. (1983) Methodological issues in the assessment of landscape quality. In:Altman, I., Wohlwill, J.F.(eds) Behavior and the Natural Environment.39-84, Plenum Press, New York.
    Dumanskia, J.,& Pieri, C. (2000). Land quality indicators:research plan. Agriculture, Ecosystems and Environment,81,93-102.
    Dwyer, J.F., Nowak, D.J., Noble, M.H., et al. (2000). Connecting people with ecosystems in the 21st century:an assessment of our nation's urban forests. U.S. Department of Agriculture, Forest Service, Syracuse, New York.
    Enquist, B.J., Brown, J.H.& West, G.B..(1998). Allometric scaling of plant energetics and population density. Nature,395,163-165.
    Escobedo, F.J.,& Nowak, D.J. (2009). Spatial heterogeneity and air pollution removal by an urban forest. Landscape and Urban Planning,90,102-110.
    Evans, J. (eds) (1992). Plantation Forestry in Tropics. Oxford University Press, New York.
    Fahlvik, N., Agestam, E., Nilsson, U., et al. (2005). Simulating the influence of initial stand structure on the development of young mixtures of Norway spruce and birch. Forest Ecology and Management,213,297-311.
    Fenger, J., Hertel, O.,& Palmgren, F. (eds.) (1998). Urban Air Pollution:European Aspects. Kluwer Academic, Dordrecht.
    Fitter, A.H.(2005). Darkness visible:reflection on underground ecology. Journal of Ecology,93, 231-243.
    Foster, D.R., Fluet, M.,& Boose, E.R.(1997). Human or natural disturbance:landscape-scale dynamics of the tropical forests of Puerto Rico. Ecological Applications,9,555-572.
    Fuller, J.L., Foster, D.R., McLachlan, J.S., et al.(1998). Impact of human activity on regional forest composition and dynamics in central New England. Ecosystem,1,76-95.
    Galvin, M.F. (1999).A methodology for assessing and managing biodiversity in street tree populations:a case study. Journal of Arboriculture,25,124-128.
    Gholz, H.L. (1982).Environmental limits on above ground net primary production, leaf area, and biomass in vegetation zones of the Pacific North West. Ecology,63,469-481.
    Grey, G.W.,& Deneke, F.J. (1986). Urban Forestry,2nd ed. John Wiley and Sons, New York.
    Grimmond, C.S.B.,& Oke, T.R.(1995). Comparison of heat fluxes from summertime observations in the suburbs of four North American cities. Journal of Applied Meteorology 34,873-889.
    Harris, R.A.,& Cohn, L.F. (1985).Use of vegetation for abatement of highway traffic noise. ASCE Journal of Urban Planning and Development,111,34-48.
    Heisler, G.M. (1986). Energy savings with trees. Journal of Arboriculture,12,113-125.
    Hollenhorst, S.J., Brock, S.M., Freimund, W.A., et al. (1988).Predicting the effects of gypsy moth on near-view aesthetic preferences and recreation appeal. Forest Science,39,28-40.
    Howard, E. (eds) (1902). Garden Cities of Tomorrow. Sonnenschein, London.
    Hull Ⅳ, R.B.,& Buhyoff, G.J. (1986).The scenic beauty temporal distribution method:An attempt to make scenic beauty assessments compatible with forest planning efforts. Forest Science, 32,271-286.
    Hull Ⅳ, R.B., Buhyoff, G.J.,& Cordell, H.K. (1987).Psychophysical models:An example with scenic beauty perceptions of roadside pine forests. Landscape Journal,6,113-122.
    Jackson, L.E. (2003). The relationship of urban design to human health and condition. Landscape and Urban Planning,64,191-200.
    Jennings, S.B., Brown, N.D.,& Shell, D. (1999). Assessing forest canopies and understorey illumination:Canopy closure, canopy cover and other measures. Forestry,72,59-74.
    Jensen, M.B., Persson, B., Guldager, S., et al.(2000).Green structure and sustainability-developing a tool for local planning. Landscape and Urban Planning,52,117-133.
    Jim, C.Y.,& Chen, W.Y. (2006). Perception and attitude of residents toward urban green spaces in Guangzhou (China). Environmental Management,38,338-349.
    Jim, C.Y.,& Liu, H.T. (2001). Species diversity of three major urban forest types in Guangzhou City, China. Forest Ecology and Management,146,99-114.
    Kahn, F.I.,& Abbasi, S.A. (2000). Attenuation of gaseous pollutants by greenbelts. Environmental Monitoring and Assessment,64,457-475.
    Kelty, M.J. (2006). The role of species mixtures in plantation forestry. Forest Ecology and Management,233,195-204.
    Kenney, W.A. (1987).A method for estimating windbreak porosity using digitized photographic silhouettes. Agricultural and Forest Meteorology,39,91-94.
    Konijnendijk, C.C., Nilsson, K., Randrup, T.B., et al. (eds) (2005). Urban Forests and Trees. Springer Verlag, Berlin Heidelgerg.
    Korublue, I.H. (1990) The clinical effect of aero-ionization. Medical Biometerology,5,12-14.
    Krueger, A.P. (1985).The biological effects of air ions. Biometeorology,29,205-206.
    Kuchler, A.W.& Zonneveld I.S.(eds) (1988). Vegetation Mapping. Kluwer, Dordrecht.
    Liu, H.T. (1998). Urban Forestry in China:A Biogeographical Study in Guangzhou City. PhD dissertation, University of Hong Kong, Hong Kong.
    Livingston, M., Shaw, W.W.,& Harris, L.K. (2003).A model for assessing wildlife habitats in urban landscapes of eastern Pima County, Arizona (USA). Landscape and Urban Planning,64, 131-144.
    Loeffler, A.E., Gordon, A.M.,& Gillespie, T.J. (1992). Optical porosity and windspeed reduction by coniferous windbreaks in Southern Ontario. Agroforestry Systems,17,119-133.
    Logsdon, S.D.,& Karlen, D.L. (2004).Bulk density as a soil quality indicator during conversion to no-tillage. Soil and Tillage Research,78,143-149.
    Lovett, G.M., Traynor, M.M., Pouyat, R.V., et al. (2000). Atmospheric deposition to oak forests along an urban-rural gradient. Environmental Science and Technology,34,4294-4300.
    Magurran, A.E.(eds) (1988). Ecological diversity and its measurement. Princeton University Press, New Jersey.
    Martens, M.J.M. (1981). Noise abatement in plant monocultures and plant communities. Applied Acoustics,14,167-189.
    McCune, B.,& Mefford, M.J. (2006). PC-ORD:Multivariate Analysis of Ecological Data. Version 5.12. MjM Software, Gleneden Beach, Oregon, USA.
    McPherson, E.G. (1998a). Structure and sustainability of Sacramento's urban forest. Journal of Arboriculture,24,173-190.
    McPherson, E.G. (1998b). Atmospheric carbon dioxide reduction by Sacramento's urban forest. Journal of Arboriculture,24,215-223.
    Meier, A. (1990/91).Strategic landscaping and air-conditioning savings:a literature review. Energy and Buildings,15-16,479-486.
    Miller, R.W. (eds) (1997). Urban Forestry:Planning and Managing Urban Greenspaces. Prentice-Hall, Englewood Cliffs, New Jersey.
    Mishra, A., Sharma, S.D.,& Khan, G.H. (2003). Improvement in physical and chemical properties of sodic soil by 3,6 and 9 years old plantation of Eucalyptus tereticornis:Biorejuvenation of sodic soil. Forest Ecology and Management,184,115-124.
    Miyawaki, A. (1999).Creative ecology:restoration of native forests by native trees. Plant Biotechnology,16,15-25.
    Moore, M., Gould, P.,& Keary, B.S. (2003). Global urbanization and impact on health. International Journal of Hygiene and Environmental Health,206,269-278.
    Mortberg, U.,& Wallentinus, H.(2000). Red-listed forest bird species in an urban environment and assessment of green space corridors. Landscape and Urban Planning,50,215-226.
    Niemczynowicz, J. (1996). Megacities from a water perspective. Water International,21, 198-205.
    Ning, Z.H., He, X.Y., Liu, C.F., et al. (2008). Assessing urban forest structure and health in Shenyang, China. Arboriculture and Urban Forestry,34,379-385.
    Nowak, D.J. (1994a). Understanding the structure. Journal of Forestry,92,42-46.
    Nowak, D.J. (1994b). Air pollution removal by Chicago's urban forest. In:McPherson, E.G.,
    Nowak, D.J.,& Rowntree, R.A. (eds) (2000). Chicago's Urban Forest Ecosystem:Results of the Chicago Urban Forest Climate Project.63-81. General Technical Report NE-186, US Department of Agriculture, Forest Service, Radnor, PA.
    Nowak, D.J.,& Dwyer, J.F. (2000). Understanding the benefits and costs of urban forest ecosystems. In:Kuser, J.E. (eds) Handbook of Urban and Community Forestry in the Northeast. Kluwer Academic/Plenum, New York.
    Ohsawa, M.D. (1984).Difference of vegetation zones and species strategies in the subalpine region of Mt.Fuji. Vegetation,57,15-52.
    Ohsawa, M.D., Wildpret, W.;& Arco, M.D.(1999).A comparative study on evergreen broad-leaved forests and trees of the Canary Islands and Japan,67-87,Chiba Laboratory of Ecology, Chiba University.
    Oke, T.R. (1989). The micrometeorology of the urban forest. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences,324,335-348.
    Oleyar, M.D., Greve, A.I., Withey J.C., et al. (2008).An integrated approach to evaluating urban forest functionality.Urban Ecosystems.11,289-308.
    Phillips, L.E. (1993). Urban Trees:a Guide for Selection, Maintenance, and Master Planning. McGraw-Hill, New York.
    Pierce, L.L.,& Running, R.W. (1988) Rapid estimation of coniferous forest leaf area index using a portable integrating radiometer. Ecology,69,1762-1767.
    Price, M.A., Attenborough, K.,& Heap, N.W. (1988).Sound attenuation through trees: Measurements and models. Journal of the Acoustical Society of America,84,1836-1844.
    Pysek, P. (1998). Alien and native species in Central European urban floras:a quantitative comparison. Journal of Biogeography,25,155-163.
    Reineke, L.H. (1933). Perfecting a stand-density index for even-aged forests. Journal of Agricultural Research,46,627-638.
    Richards, N.A. (1983) Diversity and stability in a street tree population. Urban Ecology,7, 159-171.
    Rosas, I., Calderson, C., Ulloa, M., et al. (1993).Abundance of airborne penicillium CFU in relation to urbanization in Mexico city. Applied and Environmental Microbiology,59,2648-2652.
    Rowntree, R.A.(1998) Urban forest ecology:conceptual points of departure. Journal of Arboriculture,24,62-70.
    Schroeder, H.,& Daniel, T. C. (1981) Progress in predicting the perceived scenic beauty of forest landscapes. Forest Science,27,71-80.
    Seinfeld, J.H. (2004). Air pollution:a half century of progress. AIChE Journal,50,1096-1108.
    Shafer, E.L., Hamilton, J.F.& Schmidt, E.A.(1969). Natural landscape preferences:a predictive model. Journal of Leisure Research.1,1-19.
    Shimano, K. (2000) A power function for forest structure and regeneration pattern of pioneer and climax species in patch mosaic forests. Plant Ecology,146,207-220.
    Smith, W.H. (eds.) (1990). Air Pollution and Forests. Springer-Verlag, New York.
    Tikhonov, V.P., Tsvetkov, V.D., Litvinova, E.G. et al. (2004).Generation of negative air ions by plants upon pulsed electrical stimulation applied to soil. Journal of plant physiology,51,414-419.
    Tso, C.P. (1996).A survey of urban heat island studies in two tropical cities. Atmospheric Environment,30,507-519.
    Turner,K., Lefler, L.,& Freedman, B. (2005). Plant communities of selected urbanized areas of Halifax, Nova Scotia, Canada. Landscape and Urban Planning,71,191-206.
    Tyrvainen, L. (1999). Monetary valuation of urban forest amenities in Finland. Academic dissertation. Research papers 739, Finnish Forest Research Institute, Vantaa.
    Tyrvainen, L. Silvennoinen, H.& Kolehmainen, O, (2003).Ecological and aesthetic values in urban forest management. Urban Forestry & Urban Greening,1,135-149.
    United Nations Environment Programme.(2009).UNEP Environmental Assessment:Expo 2010-Shanghai, China. Available from.
    United Nations Population Division. (2009). World Population Prospects:The 2009 Revision. Available from.
    Vales, D.J.,& Bunnell, F.L.(1988). Comparison of methods for estimating forest overstory cover. I. Observer effects. Canadian Journal of Forest Research,18,606-609.
    Vodak, M.C., Roberts, P.L., Wellman, J.D., et al. (1985). Scenic impacts of eastern hardwood management. Forest Science,31,289-301.
    Wadsworth, G., Southard, R.J.& Singer, M.J.(1988). Effects of fallow length on organic carbon and soil fabric of some tropical Udults. Soil Science Society of America Journal,52,1424-1430.
    Wales, B.A. (1967).Climate, microclimate, and vegetation relationships on north and south forest boundaries. The William L. Hutcheson Memorial Forest Bulletin,2,1-60.
    Watts, G., Chinn, L.,& Godfrey, N. (1999). The effects of vegetation on the perception of traffic noise. Applied Acoustics,56:39-56.
    Wu, Z.M., Huang, C.L., Wu, W.Y.,& Zhang, S.J.(2008).Urban Forest Structure in Hefei, China. In:Carreiro, M.M., Song, Y.C.,& Wu, J.G. (eds). Ecology, Planning, and Management of Urban Forests,279-292, Springer Verlag, New York.
    Yan, E.R., Wang, X.H., Guo, M. et al. (2009). Temporal patterns of net soil N mineralization and nitrification through secondary succession in the subtropical forests of eastern China. Plant and Soil.320,181-194.
    Yang, J.,& Zhou, J.X. (2007). The failure and success of greenbelt program in Beijing. Urban Forestry & Urban Greening,6,287-296.
    Yang, J., Gong, P.,& Zhou, J.X.(2008).Spatial and Temporal Change of Urban Vegetation Distribution in Beijing. In:Carreiro, M.M., Song, Y.C.,& Wu, J.G. (eds). Ecology, Planning, and Management of Urban Forests,346-356, Springer Verlag, New York.
    Yang,J., McBride, J., Zhou, J.X., et al. (2005). The urban forest in Beijing and its role in air pollution reduction. Urban Forestry & Urban Greening,3,65-78.
    Yoda, K., Kira, T., Ogawa, H.& Hozumi, K.(1963). Self-thinning in overcrowded pure stands under cultivated and natural conditions. Journal of biology,14,107-129.
    Yokohari, M., Takeuchi, K., Watanabe, T., et al.(2000).Beyond greenbelts and zoning:a new planning concept for the environment of Asian mega-cities. Landscape and Urban Planning,47, 159-171.
    Zhang, K.X., Wang, R., Shen, C.C., et al.(2010) Temporal and spatial characteristics of the urban heat island during rapid urbanization in Shanghai, China. Environmental Monitoring and Assessment. DOI 10.1007/s 10661-009-1154-8.
    Zube, E.H., Sell, J. L.,& Taylor, J.G. (1982).Landscape perception:research, application and theory. Landscape Planning,9,1-33.
    包战雄.(2002).风景林景观质量评价与经营研究.福建农林大学硕士论文.
    包战雄.(2005).福建省森林景观质量评价与经营研究Ⅱ.夏季和秋季景观.林业勘察设计,2:27-31.
    蔡春菊,彭镇华,王成.(2004).城市森林生态效益及其价值研究综述.世界林业研究,17(3):17-20.
    蔡春菊,王成,陶康华.(2007).城市绿地对空气负离子水平的影响.城市环境与城市生态,20(5):6-9.
    曹鹤,薛立,谢腾芳等.(2009).华南地区八种人工林的土壤物理性质.生态学杂志,28(4):620-625.
    曹建华,郭小鹏.(2002).意愿调查法在评价森林资源环境价值上的运用.江西农业大学学报(自然科学版),24(5):645-648.
    常焕英,尹广远,谷静敏.(2006).不同人工林改良土壤效果的初步调查.河北林业科技,8:23-24.
    陈佳瀛,宋永昌,陶康华等.(2006).上海城市绿地空气负离子研究.生态环境,15(5):1024-1028.
    陈佳瀛,宋永昌,王爱民.(2005).上海环城林带小气候效应的研究(Ⅰ).生态环境,14(1):67-74.
    陈爽,詹志勇.(2004).南京城市森林结构特征与管理对策.林业科学,40(6):158-164.
    陈厦,桑卫国.(2007).暖温带地区3种森林群落叶面积指数和林冠开阔度的季节动态.植物生态学报,31(3):431-436.
    陈鑫峰,贾黎明,王雁等.(2008).京西山区风景游憩林季相景观评价及经营技术原则.北京林业大学学报.30(4):39-45.
    陈鑫峰,贾黎明.(2003).京西山区森林林内景观评价研究.林业科学,39(4):59-66.
    陈鑫峰.(2000).京西山区森林景观评价和风景游憩林营建研—兼论太行山区的森林游憩业建设.北京林业大学博士论文.
    陈自新,苏雪痕,刘少宗等.(1998).北京城市园林绿化生态效益的研究(2),中国园林,14(2):51-54.
    谌红辉,丁贵杰.(2004).马尾松造林密度效应研究.林业科学,40(1):92-98.
    达良俊,李艳艳,章君果等.(2009).城市“地标性”植物群落建设的思考.城市问题,8:37-39.
    达良俊,杨同辉,宋永昌.(2004c).上海城市生态分区与城市森林布局研究.林业科学,40(4):84-88.
    达良俊,杨永川,陈燕萍.(2004b).上海大金山岛的自然植物群落多样性研究.中国城市林业,2(3):22-25.
    达良俊,杨永川,宋永昌.(2004a).浙江天童国家森林公园常绿阔叶林主要组成种的种群结构及更新类型.植物生态学报,28(3):376-384.
    邓志平,卢毅军,谢佳彦等.(2008).杭州西湖山区不同植被类型植物多样性比较研究.中国生态农业学报,16(1):25-29.
    董建文,翟明普,章志都等.(2009).福建省山地坡面风景游憩林单因素美景度评价研究.北京林业大学学报,31(6):154-158.
    董建文.(2006).福建中、南亚热带风景游憩林构建基础研究.北京林业大学博士论文.
    董文泉等.(1979).数量化理论及其应用.长春:吉林人民出版社.
    杜振宇,邢尚军,宋玉民等.(2007).高速公路绿化带对交通噪声的衰减效果研究.生态环境,16(1):31-35.
    方和俊,王晨曦,达良俊.(2006).上海又一天然次生林保护区—佘山.中国城市林业,4(1):53-56.
    方和俊.(2006).上海城市绿地植物群落现状及综合评价研究.华东师范大学硕士论文.
    方晓峰.(2005).宁波地区植被的物种多样性特征研究.华东师范大学硕士论文.
    冯采芹.(1992).绿化环境效应.北京:中国环境科学出版社.
    傅徽楠,严玲璋,张连全等.(2000).上海城市园林植物群落生态结构的研究.中国园林,16(4):22-25.
    高健,王成,吴泽民.(2004).城市不同土地利用类型小气候状况及对人体舒适度的影响.中国城市林业,2(2):41-48.
    高峻.(1997).上海自然植被的特征、分区与保护.地理研究,16(3):82-88.
    葛永金,袁位高,江波等.(2006).浙江省生态公益林土壤理化性质的初步研究.江西农业大学学报,28(6):28-32.
    龚兆先,周永章.(2005).环城绿带对城乡边缘带景观的促进机制.城市问题,4:31-34.
    关文彬,李春平,李世锋等.(2002).林带疏透度数字化测度方法的改进及其应用研究.应用生态学报,13(6):651-657.
    管群飞,徐岭.(2009).上海市环城绿带植物群落构建初步研究.中国园林,25(6):92-94.
    郭二果,王成,彭镇华等.(2009).北京西山三种典型游憩林春季空气颗粒物日变化规律.林业科学,45(6):145-148.
    国家林业局宣传办公室.(2009).中国城市森林建设理论与实践.北京:中国农业出版社.
    韩文轩,方精云.(2008).植物种群的自然稀疏规律——3/2还是-4/3?北京大学学报(自然科学版),44(4):661-668.
    何兴元,金莹杉,朱文泉等.(2002).城市森林生态学的基本理论与研究方法.应用生态学报,13(12):1679-1683.
    花晓梅.(1980).树木杀菌作用研究初报.林业科学,16(3):236-240.
    黄焰城,章君果,沈沉沉等.(2009).宁波镇海区生态隔离林带净化大气的生态效益.华东师范大学学报(自然科学版),2:1-10.
    姜凤岐,周新华,付梦华等.(1994).林带疏透度模型及其应用.应用生态学报,5(3):251-255.
    李海梅,何兴元,陈玮等.(2004).中国城市森林研究现状及发展趋势.生态学杂志,23(2):55-59.
    李明阳,菅利荣.(2008).风景林调查规划与合理经营的理论与实践.北京:中国林业出版社.
    李文华.(2009).充分发挥城市森林的生态服务功能.见:国家林业局宣传办公室.中国城市森林建设理论与实践.北京:中国农业出版社,33-45.
    李文敏.(1998).宝鸡天台山风景名胜区森林植物景观与评价.中国园林,14(6):35-37.
    李晓储,蒋继宏,陈凤美等.(2006).扬州古运河沿岸生态林主要绿化树种抑菌功能的初步研究.林业科学,42(6):129-133.
    李晓储,万志洲,徐海兵等.(2008).城市生态风景林——中山陵景区异龄复层景观林抑菌功能研究.江苏林业科技,35(5):1-7.
    李艳,刘春江,王云等.(2008).环城林带的营造及其经营问题—以上海市环城林带为例.上海交通大学(自然科学版),26(2):168-171.
    李永宁,张宾兰,秦淑英等.(2008).郁闭度及其测定方法研究与应用.世界林业研究,21(1):40-46.
    林永标,申卫军,彭少麟等.(2003).南亚热带鹤山三种人工林小气候效应对比.生态学报,23(8):1657-1666.
    林源祥,杨学军.(2003).模拟地带性植被类型,建设高质量城市绿地.中国城市林业,1(2):10-12.
    刘步军.(1997).不同绿化树种温湿度效应的研究.农业环境保护,16(6):266-268.
    刘君然.(1994).林分密度理论及应用.北京:中国林业出版社.
    刘世梁,马克明,傅伯杰等.(2003).北京东灵山地区地形土壤因子与植物群落关系研究.植物生态学报,27(4):496-502.
    陆庆轩,何兴元.(2005).沈阳城市森林植被结构和植物多样性研究.中国城市林业,3(4):15-18.
    陆洋,谢锋.(2007).贵阳二环林带环境空气质量评价.贵州科学,25(3):82-85.
    陆兆苏,余国宝,张治强.(1985).紫金山风景林的动态及其经营对策.南京林学院学报,3(3):1-11.
    罗英,李晓储,何小弟等.(2005).城市森林不同类型绿地植物配置抑菌效应初析.中国城市林业,3(6):23-25.
    罗英,李晓储,黄利斌等.(2009).城市街道绿地不同配置模式植物群落的抑菌功能.浙江林学院学报,26(6):859-864.
    毛炯玮.(2009).城市自然遗留地的景观美学评价—以上海市为例.上海交通大学硕士论文.
    穆丹,梁英辉.(2009a).佳木斯绿地空气负离子浓度及其与气象因子的关系.应用生态学报,28(8):2038-2041.
    穆丹,梁英辉.(2009b).城市不同绿地结构对空气负离子水平的影响.生态学杂志,28(5):988-991.
    牛君丽.(2008).北京风景游憩林质量评价的指标体系研究.北京林业大学硕士论文.
    欧阳志云,李伟峰,Juergen Paulussen等.(2004).大城市绿化控制带的结构与生态功能.城市规划,4:41-45.
    潘家华.(2009).城市蓝皮书—中国城市发展报告(第二版).北京:社会科学文献出版社.
    齐飞艳,郭会锋,赵勇等.(2009).道路绿化林对空气颗粒物浓度的影响.河南科学,27(6):734-736.
    秦俊,王丽勉,高凯等.(2008).植物群落对空气负离子浓度影响的研究.华中农业大学学报,27(2):303-308.
    任启文,王成,郄光发.(2007).城市绿地空气细菌含量变化特征.城市环境与城市生态,20(1):24-28.
    任启文,王成,杨颖等.(2006)城市绿地空气微生物浓度研究—以元大都公园为例.见:彭镇华.城市森林建设理论与方法.北京:中国林业出版社,175-180.
    上海科学院.(1999).上海植物志(上、下卷).上海:上海科学技术文献出版社.
    邵海荣,贺庆棠,阎海平等.(2005).北京地区空气负离子浓度时空变化特征的研究.北京林业大学学报,27(3):35-39.
    宋力,何兴元,张洁.(2006).沈阳城市公园植物景观美学质量测定方法研究—美景度评估法、平均值法和成对比较法的比较.沈阳农业大学学报,37(2):200-203.
    宋永昌.(2001).植被生态学.上海:华东师范大学出版社.
    宋永昌.(2004).城市森林研究中的几个问题.中国城市林业,2(1):4-9.
    苏国栋.(2000).上海市机动车尾气污染防治的对策思考.上海建设科技,2:36-37.
    粟娟,孙冰,黄家平等.(1998).广州市绿地应用树种结构分析.林业科学研究,11(5):502-507.
    孙慧珍,陈明月,蔡春菊等.(2009).不同类型城市森林对土壤肥力的影响.应用生态学报,20(12):2871-2876.
    孙时轩,沈国舫,王九龄等.(1992)造林学(第2版).北京:中国林业出版社.
    孙卫邦.(2003).乡土植物与现代城市园林景观建设.中国园林,19(7):63-65.
    汤晓敏.(2007).景观视觉环境评价的理论、方法与应用研究.复旦大学博士学位论文.
    唐孝炎,王如松,宋豫秦.(2005)我国典型城市生态问题的现状与对策.国土资源,4:4-9.
    田宇明,王庆成,王鹏等.(2009).水曲柳造林密度与林分生长的关系.林业科技,34(5):17-20.
    童丽丽,汤庚国,许晓岗.(2006).中国城市森林群落结构研究.安徽农业科学,34(18):4586-4589.
    汪永华.(2004).环城绿带理论及基于城市生态恢复的环城绿带规划.风景园林,53:20-25.
    王伯荪.(1998).城市植被与城市植被学.中山大学学报(自然科学版),37(4):9-12.
    王晨曦,王娟,李艳艳等.(2008).城市化进程中上海植被的多样性、空间格局和动态响应(Ⅰ):上海佘山地区残存自然植被种子植物区系及其50年的动态变化特征.华东师范大学学报(自然科学版),4:31-39.
    王迪生.(1994).关于林分密度研究.林业资源管理,1:67-71.
    王洪俊.(2004).城市森林结构对空气负离子水平的影响.南京林业大学学报(自然科学版),28(5):96-98.
    王蕾,刘连友,王志等.(2006).北京市园林植物吸附PM10与sO2总量及其健康效益.环境科学与技术,29(9):1-3.
    王希华,黄建军,阎恩荣.(2004).天童常绿阔叶林若干树种的叶片营养转移研究.广西植物,24(1):81-85.
    王希群,马履一,贾忠奎等.(2005).叶面积指数的研究和应用进展.生态学杂志,24(5):537-541.
    王祥荣.(1998).生态园林与城市环境保护.中国园林,14(2):14-16.
    王晓俊.(1995).森林风景美的心理物理学评价方法.世界林业研究,8(6):8-15.
    王孝泓.(2007).上海绿地植物群落特征及优化对策.南京林业大学学报(自然科学版),31(6):42-44.
    王雁,陈鑫峰.(1999).心理物理学方法在国外森林景观评价中的应用.林业科学,35(5):110-117.
    王震洪,段昌群,文传浩等.(2001).滇中三种人工林群落控制土壤侵蚀和改良土壤效应.水土保持通报,21(2):23-27.
    吴楚材,黄绳纪.(1995).桃源洞国家森林公园负离子浓度测定与评价.中南林学院学报,15(1):9-12.
    吴楚材,郑群明,钟林生.(2001).森林游憩区空气负离子水平的研究.林业科学,37(5):75-81.
    吴楚材,钟林生,刘晓明.(1998).马尾松纯林林分因子对空气负离子浓度影响的研究.中南林学院学报,18(1):70-73.
    吴南生.(2006).北京西山风景游憩林抚育理论与技术研究.北京林业大学博士论文.
    吴彤,倪绍祥,李云梅等.(2006).由冠层孔隙度反演植被叶面积指数的算法比较.南京师大学报(自然科学版),29(1):111-115.
    吴晓璐,余琦,马蔚纯.(2007).环境空气质量数值模拟及其在上海道路交通规划环境评价中的应用.复旦学报(自然科学版),46(3):348-355.
    吴玉红,田霄鸿,同延安等.(2010).基于主成分分析的土壤肥力综合指数评价.生态学杂志,29(1):173-180.
    吴泽民,黄成林,白林波等.(2002).合肥城市森林结构分析研究.林业科学,38(4):7-13.
    吴征镒.(1980).中国植被.北京:科学出版社.
    吴征镒.(1991).中国种子植物属的分布区类型专辑.云南植物研究,增刊Ⅳ:1-135.
    武小钢,蔺银鼎,闫海冰等.(2008).城市绿地降温增湿效应与其结构特征相关性研究.中国生态农业学报,16(6):1469-1473.
    校建民,王成,吴志萍等.(2009).清华大学校园内不同绿地类型空气PM10浓度变化规律.林业科学,45(5):153-156.
    谢涤湘,宋健,魏清泉等.(2004).我国环城绿带建设初探—以珠江三角洲为例.城市规划,4:46-47.
    谢慧玲,李树人,袁秀云等.(1999).植物挥发性分泌物对空气微生物杀灭作用的研究.河南农业大学学报,33(2):127-133.
    谢凝高,郑心舟,谷光灿.(2001).云南石林景观美学价值评价研究.地理研究,20(5):517-526.
    谢绍东,张远航,唐孝炎.(1999).机动车排气污染物扩散模式.环境科学,1:104-109.
    徐德应.(1999).森林与大气.见:周晓峰主编.中国森林与生态环境.北京:中国林业出版社.
    许东新,杨学军,唐东芹等.(2002).上海环城林带森林结构的优化模式.东北林业大学学报,30(3):118-122.
    许明祥,刘国彬,赵允格.(2005).黄土丘陵区侵蚀土壤质量评价.植物营养与肥料学报,11(3):285-293.
    薛薇.(2001).统计分析与SPSS的应用.北京:中国人民大学出版社.
    阎恩荣.(2006).常绿阔叶林退化过程中土壤的养分库动态及植物的养分利用策略.华东师范大学博士论文.
    杨克敌.(2007).环境卫生学(第6版).北京:人民卫生出版社.
    杨淑贞,马原,蒋平等.(2009).浙江西天目山土壤理化性质的海拔梯度格局.华东师范大学学报(自然科学版),6:101-107.
    杨学军,许东新,金为民等.(2000).上海城市森林生态网络系统工程体系建设初探.上海农学院学报,18(2):132-137.
    杨永川,达良俊,季昉.(2003).上海江湾机场植物群落多样性研究.上海环境科学,22(9):615-618.
    杨永川,达良俊,秦祥堃(2002).上海大金山岛种子植物区系的研究.武汉植物学研究,20(6):433-437.
    杨永川,达良俊.(2005).上海乡土树种及其在城市绿化建设中的应用.浙江林学院学报,22(3):286-290.
    杨永川,王娟,达良俊.(2008).城市化进程中上海植被的多样性、空间格局和动态响应(Ⅱ):城市废弃地上海江湾机场的植物组成.华东师范大学学报(自然科学版),4:40-48.
    殷杉,蔡静萍,陈丽萍等.(2007).交通绿化带植物配置对空气颗粒物的净化效益.生态学报,27(11):4590-4595.
    俞孔坚.(1987).论景观概念及其研究发展.北京林业大学学报,9(4):433-439.
    俞孔坚.(1988).自然风景质量评价研究——BIB-LCJ审美评判测量法.北京林业大学学报,10(2):1-11.
    袁玲,王选仓,武彦林等.(2009).夏冬季公路林带降噪效果研究.公路,7:355-358.
    袁玲.(2008).植物结构对交通噪声衰减频谱特性的影响.噪声与振动控制,5:154-156.
    曾庆波.(1999).森林与温度.见:周晓峰主编.中国森林与生态环境.北京:中国林业出版社.
    翟明普,张荣,阎海平.(2003).风景评价在风景林建设中应用研究进展.世界林业研究,16(6):16-19.
    张浩,王祥荣,陈涛等.(2006).城市绿地群落结构完善度评价及生态管理对策:以深圳经济特区为例.复旦学报(自然科学版),45(6):719-725.
    张浩,王祥荣.(2002).城市绿地降低空气中含菌量的生态效应研究.环境污染与防治,24(2):101-103.
    张怀振,姜卫兵.(2005).环城绿带在欧洲的发展与应用.城市发展研究,12(6):34-38.
    张吉祥.(2001).园林植物种植设计.北京:中国建筑工业出版社.
    张金屯.(2004).数量生态学.北京:科学出版社.
    张璐,唐建军,叶宝兴等.(2010).植物群落密度调控研究进展.生态学报,30(2):455-461.
    张美珍,赖明洲.(1993).华东五省一市植物名录.上海:上海科学普及出版社.
    张明丽,胡永红,秦俊.(2006).城市植物群落的减噪效果分析.植物资源与环境学报,15(2):25-28.
    张明丽,秦俊,胡永红.(2008).上海市植物群落降温增湿效果的研究.北京林业大学学报,30(2):39-43.
    张庆费,夏檑.(2008).上海木本植物的区系特征与丰富途径的探讨.中国园林,24(7):11-15.
    张庆费,郑思俊,夏檑等.(2007).上海城市绿地植物群落降噪功能及其影响因子.应用生态学报,18(10):2295-2300.
    张庆费.(1996).浙江天童常绿阔叶林主要演替阶段凋落物与土壤肥力的研究.华东师范大学博士论文.
    张庆费.(1997).城市生物多样性的保护及其在园林绿化中的应用.大自然探索,16(4):98-101.
    张润楚.(2006).多元统计分析.北京:科学出版社.
    张新献,古润泽,李延明等.(1997).居住区绿地对其空气中细菌含量的影响.中国园林,13(2):57-58
    章志攀,俞益武,孟明浩等.(2006).旅游环境中空气负离子的研究进展.浙江林学院学报,23(1):103-108.
    赵靓.(2008).机动车尾气污染及其减排措施.环境科学与管理,23(5):87-88.
    赵娟娟,欧阳志云,郑华等.(2009).北京城区公园的植物种类构成及空间结构.应用生态学报,20(2):298-306.
    赵娟娟,欧阳志云,郑华等.(2010).北京建成区外来植物的种类构成.生物多样性,18(1):19-28.
    郑思俊,张庆费,吴海萍等.(2008).上海外环线绿地群落凋落物对土壤水分物理性质的影响.生态学杂志,27(7):1 122-1126.
    周立晨,施文或,薛文杰等.(2005).上海园林绿地植被结构与温湿度关系浅析.生态学杂志,24(9):1102-1105.
    周琦,季旭华,车生泉.(2005).上海市外环线人工植物群落调查—以2000年段为例.上海交通大学学报(农业科学版),23(4):416-423.
    周新华,姜凤岐,林鹤鸣.(1992).数字图像处理法确定林带疏透度投影误差和影缩误差研究.应用生态学报,3(2):111-119.
    周新华,姜凤歧,朱教君.(1991).数字图像处理法确定林带疏透度随机误差研究.应用生态学报,2(3):193-200.
    周秀佳.(1984).上海的主要自然植被类型及其分布.植物生态学和地植物学丛刊,8(3):189-198.
    朱教君,康宏樟,胡理乐.(2005).应用全天空照片估计林分透光孔隙度(郁闭度).生态学杂志,24(10):1234-1240.
    朱教君.(2003).透光分层疏透度测定及其在次生林结构研究中的应用.应用生态学报,14(8):1229-1233.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700