大肠杆菌中聚羟基脂肪酸酯合成基因的优化和染色体表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚羟基脂肪酸酯(polyhydroxyalkanoates,简称PHA)是一类由微生物合成的高分子聚酯,具有广泛的应用范围和良好的发展前景。利用大肠杆菌合成PHA是该领域的重要研究方向,然而目前仍需依托质粒系统,且短链中长链共聚PHA(SCL-MCL PHA)产量较低。本论文从PHA合成相关基因在大肠杆菌中异源表达的优化以及染色体表达等方面展开研究,旨在通过优化过程提高PHA,特别是SCL-MCL PHA的产量,并以染色体为载体实现稳定的PHA合成,为进一步通过合成生物学手段改造生产菌、降低生产成本打下基础。论文主要研究成果包括:
     通过密码子优化和引入茎环结构等手段,针对来源于施氏假单胞菌Pseudomonas stutzeri1317的广泛底物特异性聚合酶基因phaC2Ps实现异源表达的优化;优化后基因的转录产物稳定性和异源表达水平均得到显著提高,PHB和SCL-MCL PHA的含量分别由细胞干重的11.7wt%和1.79wt%升高至29.7wt%和3.93wt%。同时,所得SCL-MCL PHA的组分更加广泛,单体碳链长度覆盖4-12,细胞干重也随之上升。
     证明不同染色体整合位点和拷贝数对于PHA合成基因异源表达水平的影响。选择13个染色体整合位点,发现其对于基因的异源表达有一定的影响,在yheO(ECK3333)、gltA (ECK0709)、asnB (ECK0662)等转录活跃区域表达量较高;当拷贝数增加时,PHA的含量逐渐上升,当单拷贝整合phbCAB(phbCRe,phbBRe和phbARe)或phaC2AB(优化型phbC2Ps,phbBRe和phbARe)时均无明显PHB积累,而phbCAB增加至11个拷贝时PHB含量可达细胞干重的5.18wt%,phaC2AB增加至12个拷贝时PHB含量达3.01wt%。
     通过表达量较高且对生长影响小的asnB位点,利用Cre-loxP位点特异性重组构建了多拷贝整合phbCAB的重组菌,使PHB含量达34.1wt%,经qPCR测定,其染色体上整合的phbCAB操纵子的拷贝数约为50个左右。实验证明利用这种构建方法可以快速诱导靶基因在任意染色体位点上进行多拷贝整合,并且在不添加抗生素的情况下,重组菌的稳定性高于质粒系统。以大肠杆菌染色体为载体合成PHA的方式克服了质粒系统的固有缺陷,为进一步改造生产菌株的代谢通路,实现利用廉价碳源进行不同种类PHA合成提供了有利的平台。
Polyhydroxyalkanoates (PHAs) are microbial polyesters with variable mechanicalproperties and great potential for industrial applications. Current researches onmetabolic engineered Escherichia coli for PHA production mainly rely on unstableplasmid-based systems, and the yield of short-chain-length and medium-chain-lengthcopolymers SCL-MCL PHA in E. coli is relatively low. This study focused on theoptimization of PhaC2Ps, a PHA synthase with wide substrate specificities, to promoteSCL-MCL PHA production in E. coli, and on the stabilized PHA production throughchromosomal expression of PHA-related genes.
     The PHA synthase PhaC2Psfrom Pseudomonas stutzeri1317along with itsmutants were used for PHA production in E. coli. Codon optimization of the doublemutant PhaC2PsQKST enhanced its protein expression level, and the introduction of ahairpin structure in the5’ untranslated region led to stabilized transcription. Both PHBand SCL-MCL PHA productions were enhanced, along with higher CDW. Compared tothe double mutant, the PHB and SCL-MCL PHA contents using optimized synthasewere increased by2.6-fold and2.2-fold, reaching29.7wt%and3.93wt%, respectively.
     Investigation on13chromosomal integration sites indicated that the expressionlevels of PHA-related genes were higher when integrated into potential active sites oftranscription, such as yheO, gltA and asnB. The copy number of the genes also affectedtheir expression levels. No PHB accumulation was observed when one copy of phbCABor phaC2AB was integrated, while the presence of11copies of phbCAB or12copies ofphaC2AB led to PHB production of5.18wt%and3.01wt%, respectively.
     Using Cre-loxP recombination system, a recombinant E. coli strain with about50copies of phbCAB on its chromosome was constructed in asnB site, which benefitedgene expression with little influence on cell growth. The strain could accumulate PHBup to34.1wt%, equivalent to a moderate-copy-number plasmid system. The strain wasproven to be more stable than plasmid-based system in PHB production, indicating thatthis method can be used to engineer E. coli for industrial PHA production.
引文
[1] Anderson A J, Haywood G W, Dawes E A. Biosynthesis and composition of bacterialpoly(hydroxyalkanoates). Int J Biol Macromol,1990,12(2):102-105.
    [2] Steinbüchel A, Valentin H E. Diversity of bacterial polyhydroxyalkanoic acids. FEMSMicrobiol Lett,1995,128(3):219-228.
    [3] Gao X, Chen J C, Wu Q, et al. Polyhydroxyalkanoates as a source of chemicals, polymers,and biofuels. Curr Opin Biotech,2011,22(6):768-774.
    [4] Tan D, Xue Y S, Aibaidula G, et al. Unsterile and continuous production ofpolyhydroxybutyrate by Halomonas TD01. Bioresour Technol,2011,102(17):8130-8136.
    [5] Sudesh K, Abe H, Doi Y. Synthesis, structure and properties of polyhydroxyalkanoates:biological polyesters. Prog Polym Sci,2000,25(10):1503-1555.
    [6] Qiu Y Z, Han J, Chen G Q. Metabolic engineering of Aeromonas hydrophila for theenhanced production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). ApplMicrobiol Biotechnol,2006,69(5):537-542.
    [7] Ouyang S P, Han J, Qiu Y Z, et al. Poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)production in recombinant Aeromonas hydrophila4AK4harboring phbA, phbB and vgbgenes. Macromol Symp,2005,224:21-34.
    [8] Hu D, Chung A-L, Wu L P, et al. Biosynthesis and characterization ofpolyhydroxyalkanoate block copolymer P3HB-b-P4HB. Biomacromolecules,2011,12(9):3166-3173.
    [9] Tripathi L, Wu L P, Chen J C, et al. Synthesis of diblock copolymer poly-3-hydroxybutyrate-block-poly-3-hydroxyhexanoate [PHB-b-PHHx] by a β-oxidationweakened Pseudomonas putida KT2442. Microb Cell Fact,2012,11(1):44.
    [10] Iadevaia S, Mantzaris N V. Synthesis of PHBV block copolymers driven by an oscillatorygenetic network. J Biotechnol,2007,128(3):615-637.
    [11] Yamada M, Matsumoto K i, Nakai T, et al. Microbial production of lactate-enrichedpoly[(R)-lactate-co-(R)-3-hydroxybutyrate] with novel thermal properties.Biomacromolecules,2009,10(4):677-681.
    [12] Jung Y K, Kim T Y, Park S J, et al. Metabolic engineering of Escherichia coli for theproduction of polylactic acid and its copolymers. Biotechnol Bioeng,2010,105(1):161-171.
    [13] Shozui F, Matsumoto K i, Motohashi R, et al. Establishment of a metabolic pathway tointroduce the3-hydroxyhexanoate unit into LA-based polyesters via a reverse reaction ofβ-oxidation in Escherichia coli LS5218. Polym Degrad Stabil,2010,95(8):1340-1344.
    [14] Shozui F, Matsumoto K i, Nakai T, et al. Biosynthesis of novel terpolymerspoly(lactate-co-3-hydroxybutyrate-co-3-hydroxyvalerate)s in lactate-overproducingmutant Escherichia coli JW0885by feeding propionate as a precursor of3-hydroxyvalerate. Appl Microbiol Biotechnol,2010,85(4):949-954.
    [15] Yang T H, Kim T W, Kang H O, et al. Biosynthesis of polylactic acid and its copolymersusing evolved propionate CoA transferase and PHA synthase. Biotechnol Bioeng,2010,105(1):150-160.
    [16] Hazer B, Steinbüchel A. Increased diversification of polyhydroxyalkanoates bymodification reactions for industrial and medical applications. Appl Microbiol Biotechnol,2007,74(1):1-12.
    [17] Steinbüchel A, Lütke-Eversloh T. Metabolic engineering and pathway construction forbiotechnological production of relevant polyhydroxyalkanoates in microorganisms.Biochem Eng J,2003,16(2):81-96.
    [18] Nomura C T, Tanaka T, Eguen T E, et al. FabG mediates polyhydroxyalkanoateproduction from both related and nonrelated carbon sources in recombinant Escherichiacoli LS5218. Biotechnol Progr,2008,24(2):342-351.
    [19] Philip S, Keshavarz T, Roy I. Polyhydroxyalkanoates: biodegradable polymers with arange of applications. J Chem Technol Biot,2007,82(3):233-247.
    [20] Chen G Q. A microbial polyhydroxyalkanoates (PHA) based bio-and materials industry.Chem Soc Rev,2009,38(8):2434-2446.
    [21] Anderson A J, Dawes E A. Occurrence, metabolism, metabolic role, and industrial usesof bacterial polyhydroxyalkanoates. Microbiol Rev,1990,54(4):450-472.
    [22] Doi Y, Kitamura S, Abe H. Microbial synthesis and characterization of poly-(3-hydroxybutyrate-co-hydroxyhexanoate). Macromolecules,1995,28(14):4822-4828.
    [23] Gross R A, DeMello C, Lenz R W, et al. The biosynthesis and characterization ofpoly(β-hydroxyalkanoates) produced by Pseudomonas oleovorans. Macromolecules,1989,22(3):1106-1115.
    [24] Eggink G, de Waard P, Huijberts G N. Formation of novel poly(hydroxyalkanoates) fromlong-chain fatty acids. Can J Microbiol,1995,41(13):14-21.
    [25] Loh X J, Goh S H, Li J. New biodegradable thermogelling copolymers having very lowgelation concentrations. Biomacromolecules,2007,8(2):585-593.
    [26] Wei D X, Chen C B, Fang G, et al. Application of polyhydroxyalkanoate binding proteinPhaP as a bio-surfactant. Appl Microbiol Biotechnol,2011,91(4):1037-1047.
    [27] Wang Y, Bian Y Z, Wu Q, et al. Evaluation of three-dimensional scaffolds prepared frompoly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytesfor cartilage repair in rabbits. Biomaterials,2008,29(19):2858-2868.
    [28] Bian Y Z, Wang Y, Aibaidoula G, et al. Evaluation of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) conduits for peripheral nerve regeneration. Biomaterials,2009,30(2):217-225.
    [29] Wang S Y, Wang Z, Liu M M, et al. Properties of a new gasoline oxygenate blendcomponent:3-hydroxybutyrate methyl ester produced from bacterial poly-3-hydroxybutyrate. Biomass Bioenerg,2010,34(8):1216-1222.
    [30] Zhao Y H, Li H M, Qin L F, et al. Disruption of the polyhydroxyalkanoate synthase genein Aeromonas hydrophila reduces its survival ability under stress conditions. FEMSMicrobiol Lett,2007,276(1):34-41.
    [31] Rehm B H, Steinbüchel A. Biochemical and genetic analysis of PHA synthases and otherproteins required for PHA synthesis. Int J Biol Macromol,1999,25(1):3-19.
    [32] Spiekermann P, Rehm B H, Kalscheuer R, et al. A sensitive, viable-colony stainingmethod using Nile red for direct screening of bacteria that accumulatepolyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol,1999,171(2):73-80.
    [33] Tsuge T, Fukui T, Matsusaki H, et al. Molecular cloning of two (R)-specific enoyl-CoAhydratase genes from Pseudomonas aeruginosa and their use for polyhydroxyalkanoatesynthesis. FEMS Microbiol Lett,2006,184(2):193-198.
    [34] Fukui T, Doi Y. Cloning and analysis of the poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biosynthesis genes of Aeromonas caviae. J Bacteriol,1997,179(15):4821-4830.
    [35] Fukui T, Shiomi N, Doi Y. Expression and characterization of (R)-specific enoylcoenzyme A hydratase involved in polyhydroxyalkanoate biosynthesis by Aeromonascaviae. J Bacteriol,1998,180(3):667-673.
    [36] Rehm B H, Krüger N, Steinbüchel A. A new metabolic link between fatty acid de novosynthesis and polyhydroxyalkanoic acid synthesis. J Biol Chem,1998,273(37):24044-24051.
    [37] Peoples O P, Sinskey A J. Poly-β-hydroxybutyrate (PHB) biosynthesis in Alcaligeneseutrophus H16. Identification and characterization of the PHB polymerase gene (phbC). JBiol Chem,1989,264(26):15298-15303.
    [38] Peoples O P, Sinskey A J. Poly-β-hydroxybutyrate biosynthesis in Alcaligenes eutrophusH16. Characterization of the genes encoding β-ketothiolase and acetoacetyl-CoAreductase. J Biol Chem,1989,264(26):15293-15297.
    [39] Reinecke F, Steinbuchel A. Ralstonia eutropha strain H16as model organism for PHAmetabolism and for biotechnological production of technically interesting biopolymers. JMol Microbiol Biotechnol,2009,16(1-2):91-108.
    [40] Slater S, Houmiel K L, Tran M, et al. Multiple β-ketothiolases mediatepoly(β-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol,1998,180(8):1979-1987.
    [41] Tsuge T, Taguchi K, Seiichi T, et al. Molecular characterization and properties of(R)-specific enoyl-CoA hydratases from Pseudomonas aeruginosa: metabolic tools forsynthesis of polyhydroxyalkanoates via fatty acid β-oxidation. Int J Biol Macromol,2003,31(4-5):195-205.
    [42] Lu X Y, Zhang W J, Jian J, et al. Molecular cloning and functional analysis of twopolyhydroxyalkanoate synthases from two strains of Aeromonas hydrophila spp. FEMSMicrobiol Lett,2005,243(1):149-155.
    [43] Tappel R C, Wang Q, Nomura C T. Precise control of repeating unit composition inbiodegradable poly(3-hydroxyalkanoate) polymers synthesized by Escherichia coli. JBiosci Bioeng,2012,113(4):480-486.
    [44] Wang Q, Tappel R C, Zhu C, et al. Development of a new strategy for production ofmedium-chain-length polyhydroxyalkanoates by recombinant Escherichia coli viainexpensive non-fatty acid feedstocks. Appl Environ Microb,2012,78(2):519-527.
    [45] Matsumoto K, Matsusaki H, Taguchi S, et al. Cloning and characterization of thePseudomonas sp.61-3phaG gene involved in polyhydroxyalkanoate biosynthesis.Biomacromolecules,2001,2(1):142-147.
    [46] Hoffmann N, Steinbüchel A, Rehm B H. The Pseudomonas aeruginosa phaG geneproduct is involved in the synthesis of polyhydroxyalkanoic acid consisting ofmedium-chain-length constituents from non-related carbon sources. FEMS Microbiol Lett,2000,184(2):253-259.
    [47] Hoffmann N, Steinbüchel A, Rehm B. Homologous functional expression of crypticphaG from Pseudomonas oleovorans establishes the transacylase-mediatedpolyhydroxyalkanoate biosynthetic pathway. Appl Microbiol Biotechnol,2000,54(5):665-670.
    [48] Doi Y, Segawa A, Nakamura S, et al. Production of biodegradable copolyesters byAlcaligenes eutrophus.//E.A. Dawes. Dordrecht: Kluwer Academic Publishers.1990:37-48.
    [49] Rehm B H. Polyester synthases: natural catalysts for plastics. Biochem J,2003,376(Pt1):15.
    [50] Qi Q S, Rehm B H. Polyhydroxybutyrate biosynthesis in Caulobacter crescentus:molecular characterization of the polyhydroxybutyrate synthase. Microbiology,2001,147(12):3353-3358.
    [51] Yuan W, Jia Y, Tian J M, et al. Class I and III polyhydroxyalkanoate synthases fromRalstonia eutropha and Allochromatium vinosum: characterization and substratespecificity studies. Arch Biochem Biophys,2001,394(1):87-98.
    [52] Dennis D, McCoy M, Stangl A, et al. Formation of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) by PHA synthase from Ralstonia eutropha. J Biotechnol,1998,64(2):177-186.
    [53] Antonio R V, Steinbüchel A, Rehm B H. Analysis of in vivo substrate specificity of thePHA synthase from Ralstonia eutropha: formation of novel copolyesters in recombinantEscherichia coli. FEMS Microbiol Lett,2000,182(1):111-117.
    [54] Amara A, Steinbüchel A, Rehm B. In vivo evolution of the Aeromonas punctatapolyhydroxyalkanoate (PHA) synthase: isolation and characterization of modified PHAsynthases with enhanced activity. Appl Microbiol Biotechnol,2002,59(4):477-482.
    [55] Kichise T, Taguchi S. Enhanced accumulation and changed monomer composition inpolyhydroxyalkanoate (PHA) copolyester by in vitro evolution of Aeromonas caviaePHA synthase. Appl Environ Microb,2002,68(5):2411-2419.
    [56] Rehm B H, Antonio R V, Spiekermann P, et al. Molecular characterization of thepoly(3-hydroxybutyrate)(PHB) synthase from Ralstonia eutropha: in vitro evolution,site-specific mutagenesis and development of a PHB synthase protein model.BBA-Protein Struct Mol Enzymol,2002,1594(1):178-190.
    [57] Amara A A, Rehm B H. Replacement of the catalytic nucleophile cysteine-296by serinein class II polyhydroxyalkanoate synthase from Pseudomonas aeruginosa-mediatedsynthesis of a new polyester: identification of catalytic residues. Biochem J,2003,374(Pt2):413.
    [58] Takase K, Taguchi S. Enhanced synthesis of poly(3-hydroxybutyrate) in recombinantEscherichia coli by means of error-prone PCR mutagenesis, saturation mutagenesis, andin vitro recombination of the type II polyhydroxyalkanoate synthase gene. J Biochem,2003,133(1):139-145.
    [59] Takase K, Ken'ichiro Matsumoto, Taguchi S, et al. Alteration of substrate chain-lengthspecificity of type II synthase for polyhydroxyalkanoate biosynthesis by in vitro evolution:in vivo and in vitro enzyme assays. Biomacromolecules,2004,5(2):480-485.
    [60] Sheu D S, Lee C Y. Altering the substrate specificity of polyhydroxyalkanoate synthase1derived from Pseudomonas putida GPo1by localized semirandom mutagenesis. JBacteriol,2004,186(13):4177-4184.
    [61] Matsumoto K, Aoki E, Takase K, et al. In vivo and in vitro characterization of Ser477Xmutations in polyhydroxyalkanoate (PHA) synthase1from Pseudomonas sp.61-3:effects of beneficial mutations on enzymatic activity, substrate specificity, and molecularweight of PHA. Biomacromolecules,2006,7(8):2436-2442.
    [62] Matsusaki H, Abe H, Doi Y. Biosynthesis and properties of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant strains of Pseudomonas sp.61-3.Biomacromolecules,2000,1(1):17-22.
    [63] Matsusaki H, Abe H, Taguchi K, et al. Biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxyalkanoates) by recombinant bacteria expressing the PHA synthase gene phaC1from Pseudomonas sp.61-3. Appl Microbiol Biotechnol,2000,53(4):401-409.
    [64] Kato M, Bao H J, Kang C-K, et al. Production of a novel copolyester of3-hydroxybutyricacid and medium-chain-length3-hydroxyalkanoic acids by Pseudomonas sp.61-3fromsugars. Appl Microbiol Biotechnol,1996,45(3):363-370.
    [65] Liebergesell M, Hustede E, Timm A, et al. Formation of poly(3-hydroxyalkanoates) byphototrophic and chemolithotrophic bacteria. Arch Microbiol,1991,155(5):415-421.
    [66] Chen J Y, Song G, Chen G Q. A lower specificity PhaC2synthase from Pseudomonasstutzeri catalyses the production of copolyesters consisting of short-chain-length andmedium-chain-length3-hydroxyalkanoates. Antonie van Leeuwenhoek,2006,89(1):157-167.
    [67] Liebergesell M, Rahalkar S, Steinbüchel A. Analysis of the Thiocapsa pfennigiipolyhydroxyalkanoate synthase: subcloning, molecular characterization and generation ofhybrid synthases with the corresponding Chromatium vinosum enzyme. Appl MicrobiolBiotechnol,2000,54(2):186-194.
    [68] Budde C F, Riedel S L, Willis L B, et al. Production of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) from plant oil by engineered Ralstonia eutropha strains. ApplEnviron Microb,2011,77(9):2847-2854.
    [69] Chee J Y, Lau N S, Samian M R, et al. Expression of Aeromonas caviaepolyhydroxyalkanoate synthase gene in Burkholderia sp. USM (JCM15050) enables thebiosynthesis of SCL-MCL PHA from palm oil products. J Appl Microbiol,2012.
    [70] Nomura C T, Taguchi K, Gan Z, et al. Expression of3-ketoacyl-acyl carrier proteinreductase (fabG) genes enhances production of polyhydroxyalkanoate copolymer fromglucose in recombinant Escherichia coli JM109. Appl Environ Microb,2005,71(8):4297-4306.
    [71]陈晶瑜.微生物法合成短链与中长链单体的聚羟基脂肪酸酯共聚物[博士学位论文].北京:清华大学生物科学与技术系,2006.
    [72] Li Q A, Chen Q A, Li M J, et al. Pathway engineering results the alteredpolyhydroxyalkanoates composition in recombinant Escherichia coli. New Biotech,2011,28(1):92-95.
    [73] Waegeman H, Soetaert W. Increasing recombinant protein production in Escherichia colithrough metabolic and genetic engineering. J Ind Microbiol Biot,2011,38(12):1891-1910.
    [74] Yu C, Cao Y J, Zou H B, et al. Metabolic engineering of Escherichia coli forbiotechnological production of high-value organic acids and alcohols. Appl MicrobiolBiotechnol,2011,89(3):573-583.
    [75] Handke P, Lynch S A, Gill R T. Application and engineering of fatty acid biosynthesis inEscherichia coli for advanced fuels and chemicals. Metab Eng,2010,13(1):28-37.
    [76] Clomburg J M, Gonzalez R. Biofuel production in Escherichia coli: the role of metabolicengineering and synthetic biology. Appl Microbiol Biotechnol,2010,86(2):419-434.
    [77] Li Z J, Shi Z Y, Jian J, et al. Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate)from unrelated carbon sources by metabolically engineered Escherichia coli. Metab Eng,2010,12(4):352-359.
    [78] Li Z J, Jian J, Wei X X, et al. Microbial production of meso-2,3-butanediol bymetabolically engineered Escherichia coli under low oxygen condition. Appl MicrobiolBiotechnol,2010,87(6):2001-2009.
    [79] Yu H M, Yin J, Li H Q, et al. Construction and selection of the novel recombinantEscherichia coli strain for poly(β-hydroxybutyrate) production. J Biosci Bioeng,2000,89(4):307-311.
    [80] Kobayashi M, Kurusu Y, Yukawa H. High-expression of a target gene and high-stabilityof the plasmid. Appl Biochem Biotech,1991,27(2):145-162.
    [81] Shibui T, Uchida M, Teranishi Y. A new hybrid promoter and its expression vector inEscherichia coli. Agric Biol Chem,1988,52(4):983-988.
    [82] Shibui T, Uchida M, Nagahari K, et al. High-level secretion of human cardiodilatin byEscherichia coli. Agric Biol Chem,1988,52(5):1145-1150.
    [83] Fortineau N, Trieu-Cuot P, Gaillot O, et al. Optimization of green fluorescent proteinexpression vectors for in vitro and in vivo detection of Listeria monocytogenes. ResMicrobiol,2000,151(5):353-360.
    [84] Arraiano C M, Andrade J M, Domingues S, et al. The critical role of RNA processing anddegradation in the control of gene expression. FEMS Microbiol Rev,2010,34(5):883-923.
    [85] Smolke C D, Keasling J D. Effect of copy number and mRNA processing andstabilization on transcript and protein levels from an engineered dual-gene operon.Biotechnol Bioeng,2002,78(4):412-424.
    [86] Chen H, Bjerknes M, Kumar R, et al. Determination of the optimal aligned spacingbetween the Shine-Dalgarno sequence and the translation initiation codon of Escherichiacoli mRNAs. Nucleic Acids Res,1994,22(23):4953-4957.
    [87] Salis H M, Mirsky E A, Voigt C A. Automated design of synthetic ribosome binding sitesto control protein expression. Nat Biotechnol,2009,27(10):946-950.
    [88] Burgess-Brown N A, Sharma S, Sobott F, et al. Codon optimization can improveexpression of human genes in Escherichia coli: a multi-gene study. Protein Expres Purif,2008,59(1):94-102.
    [89] Gao Z W, Li Z F, Zhang Y H, et al. High-level expression of the Penicillium notatumglucose oxidase gene in Pichia pastoris using codon optimization. Biotechnol Lett,2012:1-8.
    [90] Menzella H G. Comparison of two codon optimization strategies to enhance recombinantprotein production in Escherichia coli. Microb Cell Fact,2011,10(1):15.
    [91] Buell G, Schulz M F, Selzer G, et al. Optimizing the expression in E. coli of a syntheticgene encoding somatomedin-C (IGF-I). Nucleic Acids Res,1985,13(6):1923-1938.
    [92] Tian H, Liu C, Gao X D, et al. Optimization of auto-induction medium for G-CSFproduction by Escherichia coli using artificial neural networks coupled with geneticalgorithm. World J Microb Biot,2013,29(3):505-513.
    [93] Liu S W, Liang Y, Liu Q, et al. Development of a two-stage feeding strategy based on thekind and level of feeding nutrients for improving fed-batch production of L-threonine byEscherichia coli. Appl Microbiol Biotechnol,2012:1-11.
    [94] Grindley N D, Whiteson K L, Rice P A. Mechanisms of site-specific recombination.Annu Rev Biochem,2006,75:567-605.
    [95] Court D L, Sawitzke J A, Thomason L C. Genetic engineering using homologousrecombination. Annu Rev Genet,2002,36(1):361-388.
    [96] Muyrers J P, Zhang Y M, Stewart A F. Techniques: recombinogenic engineering-newoptions for cloning and manipulating DNA. Trends Biochem Sci,2001,26(5):325-331.
    [97] Kowalczykowski S C, Dixon D A, Eggleston A K, et al. Biochemistry of homologousrecombination in Escherichia coli. Microbiol Rev,1994,58(3):401.
    [98] Kuzminov A. Recombinational repair of DNA damage in Escherichia coli andbacteriophage λ. Microbiol Mol Biol R,1999,63(4):751-813.
    [99] Yu D G, Ellis H M, Lee E C, et al. An efficient recombination system for chromosomeengineering in Escherichia coli. Proc Natl Acad Sci U S A,2000,97(11):5978-5983.
    [100] Murphy K C. λ Gam protein inhibits the helicase and χ-stimulated recombinationactivities of Escherichia coli RecBCD enzyme. J Bacteriol,1991,173(18):5808-5821.
    [101] Datsenko K A, Wanner B L. One-step inactivation of chromosomal genes in Escherichiacoli K-12using PCR products. Proc Natl Acad Sci U S A,2000,97(12):6640-6645.
    [102] Marshall Stark W, Boocock M R, Sherratt D J. Catalysis by site-specific recombinases.Trends Genet,1992,8(12):432-439.
    [103] Haldimann A, Wanner B L. Conditional-replication, integration, excision, and retrievalplasmid-host systems for gene structure-function studies of bacteria. J Bacteriol,2001,183(21):6384-6393.
    [104] Minaeva N I, Gak E R, Zimenkov D V, et al. Dual-In/Out strategy for genes integrationinto bacterial chromosome: a novel approach to step-by-step construction of plasmid-lessmarker-less recombinant E. coli strains with predesigned genome structure. BMCBiotechnol,2008,8(1):63.
    [105] Ghosh K, Van Duyne G D. Cre-loxP biochemistry. Methods,2002,28(3):374-383.
    [106] Hartley J L, Donelson J E. Nucleotide sequence of the yeast plasmid. Nature,1980,286(5776):860.
    [107] Sauer B. Inducible gene targeting in mice using the cre/lox system. Methods,1998,14(4):381-392.
    [108] Sauer B. Site-specific recombination: developments and applications. Curr Opin Biotech,1994,5(5):521-527.
    [109] Yu B J, Sung B H, Koob M D, et al. Minimization of the Escherichia coli genome using aTn5-targeted Cre/loxP excision system. Nat Biotechnol,2002,20(10):1018-1023.
    [110] Gavériaux-Ruff C, Kieffer B L. Conditional gene targeting in the mouse nervous system:insights into brain function and diseases. Pharmacol Therapeut,2007,113(3):619-634.
    [111] Gates C A, Cox M M. FLP recombinase is an enzyme. Proc Natl Acad Sci U S A,1988,85(13):4628-4632.
    [112] Friehs K. Plasmid copy number and plasmid stability. Adv Biochem Eng Biotechnol,2004,86:47-82.
    [113] Chiang C J, Chen P T, Chao Y P. Replicon-free and markerless methods for genomicinsertion of DNAs in phage attachment sites and controlled expression of chromosomalgenes in Escherichia coli. Biotechnol Bioeng,2008,101(5):985-995.
    [114] Sukhija K, Pyne M, Ali S, et al. Developing an extended genomic engineering approachbased on recombineering to knock-in heterologous genes to Escherichia coli genome.Mol Biotechnol,2012,51(2):109-118.
    [115] Lemuth K, Steuer K, Albermann C. Engineering of a plasmid-free Escherichia coli strainfor improved in vivo biosynthesis of astaxanthin. Microb Cell Fact,2011,10:29-29.
    [116] Ghanegaonkar S, Conrad J, Beifuss U, et al. Towards the in vivo production oftocotrienol compounds: engineering of a plasmid-free Escherichia coli strain for theheterologous synthesis of2-methyl-6-geranylgeranyl benzoquinol. J Biotechnol,2012.
    [117] Striedner G, Pfaffenzeller I, Markus L, et al. Plasmid-free T7-based Escherichia coliexpression systems. Biotechnol Bioeng,2010,105(4):786-794.
    [118] Horng Y T, Chien C C, Wei Y H, et al. Functional cis-expression of phaCAB genes forpoly(3-hydroxybutyrate) production by Escherichia coli. Lett Appl Microbiol,2011,52(5):475-483.
    [119] Tyo K E, Ajikumar P K, Stephanopoulos G. Stabilized gene duplication enableslong-term selection-free heterologous pathway expression. Nat Biotechnol,2009,27(8):760-765.
    [120] Chen J Y, Liu T, Zheng Z, et al. Polyhydroxyalkanoate synthases PhaC1and PhaC2fromPseudomonas stutzeri1317had different substrate specificities. FEMS Microbiol Lett,2006,234(2):231-237.
    [121] Nomura C T, Taguchi K, Taguchi S, et al. Coexpression of genetically engineered3-ketoacyl-ACP synthase III (fabH) and polyhydroxyalkanoate synthase (phaC) genesleads to short-chain-length-medium-chain-length polyhydroxyalkanoate copolymerproduction from glucose in Escherichia coli JM109. Appl Environ Microb,2004,70(2):999-1007.
    [122]袁小茜.大肠杆菌内多基因循环重组系统的开发和应用[硕士学位论文].北京:清华大学生命科学学院,2012.
    [123] Spratt S K, Ginsburgh C L, Nunn W D. Isolation and genetic characterization ofEscherichia coli mutants defective in propionate metabolism. J Bacteriol,1981,146(3):1166-1169.
    [124]李正军.重组大肠杆菌生产聚羟基丁酸酯的代谢工程改造[博士学位论文].北京:清华大学生命科学学院,2010.
    [125]沈晓文.嗜水气单胞菌合成聚羟基脂肪酸酯PHA的研究[博士学位论文].北京:清华大学生命科学学院,2011.
    [126]丘远征.聚羟基丁酸羟基己酸酯生物合成途径的基因工程改造[博士学位论文].北京:清华大学生物科学与技术系,2004.
    [127] Schmittgen T D, Livak K J. Analyzing real-time PCR data by the comparative CTmethod.Nat Protoc,2008,3(6):1101-1108.
    [128] Chen J, Zhang L, Chen J, et al. Biosynthesis and characterization ofpolyhydroxyalkanoate copolyesters in Ralstonia eutropha PHB-4harboring alow-substrate-specificity PHA synthase PhaC2Psfrom Pseudomonas stutzeri1317.Chinese J Chem Eng,2006,15(3):391-396.
    [129] Shen X W, Shi Z Y, Song G, et al. Engineering of polyhydroxyalkanoate (PHA) synthasePhaC2Psof Pseudomonas stutzeri via site-specific mutation for efficient production ofPHA copolymers. Appl Microbiol Biotechnol,2011,91(3):655-665.
    [130] Liu F, Jian J, Shen X W, et al. Metabolic engineering of Aeromonas hydrophila4AK4for production of copolymers of3-hydroxybutyrate and medium-chain-length3-hydroxyalkanoate. Bioresour Technol,2011,102(17):8123-8129.
    [131] Puigbò P, Romeu A, Garcia-Vallvé S. HEG-DB: a database of predicted highly expressedgenes in prokaryotic complete genomes under translational selection. Nucleic Acids Res,2008,36(suppl1):D524-D527.
    [132] Puigbò P, Guzmán E, Romeu A, et al. OPTIMIZER: a web server for optimizing thecodon usage of DNA sequences. Nucleic Acids Res,2007,35(suppl2):W126-W131.
    [133] Carrier T A, Keasling J. Controlling messenger RNA stability in bacteria: strategies forengineering gene expression. Biotechnol Progr,1997,13(6):699-708.
    [134] Carrier T A, Keasling J. Library of synthetic5′secondary structures to manipulate mRNAstability in Escherichia coli. Biotechnol Progr,1999,15(1):58-64.
    [135] Albermann C, Trachtmann N, Sprenger G A. A simple and reliable method to conductand monitor expression cassette integration into the Escherichia coli chromosome.Biotechnol J,2010,5(1):32-38.
    [136] Yuan L Z, Rouvière P E, LaRossa R A, et al. Chromosomal promoter replacement of theisoprenoid pathway for enhancing carotenoid production in E. coli. Metab Eng,2006,8(1):79-90.
    [137] Smith H O, Hutchison III C A, Pfannkoch C, et al. Generating a synthetic genome bywhole genome assembly: φX174bacteriophage from synthetic oligonucleotides. ProcNatl Acad Sci U S A,2003,100(26):15440-15445.
    [138] Pósfai G, Plunkett III G, Fehér T, et al. Emergent properties of reduced-genomeEscherichia coli. Science,2006,312(5776):1044-1046.
    [139] Lartigue C, Glass J I, Alperovich N, et al. Genome transplantation in bacteria: changingone species to another. Science,2007,317(5838):632-638.
    [140] Gibson D G, Benders G A, Andrews-Pfannkoch C, et al. Complete chemical synthesis,assembly, and cloning of a Mycoplasma genitalium genome. Sci Signal,2008,319(5867):1215.
    [141] Gibson D G, Glass J I, Lartigue C, et al. Creation of a bacterial cell controlled by achemically synthesized genome. Science,2010,329(5987):52-56.
    [142] Ro D-K, Paradise E M, Ouellet M, et al. Production of the antimalarial drug precursorartemisinic acid in engineered yeast. Nature,2006,440(7086):940-943.
    [143] Anthony J R, Anthony L C, Nowroozi F, et al. Optimization of the mevalonate-basedisoprenoid biosynthetic pathway in Escherichia coli for production of the anti-malarialdrug precursor amorpha-4,11-diene. Metab Eng,2009,11(1):13-19.
    [144] Nakagawa A, Minami H, Kim J-S, et al. A bacterial platform for fermentative productionof plant alkaloids. Nat Commun,2011,2:326.
    [145] Ajikumar P K, Xiao W-H, Tyo K E, et al. Isoprenoid pathway optimization for Taxolprecursor overproduction in Escherichia coli. Science,2010,330(6000):70-74.
    [146] Yim H, Haselbeck R, Niu W, et al. Metabolic engineering of Escherichia coli for directproduction of1,4-butanediol. Nat Chem Biol,2011,7(7):445-452.
    [147] Richardson S M, Wheelan S J, Yarrington R M, et al. GeneDesign: rapid, automateddesign of multikilobase synthetic genes. Genome Res,2006,16(4):550-556.
    [148] Wu G, Bashir-Bello N, Freeland S J. The synthetic gene designer: a flexible web platformto explore sequence manipulation for heterologous expression. Protein Expres Purif,2006,47(2):441-445.
    [149] Cai Y, Sun J, Wang J, et al. Optimizing the codon usage of synthetic gene with QPSOalgorithm. J Theor Biol,2008,254(1):123-127.
    [150] Quan J, Saaem I, Tang N, et al. Parallel on-chip gene synthesis and application tooptimization of protein expression. Nat Biotechnol,2011,29(5):449-452.
    [151] Liu C C, Qi L, Yanofsky C, et al. Regulation of transcription by unnatural amino acids.Nat Biotechnol,2011,29(2):164-168.
    [152] Wang B, Kitney R I, Joly N, et al. Engineering modular and orthogonal genetic logicgates for robust digital-like synthetic biology. Nat Commun,2011,2:508.
    [153] Taniguchi Y, Choi P J, Li G-W, et al. Quantifying E. coli proteome and transcriptomewith single-molecule sensitivity in single cells. Science,2010,329(5991):533-538.
    [154] Bernstein J A, Khodursky A B, Lin P-H, et al. Global analysis of mRNA decay andabundance in Escherichia coli at single-gene resolution using two-color fluorescent DNAmicroarrays. Proc Natl Acad Sci U S A,2002,99(15):9697-9702.
    [155] Zheng Z, Zhang M-J, Zhang G, et al. Production of3-hydroxydecanoic acid byrecombinant Escherichia coli HB101harboring phaG gene. Antonie van Leeuwenhoek,2004,85(2):93-101.
    [156] Rehm B H, Mitsky T A, Steinbüchel A. Role of fatty acid de novo biosynthesis inpolyhydroxyalkanoic acid (PHA) and rhamnolipid synthesis by Pseudomonads:establishment of the transacylase (PhaG)-mediated pathway for PHA biosynthesis inEscherichia coli. Appl Environ Microb,2001,67(7):3102-3109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700