转Bt双价基因甘蓝的抗虫性及遗传稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结球甘蓝简称甘蓝,是十字花科芸薹属的一种重要蔬菜。近年来,甘蓝上的虫害日趋严重,尤其是鳞翅目的小菜蛾和菜青虫等危害最为严重。培育抗虫品种是防治害虫最理想的方法,但在甘蓝类蔬菜中缺乏抗虫种质资源,采用基因工程技术将外源抗虫基因转入甘蓝,可为育种提供有效的抗虫材料。
     Bt crylIa8和cry1Ba3均是具有自主知识产权的新型杀虫蛋白基因,其编码蛋白对小菜蛾等鳞翅目害虫具有高毒力,且Cry1Ia8. Cry1Ba3与生产上常用的Cry1A类蛋白之间没有交互抗性。利用cry1Ia8和cry1Ba3进行转双价基因甘蓝的研制,不但可以提高甘蓝的抗虫性,还可以降低害虫快速产生抗性的风险。此外,在获得转抗虫基因甘蓝材料后,研究转基因甘蓝的遗传稳定性、抗虫性和安全性,可为甘蓝抗虫育种提供理论指导,加速转基因甘蓝在实践中的应用。
     本研究采用农杆菌介导法将cry1Ia8和cry1Ba3基因同时导入甘蓝高代自交系,然后对转基因甘蓝的遗传稳定性、抗虫性和安全性等方面进行了研究,主要结果如下:
     1.转cry1Ia8-cry1Ba3双价基因甘蓝纯系的获得
     以重组质粒表达载体pCSIaBaN(含有cry1Ia8和cry1Ba3)转化甘蓝,共获得53株卡那霉素抗性植株,其中的33株在RNA和蛋白质水平均得到了表达;转双价基因植株在离体条件下对敏感小菜蛾和CrylAc抗性小菜蛾均具有很强的抗性;通过连续多代自交和筛选获得9个转基因甘蓝纯系,并利用其配制了杂交组合。
     2.转crylIa8-cry1Ba3双价基因甘蓝的遗传稳定性分析
     在获得T0、T1、T2、T3四个世代转cry1Ia8-crylBa3双价基因植株的基础上,对外源基因的遗传稳定性进行了研究:T0-1、T0-9、T0-13、T0-17等4个单拷贝转化植株外源目的基因的分离规律均符合单基因显性遗传;Cry1Ia8、Cry1Ba3蛋白含量在同一转化事件的不同世代间均没有显著性差异;外源基因的导入未对转基因甘蓝纯合株系及其杂交后代的株高、开展度、外叶数、球高、球宽、中心柱长和单球重等主要农艺性状产生影响。
     3.转基因甘蓝的抗虫性评价
     通过网室和田间抗虫性的鉴定、田间主要害虫种类与数量的调查、田间主要害虫离体生物活性的测定,表明转双价基因甘蓝对小菜蛾和菜青虫具有极强的抗性,而对甘蓝夜蛾和甜菜夜蛾没有明显抗性。
     4.转基因甘蓝花粉和高浓度的Bt蛋白对蜜蜂幼虫存活率的影响
     将转cry1Ia8-crylBa3双价基因甘蓝花粉、Cry1Ia8蛋白(3000ng/ml)及Cry1Ba3蛋白(3000ng/ml)直接饲喂意大利蜜蜂的工蜂幼虫,20天后,与取食对照甘蓝花粉、杂花粉相比,取食转基因甘蓝花粉和Bt蛋白的蜜蜂存活率均未受到负面影响。
Cabbage is an important cruciferous vegetable. The cultivation of cabbage is severely challenged by infestation of Lepidopteran pests, including diamondback moth (DBM), Pieris rapae, and etc.. The use of insect-resistant cultivars is the most effective method of controlling the pests. Despite extensive screening, high levels of natural resistance to lepidopteran pests have not been found in cabbage germplasms. Therefore, introducing foreign insect-resistance genes into cabbages through genetic engineering may provide effective germplasm resources for breeding.
     Both crylla8and cry1Ba3were cloned from the Bt strain. Bioassays showed that Cry1Ia8and Cry1Ba3toxins were highly resistant to DBM and predominant Lepidopteran pests, and there were no cross resistance with the CrylAc. Pyramiding cry1la8and cry1Ba3into cabbage can not only improve the insect resistance of cabage but also dealy the resistant evolution of pests. In addition, the research on the genetic stability, insect-resistance, and risk assessement of transgenic cabbages will make it possible to enable transgenic plants to commercialization.
     In the study, cry1la8and cry1Ba3were pyramided into cabbage inbred line by Agrobacterium tumefaciens-mediated transformation. Then the genetic stability, insect-resistance, and risk assessement of transgenic cabbages were assessed. The main results were as follows.
     1. Obtaining of homozygous transgenic cabbage line expressing both cry1Ia8and cry1Ba3.
     cry1Ia8and cry1Ba3were introduced simultaneously into cabbage inbred line by Agrobacterium tumefaciens-mediated transformation and53kanamycin-resistant plantlets were obtained. There are33Southern blot positive plants. Molecular analyses confirmed that the33transfomed plants were also expressed in RNA and protein level. Bioassays showed that the transgenic plants could effectively control both susceptible and Cry1Ac-resistant DBM.9homozygous transgenic lines were obtained by means of self-pollination and molecular-assisted selection. Then Bt hybrid cabbage were recoveryed by pollinating with other cabbage inbred lines.
     2. Genetic stability analysis of transgenes in Cryla8-Cry1Ba3cabbage.
     To plants were selfed and advanced to the third generation. Selfed progeny were harvested from each individual plant for the analysis of genetic stability. Analysis of transgene activities in four sinlge-copy lineages T0-1, T0-9, To-13, T0-17provided evidence that inheritance of the introduced gene was in Mendelian fasion. ELISA analyses indicated that content of Bt toxin was not significantly difference in four successive generations of lineage T0-1. Furthermore, data from field trials indicated that there were no significant differences in most agronomic traits between transgenic plants and the control plants.
     3. Insect-resistance evaluation of Cryla8-Cry1Ba3cabbage.
     The results of insect-resistance evaluations in greenhouse and field domonstated that the homozygous transgenic lines were highly resistant against DBM and Pieris rapae as compared to the control while susceptible to Mamestra brassicae and Spodoptera exigua.
     4. Influences of transgenic cabbage pollen or Bt toxins on survival rates of bees.
     The bees were fed with the pollens of transgenic cabbages, Crylla8toxin (3000ng/ml), Cry1Ba3toxin (3000ng/ml), mixed pollens, and untransformed cabbages pollens, respectively.20days later, there were no significant differences in mortalities of bees among the5treatments.
引文
[1]柏锡,徐建霞,李琳,郭政,李杰,朱延明.马铃薯密码子用法分析及其在t-PA基因密码子改造上的应用,遗传,2004,26(1):75-83
    [2]陈红梅,李昆志,陈丽梅.植物来源抗虫基因的研究进展.中国生物工程杂志,2008,28(11):116-121
    [3]崔磊. Bt crylIa8抗虫基因对结球甘蓝的转化及其表达:[硕士论文].北京:中国农业科学院,2009a
    [4]崔磊,杨丽梅,刘楠,郎志宏,刘玉梅,庄木,张扬勇,张友军,黄大,方智远. Bt crylIa8抗虫基因对结球甘蓝的转化及其表达.园艺学报,2009,36(8):1161-1168
    [5]代平礼.转Bt crylAh基因玉米对蜜蜂的安全性研究:[博士学位论文].北京:中国农业科学院,2011
    [6]代平礼,周玮,张杰,郎志宏,周婷,王强,崔红娟,姜玮瑜,吴艳艳.转Bt-crylAh基因玉米花粉对意大利蜜蜂幼虫的影响.应用昆虫学报,2012,49(5):1140-1146
    [7]董灵艳,张君,王丕武,关淑艳,张鹏.外源基因在转基因植物后代中的遗传规律及研究进展.分子植物育种,2011,(9):1127-1133
    [8]方智远,孙培田,刘玉梅,杨丽梅,庄木.甘蓝栽培技术.修订版.北京:金盾出版社,2008:1-3
    [9]郭芳,梁革梅,曹广春,高希武,郭予元.棉铃虫对Bt杀虫剂的抗性遗传方式.昆虫学报,2010,53(4):385-390
    [10]郭建英,万方浩,韩召军.转基因植物的生态安全性风险.中国生态农业学报,2008,16卷,2期:515-522
    [11]郭金英,朱协飞,郭旺珍,张天真.转Bt+Sck基因双价抗虫棉的抗虫性及遗传分析.棉花学报,2007,19(2):88-92
    [12]郭三堆,崔洪志,夏兰芹,武东亮,倪万潮,张震林,张保龙,徐英俊.双价抗虫转基因棉花研究.中国农业科学,1999,32(3): 1-7
    [13]胡贵兵,张上隆,徐昌杰.林顺权.柑橘密码子用法分析.果树学报,2006,23(3):479-485
    [14]华学军,陈晓邦,范云六.Bacillus thuringiensis基因杀虫在花椰菜愈伤组织的整合与表达.中国农业科学,1992,25(4):82-87
    [15]贾士荣,曹冬孙.转基因植物.植物学通报,1992,9(2):3-15
    [16]贾士荣,郭三堆,安道昌.转基因棉花.北京:科学出版社,2001,6-79
    [17]姜玮瑜,代平礼,张永军,周婷,林毅,束长龙,张杰.转Bt-cry1Ac基因棉花对意大利蜜蜂肠道细菌群落的影响.应用与环境生物学报,2010,16(2):211-215
    [18]李汉霞,尹若贺,陆芽春,张俊红.CrylA (c)转基因结球甘蓝的抗虫性研究.农业生物技术学报,2006,14(4):546-550
    [19]李汉霞,张晓辉,付雪林,张余洋,张俊红,王涛涛,叶志彪.双Bt基因提高青花菜对菜粉蝶和小菜蛾抗性.农业生物技术学报,2010,18(4):654-662
    [20]李丽莉,王振营,何康来,彭于发,花蕾.转基因抗虫作物对非靶标昆虫的影响.生态学报,2004,24(8):1793-1802
    [21]黎跃进.生物技术玉米中的基因叠加与害虫抗性治理.生物技术进展,2012,2(2):87-91
    [22]林涛,倪志华,沈明山,陈亮.高频密码子分析法及其在烟草密码子分析中的应用.厦门大学学报:自然科学版,2002,41(5):551-554
    [23]刘楠,王少丽,宋福平,束长龙,高继国,张杰.Cry1Ba3、CrylIa8蛋白对CrylAc抗性小菜蛾的杀虫活性研究.植物保护,2010,36(2):66-70
    [24]罗静,陈伟,庄木,李艳红.芸薹属作物遗传转化研究的现状及在育种上的应用前景.首都示范大学学报(自然科学版),2007,28(4):35-45
    [25]吕仲贤,俞晓平,陈建明,郑许松,徐红星.共生菌对褐飞虱生长发育和繁殖的影响.植物保护学报,2001,28(3)193-197
    [26]马盾,周小云,黄乐平.花粉管通道法转基因棉花后代的遗传特性.西北农业学报,2008,17(3):147-149
    [27]马员春,马维亮,宋晓华,林志珊.植物凝集素在作物转基因中的利用现状.宁夏农林科技,2010,3:60-62
    [28]毛慧珠,唐惕,曹湘岭,白永延.抗虫转基因甘蓝及其后代的研究.中国科学C辑,1996,26(4):339-347
    [29]皮灿辉,易自力,王志成.提高转基因植物外源基因表达效率的途径.中国生物工程杂志,2003,23(1):14
    [30]佘建明,蔡小宁,朱桢,徐鹤林,朱卫民,吴敬音,王爱民,丁万霞.结球甘蓝的离体再生及基因转化条件研究.江苏农业学报,1996,12(3):6-9
    [31]佘建明,丁万霞.结球甘蓝抗虫转基因植株及其后代的抗性表现.江苏农业学报,2001,17(2):73-76
    [32]苏长青,谢家建,孙爻,彭于发.一种适合转基因棉CpTI和cry1A基因剂量测定的标准质粒的构建和应用.作物学报,2011,37(9):1533-1539
    [33]唐克轩,徐亚男,李旭峰,孙小芬.表达雪花莲外源凝集素基因的油菜转基因植株的获得.复旦大学学报(自然科学版),2001,40(6):683-689
    [34]唐柞舜,李良材,田文忠.基因枪法转基因水稻后代农艺性状的表现.中国农业科学,2001,34(6):581-586
    [35]田岩,张永军,吴孔明,赵奎军,彭于发,郭予元.转Bt-玉米花粉对意大利蜜蜂生长发育及体内酶活性的影响.农业生物技术学报,2006a,14(6):990-991
    [36]田岩,张永军,吴孔明,赵奎军,彭于发,郭予元.转Bt-crylAc棉花花粉对意大利蜜蜂生长发育的影响.应用与环境生物学报,2006b,12(4):464-467
    [37]王关林,方宏筠.植物基因工程.北京:科学出版社,2009,397-405
    [38]王志斌,郭三堆.表达CrylA/GNA双价抗虫基因烟草兼抗棉铃虫和蚜虫.科学通报,1999(S3),44:2068-2075
    [39]魏伟,裴克全,桑卫国,钱迎倩,马克平.转Bt基因棉花生态风险评价的研究进展。植物生态学报,2002,26(增刊)127-132
    [40]危晓薇,邵琳,李建平,郝晓燕,陈勋基.农杆菌介导转化甜菜影响因素的研究.新疆农业科学,2010,47(11):2262-2266
    [41]卫志明,黄健秋,徐淑萍.甘蓝下胚轴的高效再生和农杆菌介导Bt基因转化甘蓝.上海农业学报,1998,14(2):11-18
    [42]吴乃虎.基因工程原理(下册).北京:科学出版社,2001,278-290
    [43]许娜,储俊,夏海武,赵岩,钱立生.黄瓜‘新津春四号’遗传转化体系的建立.热带亚热带植物学报,2010,18(6):679-684
    [44]徐淑平,卫志明.青菜的高效再生和农杆菌介导Bt及CpTI基因的转化.植物生理与分子生物学学报,2002,28(4):253-260
    [45]薛计雄,张锐,张桦,孙国清,孟志刚,周焘,郭三堆.高效双价(Bt+cpti)表达载体的构建及其表达分析。中国农业科技导报,2013,15(3):91-97
    [46]阎文昭,吴洁,王大一,谭文芳.将水稻半胱氨酸蛋白酶抑制剂(Oryzacystatin I)基因导入甘薯品种.分子植物育种,2004,2(2):203-207
    [47]杨丽梅,方智远,刘玉梅,庄木,张扬勇,孙培田.“十一五”我国甘蓝遗传育种研究进展.中国蔬菜,2011(2):1-10
    [48]杨晓杰,刘传亮,张朝军,武芝霞,张雪妍,刘坤,李付广.不同转化方法获得的转基因棉花外源基因拷贝数分析.农业生物技术学报,2011,19(2):221-229
    [49]杨宙.双价Bt抗虫水稻的培育和转基因水稻回交效应分析:[博士学位论文].武汉:华中农业大学,2011
    [50]仪登霞,杨丽梅,方智远,刘玉梅,庄木,张扬勇,刘基生,刘博,武剑,耿丽丽,张杰,张振贤.结球甘蓝核基因组密码子使用偏爱性分析.园艺学报,2013,40(10):1927-1934
    [51]尹若贺.Bt转基因结球甘蓝的遗传分析和检测:[博士学位论文].武汉:华中农业大学,2004
    [52]岳同卿.转Bt crylAh基因抗虫玉米的研究:[博士学位论文].北京:中国农业科学院,2009
    [53]张磊,朱祯.转基因抗虫水稻对生物多样性的影响。遗传,2011,33(5):414-421
    [54]张文娟.基于密码子水平的生物信息学分析及进化研究:[博士学位论文].上海:复旦大学2006
    [55]张小霞,曹素梅,梁振普,乔冠华,许锋,陈晓慧.植物凝集素在抗刺吸式害虫转基因工程中的应用.植物保护,2010,36(4):23-28
    [56]张扬勇,李汉霞,叶志彪,卢永恩,陆芽春.农杆菌介导GNA基因转化菜薹.园艺学报,2003,30(4):473-475
    [57]张永军,吴孔明,彭于发,郭予元.转基因植物的生态风险.生态学报,2002,22(11):1951-1959
    [58]赵秀枢.农杆菌介导单、双价抗虫基因Bt、Bt-pin基因对观赏羽衣甘蓝的遗传转化研究:[硕士学位论文].重庆:西南大学,2009
    [59]钟仲贤,卫志明.转基因甘蓝,花椰菜的抗虫检测.上海农业学报,2000,16(4);10-14
    [60]周静,弭晓菊,崔继哲.植物转基因的非孟德尔遗传.分子植物育种,2006,4(5):614-620
    [61]祝长青,赵惠新,李艳红,覃建兵.转基因小麦后代外源目的基因的遗传分析.干旱区研究,2008,25(6):808-811
    [62]朱常香,姚方印,温孚江,宋云枝.cryIA (b)基因及其介导的抗性在转基因水稻中的遗传.植物保护学报,2003,30(1):1-7
    [63]Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Ecker JR. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science,2003,301(5633):653-657
    [64]Arpaia S. Ecological impact of Bt-transgenic plants [Bacillus thuringiensis].1:Assessing possible effects of CryⅢB toxin on honey bee (Apis mellifera L.) colonies. Journal of Genetics and Breeding,1996,50
    [65]Avisar D, Eilenberg H, Keller M, Reznik N, Segal M, Sneh B and Zilberstein A, The Bacillus thuringiensis delta-endotoxin Cry1C as a potential bioinsecticide in plants. Plant Science, 2009,176:315-324
    [66]Babendreier D, Joller D, Romeis, Bigler F, Widmer F. Bacterial community structures in honeybee intestines and their response to two insecticidal proteins. FEMS Microbiology Ecology, 2007,59:600-610
    [67]Babendreier D, Kalberer N M, Romeis J, Fluri P, Mulligan E, Bigler F. Influence of Bt-transgenic pollen, Bt-toxin and protease inhibitor (SBTI) ingestion on development of the hypopharyngeal glands in honeybees. Apidologie,2005,36(4):585.
    [68]Bagla P (2010) Hardy cotton-munching pests are latest blow to GM crops. Science, 327:1439-1439
    [69]Bai YY, Mao HZ, Cao XL, Tang T, Wu D, Chen DD, Li WG, Fu WJ. Transgenic cabbage plants with insect tolerance. Biotechnology in Agriculture. Springer Netherlands,1993:156-159.
    [70]Bates S L, Zhao J Z, Roush R T and Shelton A M. Insect resistance management in GM crops:past, present and future. Nature Biotechnology,2005,23:57-62
    [71]Baxter SW, Badenes-Perez FR, Morrison A, Vogel H, Crickmore N, Kain W, Jiggins CD. Parallel evolution of Bacillus thuringiensis toxin resistance in Lepidoptera. Genetics,2011,189(2): 675-679.
    [72]Beegle CC and Yamamoto T. Invitation paper (C.P. Alexander Fund):history of Bacillus thuringiensis Berliner research and development. The Canadian Entomologist,1992,124:587-616
    [73]Benedict JH. Behavior growth survival and plant injury by Heliothis virescences on transgenic Bt cotton. Journal of Economic Entomology,1992,85:589-593
    [74]Bennetzen J L, Hall B D. Codon selection in yeast. The Journal of Biological Chemistry. 1982,257(6):3026-3031
    [75]Bhattacharya RC, Viswakarma N, Bhat SR, Kirti PB and Chopra VL, Development of insect-resistant transgenic cabbage plants expressing a synthetic crylA (b) gene from Bacillus thuringiensis. Current Science,2002,83:146-150
    [76]Bradd SJ, Dunn MJ. Analysis of membrane proteins by western blotting and enhanced chemiluminescence. In:Biomembrane Protocols. Springer,1993, pp 211-218
    [77]Bravo A, Gill S S and Soberon M. Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon,2007,49:423-435
    [78]Bravo A, Soberon M. How to cope with insect resistance to Bt toxins? Trends in Biotechnology,2008,26:573-579
    [79]Cao J, Shelton AM, Earle ED. Development of transgenic collards (Brassica oleracea L., var. acephala) expressing a crylAc or crylC Bt gene for control of the diamondback moth. Crop Protection,2005,24:804-813
    [80]Cao J, Shelton AM, Earle ED. Gene expression and insect resistance in transgenic broccoli containing a Bacillus thuringiensis crylAb gene wih the chemically inducible PR~la promoter. Molecular Breeding,2001,8:207-216
    [81]Cao J, Shelton AM, Earle ED. Sequential transformation to pyramid two Bt genes in vegetable Indian mustard(Brassica juncea L.) and its potential for control of diamondback moth larvae. Plant Cell Reports,2008,27:479-487
    [82]Cao J, Tang JD, Strizhov N, Shelton AM, Earle ED. Transgenic broccoli with high levels of Bacillus thuringiensis Cry1C protein control diamondback moth larvae resistant to CrylA or CrylC. Molecular Breeding,1999,5(2):131-141
    [83]Cao J, Zhao JZ, Tang JD, Shelton AM. Broccoli plants with pyramided crylAc and crylC Bt genes control diamondback moths resistant to CrylA and Cry1C proteins. Theoretical and Applied Genetics,2002,105:258-264
    [84]Caprio MA. Source-sink dynamics between transgenic and non-transgenic habitats and their role in the evolution of resistance. Journal of Economic Entomology,2001,94(3):698-705
    [85]Chen M and Shelton AM, Time for a new look at the relationship between Bt plants and insect natural enemies, in Recent Advances in Entomological Research, ed. by Liu TX and Kang L, Springer Berlin Heidelberg, Berlin,2012.280-294
    [86]Cheng EY. Problems of control of insecticide-resistant Plutella xylostella. Pesticide Science, 1988,23(2):177-188.
    [87]Chi GL, Pua EC. Ethylene inhibitors enhanced de novo shoot regeneration from cotyledons of Brassica campestris ssp. chinensis (Chinese cabbage) in vitro. Plant Science,1989,64(2):243-250
    [88]Christey MC, Sinclair BK, Braun RH, Wyke L. Regeneration of transgenic vegetables Brassica (Brassica oleracea and B. campestris) via Ri-mediated transformation. Plant Cell Reports, 1997,16:587-593
    [89]Cousins YL, Lyon BR, Llewellyn DJ. Transformation of an Australian cotton cultivar: prospects for cotton improvement through genetic engineering. Functional Plant Biology,1991,18(5): 481-494
    [90]Crickmore N, Zeigler D R, Feitelson J, Schnepf E, van Rie J, Lereclus D, Baum J, Dean DH. Revision of the nomenclature for the Bacillus thuringiensis pesticidal crystal proteins. Microbiology and Molecular Biology Reviews,1998,62:807-813
    [91]Dai PL, Zhou W, Zhang J, Jiang YW, Wang Q, Cui HJ, Sun JH, Wu YY, Zhou T. The effects of Bt Cry1Ah toxin on worker honeybees (Apis mellifera ligustica and Apis cerana cerana). Apidologie,2012,43(4):384-391
    [92]Digilio MC, Sasso R, Di Leo MG, Iodice L, Monti MM, Santeramo R, Arpaia S and Guerrieri E, Interactions between Bt~expressing tomato and non-target insects:the aphid Macrosiphum euphorbiae and its natural enemies. Journal of Plant Interactions,2012,7:71-77
    [93]Dillon RJ, Vennard CT, Charnley AK. A note:Gut bacteria produce components of a locust cohesion pheromone. Journal of Applied Microbiology,2002,92:759-763
    [94]Dillon RJ, Vennard CT, Charnley AK. Exploitation of gut bacteria in the locust. Nature, 2000,403:851-851
    [95]Ding L C, Hu C, Yeh K W, Wang P J. Development of insect-resistant transgenic cauliflower plants expressing the trypsin inhibitor gene isolated from local sweet potato. Plant Cell Reports,1998,17(11):854-860
    [96]Dogan EB, Berry RE, Reed GL, Rossignol PA. Biological parameters of convergent lady beetle (Coleoptera:Coccinellidae) feeding on aphids (Homoptera:Aphididae) on transgenic potato. Journal of eEconomic Entomology,1996,89:1105-1108
    [97]Douville M, Gagne F, Blaise C, Andre C. Occurrence and persistence of Bacillus thuringiensis and transgenic Bt corn crylAb gene from an aquatic environment. Ecotoxicology and Environmental Safety,2007,66(2):195-203
    [98]Doyle JJ. Isolation of plant DNA from fresh tissue. Focus,1990,12:13-15
    [99]Doyle JJ and Doyle JL. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem bull,1987,19:11-15
    [100]Duan JJ, Lundgren JG, Naranjo S, Marvier M. Extrapolating non-target risk of Bt crops from laboratory to field. Biology Letters,2010,6(1):74-77
    [101]Duan JJ, Marvier M, Huesing J, Dively G, Huang ZY. A meta-analysis of effects of Bt crops on honey bees (Hymenoptera:Apidae). Plos One,2008,3(1):e1415
    [102]Dutta D, Niwas R, Gopal M. Comparative persistence of thiacloprid in Bt-transgenic cabbage (Brassica oleracea cv. capitata) vis-a-vis non-transgenic crop and its decontamination. Bulletin of Environmental Contamination and Toxicology,2012,89:1027-1031
    [103]FAOSTAT.2012. Food and agriculture organization united nations. Available at http://faostat.fao.org/site/567/default.aspx#ancor
    [104]Ferre J, Van Rie J. Biochemistry and Genetics of Insect Resistance to B acillus thuringiensis. Annual Review of Entomology,2002,47(1):501-533
    [105]Forsbach A, Schubert D, Lechtenberg B, Gils M, Schmidt R. Forsbach A, Schubert D, Lechtenberg B, Schmidt R. A comprehensive characterization of single-copy T-DNA insertions in the Arabidopsis thaliana genome. Plant Molecular Biology,2003,52(1):161-176
    [106]Frank W. The effective number of codons usage used in a gene. Gene,1990,87:23-29
    [107]Frutos R, Rang C, Royer M. Managing insect resistance to plants producing Bacillus thuringiensis toxins. Critical Reviews in Biotechnology,1999,19:227-276
    [108]Furlong MJ, Wright DJ, Dosdall LM. Diamondback moth ecology and management: problems, progress, and prospects. Annual Review of Entomology,2013,58:517-541
    [109]Gadaleta A, Blechl AE, Nguyen S, Cardone MF, Ventura M, Quick JS, Blanco A. Stably expressed D-genome-derived HMW glutenin subunit genes transformed into different durum wheat genotypes change dough mixing properties. Molecular Breeding,2008,22(2):267-279
    [110]Gahan LJ, Ma YT, MacGregor Coble ML, Gould F, Moar WJ, Heckel DG. Genetic basis of resistance to CrylAc and Cry2Aa in Heliothis virescens (Lepidoptera:Noctuidae). Journal of Economic Entomology,2005,98:1357-1368
    [111]Gassmann AJ, Petzold-Maxwell JL, Keweshan RS, Dunbar MW. Field-evolved resistance to Bt maize by western corn rootworm. Plos One,2011,6:1-7
    [112]Gatehouse AMR, Davison CM, Newell CA. Transgenic potato plants with enhanced resistance to the tomato moth, Lacanobia oleracea:growth room trials. Molecular Breeding,1997, 3:49-63.
    [113]Genta FA, Dillon RJ, Terra WR, Ferreira C. Potential role for gut microbiota in cell wall digestion and glucoside detoxification in Tenebrio molitor lavae. Journal of Insect Physiology,2006, 52:593-601
    [114]Gould F. Sustainability of transgenic insecticidal cultivars:integrating pest genetics and ecology. Annual Review of Entomology,1998,43:701-726
    [115]Gould F, Walter P, Jeanne RL. Polistes wasps (Hymenoptera:Vespidae) as control agents for lepidopterous cabbage pests. Environmental Entomology,1984,13:150-156
    [116]Graham JM. Biomembrane protocols. In:Dunn MJ (ed) Analysis of membrane proteins by Western blotting and enhanced chemiluminescence,19th edn. Springer-Verlag, New York,1993, pp 211-218
    [117]Grzywacz D, Rossbach A, Rauf A. Russell DA. Srinivasan R and Shelton AM, Current control methods for diamondback moth and other brassica insect pests and the prospects for improved management with lepidopteran-resistant Bt vegetable brassicas in Asia and Africa. Crop Protection, 2010,29:68-79
    [118]Halpin C. Gene stacking in transgenic plants-the challenge for 21st century plant biotechnology. Plant Biotechnology Journal,2005,3:141-155
    [119]Hama H. Insecticide resistance characteristics of diamondback moth. Dissertation. National Institute of Agro-Environmental Sciences of Japan,1990
    [120]Han P, Niu C Y, Lei C L, Cui JJ, Desneus N. Quantification of toxins in a CrylAc+ CpTI cotton cultivar and its potential effects on the honey bee Apis mellifera L. Ecotoxicology,2010a, 19(8):1452-1459
    [121]Han P, Niu C Y, Lei C L, Cui JJ, Desneux N. Use of an innovative T-tube maze assay and the proboscis extension response assay to assess sublethal effects of GM products and pesticides on learning capacity of the honey bee Apis mellifera L. Ecotoxicology,2010,19(8):1612-1619
    [122]Hanley AV, Huang ZY, Pett WL. Effects of dietary transgenic Bt corn pollen on larvae of Apis mellifera and Galleria mellonella. Journal of Apicultural Research,2003,42(4):77-81
    [123]Hardee D, Bryan W. Influence of Bacillus thuringiensis-transgenic and nectariless cotton on insect populations with emphasis on the tarnished plant bug (Heteroptera:Miridae). Journal of Economic Entomology,1997,90:663-668
    [124]Hilbeck A, Baumgartner M, Fried PM, Bigler F, Effects of transgenic Bacillus thuringiensis corn-fed prey on mortality and development time of immature Chrysoperla cornea (Neuroptera:Chrysopidae). Environmental Entomology,1998,27:480-487
    [125]Hilder VA, Powell KS, Gatehouse AMR, Gatehouse JA, Gatehouse LN, Shi Y, Hamilton WDO, Merryweather A, Newell CA, Timans JC, Peumans WJ, Damme EV, Boulter D. Expression of snowdrop lectin in transgenic tobacco plants results in added protection against aphids. Transgenic Research,1995,4(1):18-25
    [126]Hille J, Wullems G, Schilperoort R. Non-oncogenic T-region mutants ofAgrobacterium tumefaciens do transfer, T-DNA into plant cells. Plant Molecular Biology,1983,2(3):155-163
    [127]Holbrook LA, Miki BL. Brassica grown gall tumourigenesis and in vitro of transformed tissue. Plant Cell Reports,1985,4:329-332
    [128]Ikemura T.1985. Codon usage and tRNA content in unicellular and multicellular organism. Molecular Biology and Evolution,2(1):13-34
    [129]Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T. High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnology,1996,14(6): 745-750
    [130]Jackson R, Bradley J, Van Duyn J. Field performance of transgenic cottons expressing one or two Bacillus thuringiensis endotoxins against bollworm, Helicoverpa zea (Boddie). Journal of Cotton Science,2003,7:57-64
    [131]James C. Global status of commercialized biotech/GM crops:2009. ISAAA Brief No.41, ISAAA, Ithaca, New York
    [132]James C. Global status of commercialized biotech/GM crops:2010. ISAAA Brief No.42, ISAAA, Ithaca, New York.
    [133]James C. Global status of commercialized biotech/GM crops:2011. ISAAA Brief No.43, ISAAA, Ithaca, New York.
    [134]James C. Global status of commercialized biotech/GM crops:2012. ISAAA Brief No.44, ISAAA, Ithaca, New York.
    [135]James C. Global status of commercialized biotech/GM crops:2013. ISAAA Brief No.45, ISAAA, Ithaca, New York.
    [136]Jeffrey RP, Erminia S,Etsuko NM, Jennifer MG, Adalgisa C. Analysis of a shift in codon usage in Drosophila. Jounal of Molecular Evolution,2003,57:S214-S225
    [137]Jin RG, Liu YB, Tabashinik BE, Borthakur D. Development of transgenic cabbage (Brassica Oleracea Var. Capitata) for insect resistance by Agrobacterium Tumefaciens~mediated transformation. In Vitro Cellular & Developmental Biology-Plant,2000,36:231-237
    [138]Johnson MT, Interaction of resistant plants and wasp parasitoids of tobacco budworm (Lepidoptera:Noctuidae). Environmental Entomology,1997,26:207-214
    [139]Kleter GA, Bhula R, Bodnaruk K, Carazo E, Felsot A, Harris CA, Katayama A, Kuiper HA, Racke KD, Rubin B, Shevah Y, Stephenson GR, Tanaka K, Unsworth J, Wauchope RD, Wong SS. Altered pesticide use on transgenic crops and the associated general impact from an environmental perspective. Pest Management Science,2007,63:1107-1115
    [140]Kuvshinov V, Koivu K, Kanerva A, Pehu E. Transgenic crop plants expressing synthetic cry9Aa gene are protected against insect damage. Plant Science,2001,160(2):341-353
    [141]Larson E, Howlett B, Jagendorf A. Artificial reductant enhancement of the lowry method for protein determination. Analytical Biochemistry,1986,155:243-248
    [142]Li YH and Romeis J. Bt maize expressing Cry3Bbl does not harm the spider mite, Tetranychus urticae, or its ladybird beetle predator, Stethorus punctillum. Biological Control,2010, 53:337-344
    [143]Lian Y, Jia ZW, He KL, Liu Y, Song F, Wang B, Wang G. Transgenic tobacco plants expressing synthetic CrylAc and Crylle genes are more toxic to cotton bollworm than those containing one gene. Chinese Science Bulletin,2008,53(9):1381-1387
    [144]Liu B, Shu C, Xue K, Zhou K, Liu X, Zheng Y, Xu C. The oral toxicity of the transgenic Bt+CpTI cotton pollen to honeybees (Apis mellifera). Ecotoxicology and environmental safety,2009, 72(4):1163-1169
    [145]Liu H, Guo X, Naeem MS, Liu D, Xu L, Zhang W, Tang G, Zhou W. Transgenic Brassica napus L. lines carrying a two gene construct demonstrate enhanced resistance against Plutella xylostella and Sclerotinia sclerotiorum. Plant Cell Tissue and Organ Culture,2011,106:143-151
    [146]Liu YG, Whittier RF. Thermal asymmetric interlaced PCR:automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics, 1995,25(3):674-681
    [147]Lone SA, Malik A and Padaria JC. Applications of Bacillus thuringiensis for prevention of environmental deterioration, in Environmental Deterioration and Human Health, ed. by Malik A, Grohmann E and Akhtar R, Springer, Netherlands,2014,73-95
    [148]Lu Q, Cao GC, Zhang LL, Liang GM, Gao XW, Zhang YJ, Guo YY. The binding characterization of Cry insecticidal proteins to the brush border membrane vesicles of Helicoverpa armigera, Spodoptera exigua, Spodoptera ltura and Agrotis ipsilon. Journal of Integrative Agriculture,2013,12:1598-1605
    [149]Lu YH, Wu KM, Jiang YY, Xia B, Li P, Feng HQ, Wyckhuys KAG, Guo YY. Mirid bug outbreaks in multiple crops correlated with wide-scale adoption of Bt cotton in China. Science,2010, 328(5892):1151-1154
    [150]Lynch PT, Jones J, Blackhall NW, Davey MR, Power JB, Cocking EC, Schuh W. The phenotypic characterisation of R2 generation transgenic rice plants under field and glasshouse conditions. Euphytica,1995,85(1-3):395-401
    [151]Macharia I, Lohr B, De Groote H. Assessing the potential impact of biological control of Plutella xylostella (diamondback moth) in cabbage production in Kenya. Crop Protection,2005, 24:981-989
    [152]Malone LA, Burgess EPJ, Gatehouse HS, Voisey CR, Tregidga EL, Philip BA. Effects of ingestion of a Bacillus thuringiensis toxin and a trypsin inhibitor on honey bee flight activity and longevity. Apidologie,2001,32(1):57-68
    [153]Malone LA, Todd JH, Burgess EPJ, Christeller JT. Development of hypopharyngeal glands in adult honey bees fed with a Bt toxin, a biotin-binding protein and a protease inhibitor. Apidologie, 2004,35(6):655-664
    [154]Maqbool SB, Christou P. Multiple traits of agronomic importance in transgenic indica rice plants:analysis of transgene integration patterns, expression levels and stability. Molecular Breeding, 1999,5(5):471-480
    [155]Maqbool SB, Riazuddin S, Loc NT, Gatehouse AM, Gatehouse JA, Christou P. Expression of multiple insecticidal genes confers broad resistance against a range of different rice pests. Molecular Breeding,2001,7:85-93
    [156]Marvier M, McCreedy C, Regetz J, Kareiva P. A meta-analysis of effects of Bt cotton and maize on nontarget invertebrates. Science,2007,316(5830):1475-1477
    [157]Matten SR, Head GP, Quemada HD. How governmental regulation can help or hinder the integration of Bt crops within IPM programs. Integration of Insect-Resistant Genetically Modified Crops within IPM Programs. Springer Netherlands,2008:27-39
    [158]Matzke MA, Mette MF, Matzke AJM. Transgene silencing by the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates. Plant molecular Biology,2000,43:401-415
    [159]McGaughey WH. Insect resistance to the biological insecticide Bacillus thuringiensis. Science,1985,229:193-195
    [160]Mersereau M, Pazour GJ, Das A. Efficient transformation of Agrobacterium tumefaciens by electroporation. Gene,1990,90:149-151
    [161]Metz TD, Dixit R, Earle ED. Agrobacterium tumefaciens-mediated transformation of broccoli (Brassica oleracea var. italica) and cabbage(Brassica oleracea var. capitata). Plant Cell Reports,1995,15:287-292
    [162]Meyer P. Stabilities and instabilities in transgene expression. In:Lindsey K (ed) Trangenic plant research. Harwood Academic, Zurich,1998, pp 263-275
    [163]Murashige T and Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia plantarum,1962,15:473-497
    [164]Murray EE, Lotzer J, Eberle M. Codon usage in plant gene. Nucleic Acids Research,1989, 17:477-498
    [165]Murray EE, Rocheleau T, Eberle M, Stock C, Sekar, V, Adang M. Analysis of unstable RNA transcripts of insecticidal crystal protein genes of Bacillus thuringiensis in transgenic plants and electroporated protoplasts. Plant molecular Biology,1991,16(6):1035-1050
    [166]Naimov S, Nedyalkova R, Staykov N, Weemen-Hendriks M, Minkov I, Maagd RAD, A novel Cry9Aa with increased toxicity for Spodoptera exigua (Hubner). Journal of Invertebrate Pathology,2014,115:99-101
    [167]Orr DB and Landis DA, Oviposition of European corn borer (Lepidoptera:Pyralidae) and impact of natural enemy populations in transgenic versus isogenic corn. Journal of Economic Entomology,1997,90:905-909
    [168]Paul MS, Elizabeth C. Synonymous codon usage in Saccharomyces cerevisiae. Yeast,1991, 7(7):657-678
    [169]Paul S, Sikdar SR. Expression of npt II marker and gus reporter genes and their inheritance in subsequent generations of transgenic Brassica developed through Agrobacterium~mediated gene transfer. Current Science,1999,76:1569-1573
    [170]Perez C J and Shelton A M. Field applications, leaf-dip assay, and diet incorporated diagnostic assays used against Bacillus thuringiensis-susceptible and resistant diamondback moth. Journal of Economic Entomology,1996,89:1364-1371
    [171]Perlak FJ, Fuchs RL, Dean DA, McPherson SL, Fischhoff DA. Modification of the coding sequence enhances plant expression of insect control protein genes. Proceedings of the National Academy of Sciences,1991,88(8):3324-3328
    [172]Peumans WJ, Van Damme EJM. Lectins as plant defense proteins. Plant Physiology,1995, 109:347-352
    [173]Pilcher CD, Obrycki JJ, Rice ME, Lewis LC. Preimaginal development, survival, and field abundance of insect predators on transgenic Bacillus thuringiensis corn. Environmental Entomology, 1997,26:446-454
    [174]Pilcher CD, Rice ME, Obrycki JJ and Lewis LC, Field and laboratory evaluations of transgenic Bacillus thuringiensis corn on secondary lepidopteran pests (Lepidoptera:Noctuidae). Journal of Economic Entomology,1997,90:669-678
    [175]Pius PK, Achar PN. Agrobacterium tumefaciens-mediated transformation and plant regeneration of Brassica oleracea var. capitata. Plant Cell Reports,2000,19:888-892
    [176]Qaim M and Zilberman D. Yield effects of genetically modified crops in developing countries. Science,2003,299:900-902
    [177]Rafat A, Aziz MA, Rashid AA, Abdullah SNA, Kamaladini H, Sirchi MHT, Javadi MB.Optimization of Agrobacterium tumefaciens~mediated transformation and shoot regeneration after co-cultivation of cabbage (Brassica oleracea subsp. capitata) cv. KY Cross with AtHSP101 gene. Scientia Horticulturae,2010,124:1-8
    [178]Ramirez-Romero R, Chaufaux J, Pham-Delegue M. Effects of CrylAb protoxin, deltamethrin and imidacloprid on the foraging activity and the learning performances of the honeybee Apis mellifera, a comparative approach. Apidologie,2005,36(4):601
    [179]Ramirez-Romero R, Desneux N, Decourtye A, Chaffiol A, Pham-Delegue MH. Does CrylAb protein affect learning performances of the honey bee Apis mellifera L.(Hymenoptera, Apidae)?. Ecotoxicology and Environmental Safety,2008,70(2):327-333
    [180]Randhawa G J, Chhabra R,Singh M. Molecular characterization of Bt cauliflower with multiplex PCR and validation of endogenous reference gene in Brassicaceae family. Current Science, 2008,95(12):1729-1731
    [181]Ren XL, Chen RR, Zhang Y, Ma Y, Cui JJ, Han ZJ, Mu LL, Li GQ, A Spodoptera exigua Cadherin Serves as a Putative Receptor for Bacillus thuringiensis Cry1Ca Toxin and Shows Differential Enhancement of Cry1Ca and Cry1Ac Toxicity. Applied and Environmental Microbiology, 2013,79:5576-5583
    [182]Romeis J, Meissle M. Non-target risk assessment of Bt crops-Cry protein untake by aphids. Journal of Applied Entomology-zeitschrift Fur Angewandte Entomologie,2011,135:1-6
    [183]Rose R, Dively GP, Pettis J. Effects of Bt corn pollen on honey bees:emphasis on protocol development. Apidologie,2007,38(4):368-377
    [184]Roush R. Two-toxin strategies for management of insecticidal transgenic crops:can pyramiding succeed where pesticide mixtures have not? Philosophical Transactions of the Royal Society of London Series B:Biological Sciences,1998,353:1777-1786
    [185]Ryan CA. Proteinase inhibitors in plants:genes for improving defenses against insects and pathogens. Annual Review of Phytopathology,1990,28:425-449
    [186]Sache ES, Benedict JH, Stelly DM, Taylor JF, Altman DW, Berberich SA, Davis SK. Expression and segregation of gene encoding Cry LA insecticidal proteins in cotton. Crop Science, 1998,38:1-11
    [187]Sambrook J, Fritsch EF, Maniatis T. Molecular Cloning:A laboratory manual. Cold Spring Harbor Laboratory, New York,1989
    [188]Sangtong V, Moran D, Chikwamba R, Wang K, Woodman-Clikeman W, Long M, Scott M. Expression and inheritance of the wheat Glu-1DX5 gene in transgenic maize. Theoretical and Applied Genetics,2002,105(6~7):937-945
    [189]Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology reviews,1998,62:775-806
    [190]Shelton AM, Andalora JT, Barnards J. Effects of cabbage looper, imported cabbageworm, and diamondback moth on fresh market and processing cabbage. Journal of Economic Entomology, 1982,75:742-745
    [191]Shelton AM, Gujar GT, Chen M, Rauf A, Srinivasan R, Kalia V, Mittal A, Kumari A, Ramesh K, Borkakatti R, Zhao JZ, Endersby N, Russell D, Wu YD, Uijtewaal B. Assessing the susceptibility of cruciferous lepidoptera to Cry1Ba2 and Cry1Ca4 for future transgenic cruciferous vegetables. Journal of Economic Entomology,2009,102:2217-2223
    [192]Shelton AM, Roberson JL, Tang JD, Perez C, Eigenbrode SD, Preisler HK, Wilsey WT, Cooley RJ. Resistance of diamondback moth (Lepidoptera:Plutellidae) to Bacillus thuringiensis subspecies in the field. Journal of Economic Entomology,1993,86:697-705
    [193]Shelton AM, Wyman JA, Cushing NL, Apfelbeck K, Dennehy TJ, Mahr SER, Eigenbrode SD. Insecticide resistance of diamondback moth (Lepidoptera:Plutellidae) in North America. Journal of Economic Entomology,1993,86:11-19
    [194]Sims SR. Bacillus thuringiensis var. kurstaki CryIA (c) protein expressed in transgenic cotton:effects on beneficial and other non-target insects. Southwestern Entomologist,1995,20(4): 493-506
    [195]Srivastava V, Reddy AS, Guha-Mukherjee S. Transformation and regeneration of Brassica oleracea mediated by an oncogenic Agrobacterium tumefaciens. Plant Cell Reports,1988,7:504-507
    [196]Strizhov N, Keller M, Mathur J, Koncz-Kalman Z, Bosch D, Prudovsky E, Schell J, Sneh B, Koncz C, Zilberstein A. A synthetic cry1C gene, encoding a Bacillus thuringiensis 8-endotoxin, confers Spodoptera resistance in alfalfa and tobacco. Proceedings of the National Academy of Sciences of the United States of America,1996,93:15012-15017
    [197]Tabashnik BE, Bruce E, van Rensburg JBJ, Carriere Y. Field-evolved insect resistance to Bt crops:definition, theory, and data. Journal of Economic Entomology,2009,102:2011-2025
    [198]Tabashnik BE, Carriere Y. Evolution of insect resistance to transgenic plants. University of California Press,2008,267-279
    [199]Tabashnik BE, Carriere Y, Dennehy TJ, Morin S, Sisterson MS, Roush RT, Sheltion AM, Zhao JZ. Insect resistance to transgenic Bt crops:lessons from the laboratory and field. Journal of Economic Entomology,2003,96:1031-1038
    [200]Tabashnik BE, Gassmann AJ, Crowder DW, Carriere Y. Insect resistance to Bt crops: evidence versus theory. Nature Biotechnology,2008,26:199-202
    [201]Talekar NS, Shelton AM. Biology, ecology, and management of the diamondback moth. Annual Review of Entomology,1993,38:275-301
    [202]Tanaka A, Mita S, Ohta S, Kyozuka J, Shimamoto K, Nakamura K. Enhancement of foreign gene expression by a dicot intron in rice but not in tobacco is correlated with an increased level of mRNA and an efficient splicing of the intron. Nucleic Acids Research,1990,18(23): 6767-6770
    [203]Tang JD, Gilboa S, Roush RT, Shelton AM. Inheritance, stability, and lack-of-fitness costs of field-selected resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera:Plutellidae) from Florida. Journal of Economic Entomology,1997,90:732-741
    [204]Theunissen J, Booij CJH, Lotz LAP. Effects of intercropping white cabbage with clovers on pest infestation and yield. Entomologia Experimental is et Applicata,1995,74:7-16
    [205]Tony MA, Butschke A, Broll H, Grohmann L, Zagon J, Halle I, Danicke S, Schauze M, Hafez HM, Flachowsky G. Safety assessment of Bt 176 maize in broiler nutrition:degradation of maize~DNA and its metabolic fate. Archives of Animal Nutrition,2003,57(4):235-252
    [206]Tu J, Zhang G, Datta K, Xu C, He Y, Zhang Q, Khush GS, Datta SK. Field performance of transgenic elite commercial hybrid rice expressing Bacillus thuringiensis 8-endotoxin. Nature Biotechnology,2000,18:1101-1104
    [207]United States Enviromental Pretection Agency. Bt plant-pesticides biopesticides registration action document. http://www.epa.gov.oscpmont/sap/2000/october/brad3 sment.pdf.2000
    [208]Van Rensburg J. First report of field resistance by the stem borer, Busseola fusca (Fuller) to Bt-transgenic maize. South African Journal of Plant and Soil,2007,24:147-151
    [209]Van Rie J, McGaughey WH, Johnson DE, Barnett BD, Van Mellaert H. Mechanism of insect resistance to the microbial insecticide Bacillus thuringiensis. Science,1990,247 (4938): 72-74
    [210]Wagner DL, Peacock JW, Carter JL, Talley SE. Field assessment of Bacillus thuringiensis on nontarget Lepidoptera. Environmental entomology,1996,25:1444-1454
    [211]Wan P, Huang Y, Wu H, Huang M, Cong S, Tabashnik BE, Wu K. Increased frequency of pink bollworm resistance to Bt toxin CrylAc in China. PLos One,2012,7(1):e29975.
    [212]Wang G, Zhang J, Song F, Gu A, Uwais A, Shao T, Huang D. Recombinant Bacillus thuringiensis strain shows high insecticidal activity against Plutella xylostella and Leptinotarsa decemlineata without affecting nontarget species in the field. Journal of Applied Microbiology,2008, 105:1536-1543
    [213]Yang Z, Chen H, Tang W, Hua H, Lin Y. Development and characterisation of transgenic rice expressing two Bacillus thuringiensis genes. Pest Management Science,2011,67:414-422
    [214]Yang ZX, Wu QJ, Wang SL, Chang XL, Wang JH, Guo ZJ, Lei YY, Xu BY, Zhang YJ. Expression of cadherin, aminopeptidase N and alkaline phosphatase genes in CrylAc-susceptible and Cry 1Ac~resistant strains of Plutella xylostella (L.). Journal of Applied Entomology,2012, 136:539-548
    [215]Ye GY, Tu J, Hu C, Datta K, Datta SK. Transgenic IR72 with fused Bt gene crylAb/crylAc from Bacillus thuringiensis is resistant against four lepidopteran species under field conditions. Plant Biotechnology,2001,18:125-133
    [216]Ye X, Al~Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I. Engineering the provitamin A (p~βcarotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science,2000, 287:303-305
    [217]Yi DX, Cui L, Liu YM, Zhuang M, Zhang YY, Fang ZY and Yang LM. Transformation of cabbage (Brassica oleracea L. var. capitata) with Bt crylBa3 gene for control of Diamondback Moth. Agriculture Science in China,2011,10:1693-1700
    [218]Yi DX, Cui L, Wang L, Liu YM, Zhuang M, Zhang YY, Zhang J, Lang ZH, Zhang ZX, Fang ZY, Yang LM. Pyramiding of Bt crylIa8 and cry1Ba3 genes into cabbage confers effective control against diamondback moth. Plant Cell Tissue and Organ Culture,2013,115:419-428
    [219]Zalucki MP, Shabbir A, Silva R, Adamson D, Liu SS, Furlong MJ. Estimating the economic cost of one of the world's major insect pests, Plutella xylostella (Lepidoptera:Plutellidae): just how long is a piece of string. Journal of Economic Entomology,2012,105:1115-1129
    [220]Zhao JZ, Cao J, Collins HL, Bates SL, Roush RT, Earle ED, Shelton AM. Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Proceedings of the National Academy of Sciences of the United States of America,2005,102:8426-8430
    [221]Zhao JZ, Cao J, Li Y, Collins HL, Roush RT, Earle ED, Shelton AM. Transgenic plants expressing two Bacillus thuringiensis toxins delay insect resistance evolution. Nature Biotechnology, 2003,21:1493-1497

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700