用户名: 密码: 验证码:
园林废弃物制造栽培基质过程中微生物的动态变化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用传统分离结合荧光定量PCR的方法以及DGGE结合多元统计分析的方法,研究了规模生产过程中不同园林废弃物种类堆腐过程微生物的动态变化,及其与堆腐过程物料理化性质之间的关系。综合考察了不同园林废弃物形成基础物质的微生物生物量、多样性指数及其理化性质。同时,筛选植物病原菌拮抗微生物,以获得具有病原微生物抗性的功能基质,为园林废弃物制造健康栽培基质提供科学和应用基础。
     主要研究结果如下:
     1、堆腐过程研究及其理化性质分析表明,木质素含量较低的草坪草腐熟速度快,木质素含量较高的枯枝落叶堆腐速度相对较慢;草坪草堆体升温速度快,高温维持时间较枯枝落叶长。两种园林废弃物堆腐升温阶段C/N比均下降迅速而后期较缓;堆体的pH值和EC值均逐渐升高,但草坪草EC值的上升速度显著高于枯枝落叶。同时,两种堆腐材料,腐殖化作用均主要发生在堆体降温和腐熟阶段。堆腐过程中有效磷和有效钾含量变化幅度小,容重呈逐渐下降趋势。
     此外,两种园林废弃物堆腐初始C/N比均较一般农业常用固体废弃物如秸秆等为高。
     2、可培养法分离微生物计数结果表明,升温快速且堆腐最高温度更高的草坪草堆体中,细菌的生物量并不比枯枝落叶堆体中的生物量低,而堆腐前期更高。两种堆体中可培养微生物生物量整体变化趋势均呈现先升后降,而腐熟阶段略有升高。可培养细菌的生物量高于可培养真菌。高温堆腐对可培养细菌生物量影响小于真菌。荧光定量试验结果表明,堆体中细菌16S rDNA基因的拷贝数远高于真菌18S rDNA基因拷贝数。可培养计数和荧光定量分析均表明,当草坪草堆体温度达到最高温度时,微生物生物量出现明显下降,而枯枝落叶堆体符合一般材料堆腐规律。
     3、DGGE研究表明,草坪草和枯枝落叶堆腐过程中真菌的多样性均小于细菌的多样性。草坪草细菌多样性低于枯枝落叶细菌多样性,而两种材料真菌多样性相差不大。草坪草堆腐过程中细菌种群变化较真菌大,枯枝落叶变化趋势亦然但程度较低。对于细菌和真菌两大类群来说,枯枝落叶堆腐过程种群变化均较草坪草缓和。基于冗余分析方法解析微生物群落组成,样点和微生物种群的二维排序图结果表明,草坪草堆腐过程对细菌种群影响较大的理化因子为pH值以及总N含量;对真菌种群影响较大的为容重和有效P。枯枝落叶堆腐过程对细菌种群影响较大为容重和腐植酸,对真菌种群影响较大的为温度和总N含量。
     4、三种园林废弃物(草坪草、枯枝落叶和菇渣)堆腐高温期(>50℃)均超过7d,一般可杀死或抑制堆体中常见病原菌。草坪草和枯枝落叶形成基础物质pH值及EC值较高,而菇渣较低。三种园林废弃物堆腐完成后均含有较高的初始养分。草坪草堆腐后的生物稳定性较其它两种基质高。
     同时,初步筛选获得重要园林植物兰花和竹子主要病害兰花黑腐病拮抗菌4株,竹根腐病拮抗菌5株,其中对两种病原菌均具有拮抗作用的菌株2株,16S rDNA测序结果表明,大部分拮抗菌株归属于芽孢杆菌属。
This paper studied the dynamic change of microorganism in different types of gard-enwaste during the composting in the process of mass production process and its relationshipwith the material physicochemical property with the method of traditional separation combinedwith fluorescence quantitative PCR and DGGE combined with multivariate statistical analysis.Comprehensive survey the microbial biomass, diversity index and its physicochemical propertythat are the base of different garden waste. At the same time, screened the antagonistic microbeof phytopathogens to obtain functional matrix that can resist the pathogenic microorganism andprovide science and application foundation for making health cultivation matrix for the gardenwaste.
     The main research results are as follows:
     1. The composting process and physicochemical property analysis shows that thecomposting rate of grasses with lower lignin content is fast, the composting rate of brancheswith higher lignin content is relatively slow; the tempreture of the pile of grasses heat up fast,its high temperature can maintain longer than branches. These two garden wastes C/N ratioduring temperature rise period drop fast and then slow down in later stage; the pH and ECvalue of the compost body gradually increase, but the grasses EC value rise significantly higherthan that of the branches’. Meanwhile, the humification effect of these two compost materialsmainly occurs in the cooling and rotten stage of the composting. The effective phosphorus andpotassium content are with a small change ranges, the capacity shows a trend of gradualdecline. In addition, the compost initial C/N ratio of these two garden wastes is higher than thatof the general agricultural solid wastes such as straw.
     2. The counting result got from cultivable method to separate microorganism shows thatthe bacterial biomass of grasses compost pile, which temperature rises quickly and composttemperature is higher, are not lower than that of branches, the earlier stage is more higher. Thetwo kinds of compost body culturable microbial biomass in the whole change trend first rises then falls, with maturity stage rising slightly. The cultivable bacterial biomass is higher thanthat of fungal. The effect on culturable bacterial biomass with high temperature composting isless than that of fungal. Fluorescence quantitative test results show that the16S rDNA genecopy number in the bacteria of compost pile is far higher than that of fungi18S rDNA. Thecultivable counting and fluorescence quantitative analysis show that when the grasses composttemperature reaches the highest temperature, the microbial biomass significantly declines,while the branches conform to the rule of general material composting.
     3. DGGE research shows that the fungi diversity in both grasses and branches duringcomposting is lower than bacteria. The grasses bacterial diversity is lower than that of thebranches, but their fungal diversity have no big difference. The bacterial community duringcomposting changes a lot compared with fungi, so is the branches but with lower degree. Forthe bacteria and fungi group, the change of community of branches during composting isalleviated than that of grasses. Base on redundancy analysis method to analyse microbialcommunity composition, the sampling point and two-dimensional sequence diagram ofmicrobial population show that the great physicochemical impact factor on bacterialcommunity during grasses composting are pH value and total N content; The density andeffective P have great impact on fungal community. The density and humic acid have greatimpact on the bacterial community of the branches during compost, the temperature and total Ncontent have great impact on fungal community.
     4. The compost high temperature period (>50℃) of three kinds of garden waste (grasses,branches, and mushroom residue) are more than7d, which normally can kill or inhibit thecommon pathogenic bacteria in the compost body. The pH and EC value of the base material ofgrasses and branches are higher than that of mushroom residue. These three garden wasteshave higher initial nutrient after composting. The grasses has higher biological stabilitycompared with other two kinds of substrates. At the same time, preliminary screened andobtained4strains that can antagonistic of orchid black rot and5strains that can antagonisticbamboo root rot, which respectively are the main diseases of important landscape plants: orchid and bamboo. There are2bacterial strain have an antagonistic effect on those twopathogenic fungi. According to16S rDNA sequencing, the results showed that mostantagonistic strains belong to Bacillus.
引文
Amann RI, Ludwig W, Schleifer KH, et al. Phylogenetic identification and in situ detection of individualmicrobial cells without cultivation[J]. Microbiology Reviews,1995,59(1):143~169.
    Ampe F, Sirvent A, Zakhia N. Dynamics of the microbial community responsible for traditional sour cassavastarch fermentation studied by denaturing gradient gel electrophoresis and quantitative RNAhybridization[J]. International Journal of Food Microbiology,2001,65:45~54.
    Arras G. Mode of action of an isolate of Candida famata in biological control of Penicillium digitatum inorange fruits[J]. Postharvest Biology and Technology,1996,8:191~198.
    Becker P M, Stottmeister U. General (Biolog GN) versus site-relevant (pollutant-dependent)sole-carbon-source utilization patterns as a means to approaching community functioning[J].CanadianJournal of Microbiology,1998,44:913~919.
    Bell T, Newman JA, Silverman BW, et al. The contribution of species richness and composition to bacterialservices[J]. Nature,2005,436:1157~1160.
    Blaker NS, McDonald JD. Influence of container medium pH on sporangium formation, zoospore release,and infection of rhododendron by Phytophthora cinnamomi[J]. Plant Disease,1983,67(3):259~263.
    Bonanomi G, Antignani V, Capodilupo M, et al. Identifying the characteristics of organic soil amendmentsthat suppress soilborne plant diseases[J]. Soil Biology and Biochemistry,2010,42(2):136~144.
    Borrero C, Trillas I, Avies M. Carnation Fusarium wilt supression in four composts[J]. European Journal ofPlant Pathology,2009,123(4):425~433.
    Breton T. Composting Increases Steadily At British Sites[J]. BioCycle,2004,45(2):60~63.
    Buchholz-Cleven BEE, Rattunde B, Straub KL. Screening for genetic diversity of isolates of anaerobicFe(II)-oxidizing bacteria using DGGE and whole-cell hybridization[J]. Systematic and AppliedMicrobiology,1997,20(2):301~309.
    Cahyani V R, Matsuya K, Asakawa S, et al. Succession and phylogenetic composition of bacterialcommunities responsible for the composting process of rice straw estimated by PCR-DGGE analysis[J].Soil Science and Plant Nutrition,2003,49(4):619~630.
    Campbell C D, Grayston S J, Hirst D J. Use of rhizosphere carbon sources in sole carbon source tests todiscriminate soil microbial communities[J]. Microbiol Methods,1997,30:33~41.
    Castanano R, Borrero C, Aviles M. Organic matter fractions by SP-MAS C NMR and microbialcommunities involved in the suppression of Fusa-rium wilt in organic growth media[J]. BiologicalControl,2011,58(3):286~293.
    Classen A T, Boyle S I, Haskins K E, et al. Community-level physiological profiles of bacteria and fungi:plate type and incubation temperature influences on contrasting soils[J]. FEMS Microbiol. Ecol.2003,44:319~328.
    Cotxarrera L, Trillas-Gay MI, Steinberg C, et al. Use of sewage sludge compost and Trichoderma asperellumisolates to suppress Fusarium wilt of tomato[J]. Soil Biology and Biochemistry,2002,34(4):467~476.
    Danon M, Zmora-Nahum S, Chen Y, et al. Prolonged compost curing reduces suppression of Sclerotiumrolfsii[J]. Soil Biology and Biochemis-try,2007,39(8):1936~1946.
    De Gannes V, Eudoxie G, Dyer D H et al. Diversity and abundance of ammonia oxidizing archaea in tropicalcompost systems[J]. Frontiers in Microbiology,2012,3:244.
    Derry A M, Staddon W J, Kevan P G, et al. Functional diversity and community structure ofmicro-organisms in three arctic soils as determined by sole-carbon-source-utilization[J]. Biodiversityand Conservation,1999,8:205~221.
    Dix N J, Webster J. Fungal Ecology[M]. Chapman&Hall, London.1995.
    Dukare AS, Prasanna R, Dubey SC, et al. Evaluating novel microbe amended composts as biocontrol agentsin tomato[J]. Crop Protection,2011,30(4):436~442.
    Eiland F, Klamer M, Lind A M, et al. Influence of initial C/N ratio on chemical and microbial compositionduring long term composting of straw[J]. Microbial Ecology,2001,41:272~280.
    Eklind Y, Kirchman H. Composting and Storage of Organic Household Waste with Different LitterAmendments I: Carbon Turnover[J]. Bioresource Technology,2000,74(2):115~124.
    Eliane D G D, Angelo S M M, Carlota de O R Y, et al. Effect of carbon:nitrogen ratio (C:N) and substratesource on glucose-6-phosphate dehydrogenase (G-6-PDH) production by recombinant Saccharomycescerevisiae[J]. Journal of Food Engineering,2006,75(1):96~103.
    Fang M, Wong J W C. Changes in Thermophilic Bacteria Population and Diversity during Composting ofCoal Fly Ash and Sewage Sludge[J]. Water,Air, and soil Polution,2000,124:333~343.
    Ferraz A, Rodriguez J, Freer J, et al. Biodegradation of Pinusradiate softwood by white-rot brown-rotfungi[J]. World Journal of Microbiology&Biotechnology,2001,17:31~34.
    Fjeilbirkeland A, Torsvik V, Ovreas L. Methanotrophic diversity in an agricultural soil as evaluated bydenaturing gradient gel electrophoresis profiles of pmuA, mxaF and16S rDNA sequences[J]. AntonieVan Leeuwenhoek,2001,79(2):209~217.
    Fromin N, Hamelin J, Tarnawski S, et al. Statistical analysis of denaturing gel electrophoresis (DGGE)fingerprinting patterns[J]. Environmental Microbiology,2002,4(11):634~643.
    Garland J L, Mills A L. Classification and characterization of heterotrophic microbial communities on thebasis of patterns of community-level-sole-carbon-source utilization[J]. Applied Environmental andMicrobiology,1991,57:2351~2359.
    Garland J L. Analytical approaches to the characterization of samples of microbial communities usingpatterns of potential C source utilization[J].Biochem Soil Biology and Biochemistry.1996,28:213~221.
    Gelsomino A, Keijzer-Wolters A C, Cacco G, et al. Assessment of bacterial community structure in soil bypolymerase chain reaction and denaturing gradient gel electrophoresis[J]. Journal of MicobiologicalMethods,1999,38(1):1~15.
    Gilbride K A, Frigon D, Cesnik A, et al. Effect of chemical and physical parameters on a pulp millbiotreatment bacterial community[J]. Water research,2006,40:775-787.
    Gillian DC, Speksnijder AG C L, Zwart G, et al. Genetic diversity of the biofilm covering Montacutaferruginosa (Mollusca, Bivalvia) as evaluated by denaturing gradient gel electrophoresis analysis andcloning of PCR amplified gene fragment coding for16S rDNA[J]. Applied and EnvironmentalMicrobiology,1998,64(9):3464~3472.
    Giulietti A, Overbergh L, Valekx D,et al.Anoverviewofreal-time quantitative PCR: applications to quantifycytokine gene expression[J].Methods,2001,25(4):386~401.
    Given PH, Dicknins CH. Biochemistry and microbiol ogy of peats[J]. Soil Biochemistry,1975,3(1):56~61.
    Golueke C G. Principles of composting. In:The biocycle guide to the art and science of composting.Emmaus:J G Press,1991,14~39.
    Gullen D. Recent advances on the molecular genetic fungi[J]. Biotechnology,1997,53:273~289.
    Hall S J, Hugenholtz P, Siyambalapitiya N, et al. The development and use of real-time PCR for thequantification of nitrifiers in activated sludge[J]. Water Science and Technology,2002,46(2):267~272.
    Harms G, Layton A C, Dionisi H M, et al. Real-time PCR quantification of nitrifying bacteria in a municipalwaste water treatment plant[J]. Environmental Science and Technology,2003,37(2):343~351.
    Higuchi R, Fockler C, et al. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions[J].Biotechnology,1993,11(9):1026~1030.
    Hoitink HAJ, Boehm MJ, Hadar Y. Mechanisms of suppression of soilbome plant pathogens incompost-amended substrates[J]. Renaissance Publications,1993:601~621.
    Hoitink HAJ, Schmitthener AF, Herr LJ. Composted bark for control of root rot in ornamentals[J]. Journal ofArboriculture,1975,60:25~26.
    Hoitink HAJ, Stone AG, Han DY. Suppression of plant diseases by composts[J]. HortScience,1997,32(2):184~187.
    Hoitink HAJ. Composted bark a light weight growth medium with fungi-cidal properties[J]. Plant Disease,1980,64(2):142~147.
    Hoshino YT, Morimoto S. Comparison of18S rDNA primers for estimating fungal diversit in agriculturalsoils using polymerase chain reaction-denaturing gradient gel electrophoresis[J]. Soil Science and PlantNutrition,2008,54(1):701~710.
    Hsu J H, Lo S L. Recycling of separated pig manure: characterization of maturity and chemical fractionationof elements during composting[J]. Water Science and Technology,1999,40:121~127.
    Hsu J, Lo S. Chemical and spectroscopic analysis of organic matter transformations during composting ofpig manure[J]. Environmental pollution,1999,104:189~196.
    Huang D, Zeng G, Feng C, et al. Mycelial growth and solid-state fermentation of lignocellulosic waste bywhite-rot fungus Phanerochaete chrysosporium under lead stress[J]. Chemosphere,2010,81:1091~1097.
    Ishii K, Takii S. Comparison of microbial communities in four different composting processes as evaluatedby denaturing gradient gel electrophoresis analysis[J]. Journal of Applied Microbiology,2003,95(1):109~119.
    James BL. Propagation media: what a grower needs to know. Combined Proceedings, International PlantPropagators' Society Meeting,1987,36:396-399.
    Jeris J S, Regan R W. Controlling environmental parameters for optimum composting, Part II: Moisture, freeair space and recycle[J]. Compost Science,1973,14(2):132~149.
    Kavroulakis N, Ntougias S, Besi MI, et al. Antagonistic bacteria of composted agro-industrial residuesexhibit antibiosis against soil-borne fungal plant pathogens and protection of tomato plants fromFusarium oxysporum f.sp. radicis-lycopersici[J]. Plant and Soil,2010,333(2):233~247.
    Khalila I, Beheary M S, Salem E M. Monitoring of microbial population and their cellulolytic activitiesduring the composting of municipal solid waste[J]. World Journal of Microbiology and Biotechnology,2001,17:155~161.
    KhalilA I, Beheary M S, Salem E M. Monitoring of microbial population and their cellulolytic activitiesduring the composting of municipal solid waste[J]. World Journal of Microbiology and Biotechnology,2001,17:155~161.
    Kindaichi T, Kawano Y, Ito T, et al. Population dynamics and in situ kinetics of nitrifying bacteria inautotrophic nitrifying biofilms as determined by real-time quantitative PGR[J]. Biotechnology andBioengneering,2006,94(6):1111~1121.
    Kindaichi T, Nierychlo M, Kragelund C, et al. High and stable substrate specificities of microorganisms inenhanced biological phosphorus removal plants[J]. Environmental Microbiology,2013,15(6):1821~1831.
    Knief C, Lipski A, Dunfield P F. Diversity and activity of methanotrophic bacteria in different upland soils[J].Applied Environmental and Microbiology,2003,69(11):6703~6714.
    Konstantinov S R, Zhu W Y, Williams B A, et al. Effect of fermentable carbohydrates on piglet faecalbacterial communities as revealed by denaturing gradient gel electrophoresis analysis of16S ribosomalDNA[J]. FEMS Microbiology Ecology,2003,43(2):225~235.
    Kuhn H, Demidov V V, Gildea B D, et al. PNA beacons for duplex DNA[J]. Antisense and Nucleic AcidDrug Development,2001,11(4):265~270.
    Lebas F, Matheron G. VIII. Rabbits[J]. Livestock Production Science,1982,4(9):235~250.
    Lei F, Vander Gheynst J S. The effect of microbial inoculation and pH on microbial community structurechanges during composting[J]. Process Biochemistry,2000,35:923~929.
    Leps J, Smilauer P. Multivariate analysis of ecological data using CANOCO[M]. United kingdom,Cambridge University Press,2003:50-51.
    Levy E, Eyal Z, Chet I, et a1. Resistance Mechanisms of Septoria tritici to Antifungal Products ofPseudomonas [J]. Physiological and Molecular Plant Pathology,1992,40:163~171.
    Liang C, Das K C, McClendon R W. The influence of temperature and moisture contents regimes on theaerobic microbial activity of a biosolids composting blend[J]. Bioresource Technology,2003,86(2):131~137.
    Linda CS. Impact of mulches on landscape plants and the environment-a review[J]. Journal ofEnvironmental Horticulture,2007,25(4):239~249.
    Litterick AM, Harrier L, Wallace P, et a1. The role of uncomposted materials, composts, manures, andcomposts extracts in reducing pest and disease incidence and severity in sustainable temperateagricultural and horticultural crop production[J]. Critical Reviews in Plant Sciences,2004,23(6):453~479.
    Liu DQ, Xiao K, Kinkel LL, et a1. Biocontrol of plant disease with antagonistic Streptomyces strains[J].Journal ofAgricutural University of Hebei,1997,20(3):1~14.
    Maarit-Niemi R, Heiskanen I, Wallenius K, et al. Extraction and purification of DNA in rhizosphere soilsamples for PCR-DGGE analysis of bacterial consortia[J]. Microbiol. Methods,2001,45:155~165.
    MacLaughlin R T, Wilson C L, Droby S, et al. Biological control of postharvest diseases of grape, peach,andapple with yeasts Kloeckera apiculata and Candida guilliermondii[J]. Plant Disease,1992,76:470~473.
    Maeda K, Toyoda S, Shimojima R, et al. Source of nitrous oxide emissions during the cow manurecomposting process as revealed by isotopomer analysis of and amoA abundance in betaproteobacterialammonia-oxidizing bacteria[J].Applied Environmental and Microbiology,2010,76,1555~1562.
    Mankin KR, Fyn RP. Nutrient Uptake Response of New Guinea Impatiens to Light, Temperature, andNutrient Solution Concentration[J]. American society for horticulture science,1996,121(5):826~830.
    Mari M, Guizzardi M, Pratella G C. Biological control of gray mold in pears by antagonistic bacteria[J].Biological Control,1996,7(l):30~37.
    Marschner P, Yang C H, Lieberei R, et al. Soil and plant specific effects on bacterial community compositionin the rhizosphere[J]. Soil Biology andBiochemistry,2001,33:1437~1445.
    Masson J, Tremblay N, Gossellin A. Influence of pH and bicarbonate content of nutrient solutions on growthof celery seedlings cultivated in peat-based media[J].Acta Hortculture,1996,238:113~125.
    Menzies JG, Ehret DL. Root fungi increase the growth and yield and decrease the severity of Fusariumcrown and root rot of tomato plants grown in soilless culture[J]. Acta Horticulturae,1997,450(1):457~463.
    Miller K M, Ming T J, Schulze A D, et al. Denaturing Gradient Gel Electrophoresis (DGGE): a rapid andsensitive technique to screen nucleotide sequence variation in populations[J]. BioTechniques,1999,27:1016~1030.
    M hlenhoff P, Muller L, Gorbushina AA, et al. Molecular approach to the characterisation of fungalcommunities: methods for DNA extraction, PCR amplification and DGGE analysis of painted artobjects[J]. FEMS Microbiology Letters,2001,195:169~173.
    Mugnai S, Pasquini T, Azzarello E, et al. Evaluation of composted green waste in ornamentalcontainer-grown plants: effects on growth and plant water relation[J]. Compost Science&Utilization,2007,15(4):283~747.
    Muyzer G, DeWaal EC, Uitterlinden AG. Profiling of complex microbial populations by denaturing gradientgel electrophoresis analysis of polymerase chain reaction-amplified genes coding for16S rRNA[J].Applied and Environmental Microbiology,1993,59(3):695~700.
    Muyzer G. DGGE/TGGE a method for identifying genes from natural ecosystems[J]. Current Opinion inMicrobiology,1999,2:317~322.
    Muyzer, G, Waal E C D, Uitterlinden A G. Profiling of complex microbial populations by denaturinggradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for16SrRNA[J].Applied and Environmental Microbiology,1993,59:695~700.
    Nakamura Y, Satoh H, Kindaichi T, et al. Community structure, abundance, and in situ activity of nitrifyingbacteria in river sediments as determined by the combined use of molecular techniques andmicroelectrodes[J]. Environmental Science and Technology,2006,40(5):1532~1539.
    Noble R. Risks and benefits of soil amendment with composts in relation to plant pathogens[J]. AustralasianPlant Pathology,2011,40(2):157~167.
    Ntougias S, Papadopoulou KK, Zervakis GI, et al. Suppression of soil-borne pathogens of tomato bycomposts derived from agro-industrial wastes abundant in Mediterranean regions[J]. Biology andFertility of Soils,2008,44(8):1081~1090.
    Olympios C M. Overview of soilless culture: advantages, constraints and perspectives for its use inMediterranean countries[J]. CIHEAM-Options Mediterraneennes,1997,31:307~324.
    Ovreas L, Forney L, Daae F L, et al. Distribution of bacterioplankton in meromictic Lake Saelenvannet, asdetermined by denaturing gradient gel electrophoresis of PCR-amplified gene fragments coding for16SrRNA[J].Applied and Environmental Microbiology,1997,63:3367~3373.
    Ownley BH, Benson DM, Bilderback TE. Physical properties of container media and relation to severity ofPhytophthora root rot of rhododendron[J]. Journal of the American Society for Horticultural Science,1990,115(4):564~570.
    Pane C, Spaccini R, Piccolo A, et al. Compost amendments enhace peat suppressiveness to Pythium ultimum,Rhizoctonia solani and Sclerotinia minor[J]. Biological Control,2011,56(2):115~124.
    Peter M D, William C G. Microbial diversity in hot synthetic compost as revealed by PCR-amplified rRNAsequences from cultivated isolates and extracted DNA[J]. Microbiology Ecology,2001,35:207~216.
    Reche I, Pulido-Villena E, Morales-Baquero R, et al. Does ecosystem size determine aquatic bacterialrichness?[J]. Ecology,2005,86(7):1715~1722.
    Riohard W. Avermectins, new family of pitent antheliminitic agert: producing orgarism and termentation[J].Antimicrobial Agents&Cthemotherpy,1979:161~167.
    Roesti D, Gaur R, Johri BN, et al. Plant growth stage, fertilizer management and bio-inoculation ofarbuscular mycorrhizal fungi and plant growth promoting rhizobacteria affect the rhizobacterialcommunity structure in rain-fed wheat fields[J]. Soil Biology and Biochemistry,2006,38(5):1111~1120.
    Roling WFM, van-Breukelen BM, Braster M, et al. Analysis of microbial communities in a landfill leachatepolluted aquifer using a new method for anaerobic physiological profiling and16S rDNA basedfingerprinting[J]. Microbial Ecology.2000,40:177~188.
    Ryckeboer J, Mergaert J, Vaes K, et al. A survey of bacteria and fungi occurringduring composting andself-heating processes[J].Annals of Microbiology,2003,53(4):349~410.
    Saadi I, Laor Y, Medina S, et al. Compost suppressiveness against Fusarium oxysporum was not reducedalter one-year sto-rage under various moisture and temperature conditions[J]. Soil Biology andBiochemistry,2010,42(4):626~634.
    Slobraa K. Bark as growth medium[J].Acta Horticulturae,1986,178:129~135.
    Smidt E, Meissl K, Schmutzer M, et al. Co-composting of lignin to build up humic substances-strategies inwaste management to improve compost quality[J]. Industrial crops and products,2008,27(2):196~201.
    Strom P R. Effect of temperature on bacterial species diversity in thermophilic solid-waste composting[J].Applied and Environmental Microbiology,1985,50(4):899~905.
    Tabacchioni S, Chiarini L, Bevivino A., et al. Bias caused by using different isolation media forassessing thegenetic diversity of a natural microbial population. Microb. Ecol,2000,40:169~176.
    Ter Braak CJF, Smilauer P. CANOCO Reference Manual and User's Guide: Software for Ordination(version5)[M]. New York: Microcomputer Power Ithaca,2012:113~121.
    Termorshuizen AJ, Langerlof J, Malandrakis AA, et al. Suppressiveness of18composts against7pathosystems: Variability in pathogen response[J]. Soil Biology and Biochemistry,2006,38(8):2461~2477.
    Thambirajah JJ, Zulkifli MD, Hashim MA. Microbiology and biochemical changes during the composting ofoil palm empty fruit bunches, effect of nitrogen supplements on the substrates[J]. BioresourceTechnology,1995,52(2):133~144.
    
    Theron J, Cloete T E. Molecular techniques for determining microbial diversity and community structure innatural environments[J]. Critical Reviews in Microbiology,2000,26:37~57.
    Tomasz K, Bartosz M, Alicja N. Organic Substrates for Intensive Horticultural Cultures: Yield and NutrientStatus of Plants, Microbiological Parameters of Substrates[J]. Polish Journal of Environmental Studies,2012,21(5):1261~1271.
    Torsvik V, Daae FL, Sandaa RA, et al. Review article: novel techniques for analysing microbial diversity innatural and perturbed environments[J]. Journal of Biotechnology,1998,64(1):53~62.
    Torsvik V, Salte K., Soerheim R., et al. Comparison of phenotypic diversity and DNA heterogeneity in apopulation of soil bacteria[J].Applied and Environmental Microbiology,1990,56:776~781.
    Trevors JT. Bacterial biodiversity in soil with an emphasison chemically-contaminated soils[J]. Water AirSoil Pollution,1998,101(1):45~67.
    Trevors, JT. Molecular evolution in bacteria: cell division[J]. Revista de Microbiologia,1998,29:237~245.
    Trillas MI, Casanova E, Cotxarrera L, et al. Composts from agricultural waste and the Trichodermaasperellum strain T-34suppress Rhizoctonia solani in cucumber seedlings[J]. Biological Control,2006,39(3):32~38.
    Tumer R K, Salmons R, Powell J, et al. Greentaxes, waste management and politieal economy[J]. Journal ofEnvironmental Management,1998,53:121~36.
    Tuomela M, Vikman M, Hatakka A, et al. Biodegradation of lignin in a compost environment: a review[J].Bioresource Technology,2000,72(2):169~183.
    Tuomela M, Vikman M, Hatakka A, et al. Biodegradation of liginin in a compost environment a review[J].Bioresource Technology,2000,72(2):169~183.
    United States Environmental Protection Agency. Composing Yard Trimmings and Municipal Solid Waste[R].EPA530-R-94-003,1994.
    Vallaeys T, Topp E,Muyzer G, et al. Evaluation of denaturing gradient gel electrophoresis in the detection of16S rDNA sequence variation in rhizobia and methanotrophs[J]. FEMS Microbiology Ecology,1997,24(2):279~285.
    Vivas A, Moreno B, Garcia-Rodriguez S, et al. Assessing the impact of composting and vermicomposting onbacterial community size and structure, and microbial functional diversity of an olive-mill waste[J].Bioresource Technology,2009,100:1319~1326.
    Vuorinen A H, Saharinen M H. Evolution of microbialogical and chemicalparameters during manure andstraw co-composting in a drum composting system[J]. Agriculture, Ecosystems and Environment,1997,66(1):19~29.
    Wang S, Gonzalez PP, Ye J, et al.Abundance and diversity of nitrogen-fixing bacteria in rhizosphere andbulk paddy soil under different duration of organic management[J]. World Journal of Microbiology andBiotechnology,2011,28(2):493~503.
    Willion RA. Root medium physical properties[J]. Horttechnology,1998,8(4):481~485.
    Wintzingerode FV, Gobel UB, Stackebrandt E. Determination of microbial diversity in environmentalsamples: pitfalls of PCR-based rRNA analysis[J]. FEMS Microbiology Reviews.1997,21:213~229.
    Y T Fan, C L Li, J J Lay, et al. Optimization of Initial Substrate and pH Levels for Germination of SporingHydrogen-producing Anaerobes in Cow Dung Compost[J]. Bioresource Technology,2004,91(2):189~193.
    Yamamoto N, Otawa K, Nakai Y. Diversity and abundance of ammonia-oxidizing bacteria andammonia-oxidizing archaea during cattle manure composting[J]. Microbial Ecology,2010,60,807~815.
    Yang C H, Crowley D E. Rhizosphere microbial community structure in relation to root location and plantiron nutritional status[J]. Applied and Environmental Microbiology,2000,66:345~351.
    Yang Z, Xiao Y, Zeng G, et al. Comparison of methods for total community DNA extractionand purificationfrom compost[J]. Applied Microbiology and Biotechnology,2007,74(4):918~925.
    Yao H, He Z, Wilson M J, et al. Microbial biomass and community structure in a sequence of soils withincreasing fertility and changing land use[J]. Microbial ecology.2000,40:223~237.
    Yu M, Zeng G, Chen Y, et al. Influence of Phanerochaete chrysosporium on microbial communities andlignocellulose degradation during solid-state fermentation of rice straw[J]. Process Biochemistry,2009.44:17~22.
    Zeng G M, Huang D L, Huang G H, et al. Composting of lead-contaminated solid waste with inocula ofwhite-rot fungus[J]. Bioresource Technology,2007,98(2):320~326.
    Zeng G, Yu M, Chen Y, et al. Effects of inoculation with Phanerochaete chrysosporium at various timepoints on enzyme activities during agricultural waste composting[J]. Bioresource Technology,2010,101(1):222~227.
    Zhou YH, Nie YH, Zhao YH. Research on solid substrate in the whole world[J]. Chinese Journal ofEco-agriculture,2005,13(4):40~43.
    鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000.
    陈凤花,王琳,胡丽华.实时荧光定量RT-PCR内参基因的选择[J].临床检验杂志,2005,23(5):393-395.
    陈广银,王德汉,吴艳等.不同时期添加蘑菇渣对落叶堆肥过程的影响[J].环境化学,2008,27(1):81~86.
    陈祥,易吉林,包兵等.园林植物废弃物堆肥的理化性状及参数研究[J].北方园艺,2010,(12):225~228.
    陈延熙.试论植物病害生物防治[J].植病生防,1979,(l):1~12.
    陈耀宁.堆肥化中协同降解木质纤维素的混合菌筛选及其培养[D].湖南:湖南大学,2007.
    陈元科,周贤军,卢漫.园林植物废弃物堆肥研究进展[J].现代农业科技,2012,(9):304~306.
    程莹,白寿发,庄敬华,等.木霉菌多功能生防菌剂对瓜类枯萎病的防效研究[J].现代农业科技,2010,(23):157~158.
    崔林,孙振,孙福在,等.马铃薯内生细菌的分离及环腐病拮抗菌的筛选鉴定[J].植物病理学报,2003,33(4):353~58.
    范慧妮.园林植物废弃物处置技术初探[J].现代园林,2009,(11):30~33.
    冯冲凌.黄孢原毛平革菌及其在堆肥中对木质素生物降解特性的影响研究[D].湖南:湖南大学,2006.
    傅松玲,傅玉兰,高正辉.非洲菊无机生态型无土栽培基质的筛选[J].园艺学报,2001,28(6):538~543.
    谷洁,李生秀,秦清军等.农业废弃物静态高温堆腐过程中的生物化学变化[J].中国农业科学,2005,38(8):1699~1705.
    郭世荣主编.无土栽培学[M].北京:中国农业出版社,2003.
    胡霭堂.植物营养学(下)[M].北京:中国农业大学出版社,1995:63~69.
    黄丹莲,曾光明,黄国和等.白腐菌固态发酵条件最优化及其降解植物生物质的研究[J].环境科学学报,2005,25(2):232~237.
    黄得扬,陆文静,王洪涛.环境污染治理技术与设备[J].2004,5(1):12~18.
    黄红丽.木质素降解微生物特性及其对农业废物堆肥腐殖化的影响研究[J].湖南大学博士学位论文,2009,75~78.
    黄培堂译.分子克隆实验指南(第三版)[M].北京:科学出版社,2002.
    江胜德主编.现代园艺栽培介质[M].北京:中国林业出版社,2006:210.
    姜雅.日本循环经济立法概况及对中国的启示[J].国土资源情报,2006,(1):48~49.
    蒋卫杰,刘伟,余宏军.我国有机生态型无土栽培技术研究[J].中国生态农业学报,2000,8(3):17~21.
    李长松.拮抗性细菌生物防治植物土传病害的研究进展[J].生物防治通报,1992,4:168~172.
    李芳,勇伟,白雪薇等.微生物菌剂对园林绿化废弃物堆肥养分的影响[J].中国农学通报,2012,28(7):307~311.
    李富恒.无土栽培技术研究的历史、现状与进展[J].农业系统科学与综合研究,1999,15(4):313~314.
    李国学,张祖锡,白瑛.高温堆肥和沤肥碳氮转化和杀灭病原菌的比较研究[J].北京农业大学学报,1995,21(3):286~290.
    李国学,张福锁.固体废物堆肥化与有机复混肥生产[J].北京:化学工业出版社,2000,7~13
    李吉进,郝晋珉,邹国元等.高温堆肥碳氮循环及腐殖质变化特征研究[J].生态环境,2004,3:332~334.
    李谦盛,郭世荣,李式军.利用工农业废弃物生产优质无土栽培基质[J].自然资源学报,2002,17(4):515~519.
    李伟,俞东征,海荣,等.应用荧光PCR检测土壤、脏器中的炭疽芽孢杆菌[J].中国人兽共患病学报,2006,22(3):221~224.
    李玉红,王岩,李清风等.外源微生物对牛粪高温堆肥的影响[J].农业环境科学学报,2006,25(增刊):609~612.
    林东,徐庆,刘忆舟,等.枯草芽饱杆菌SO113分泌蛋白的抑菌作用及抗菌蛋白的分离纯化[J].农业生物技术学报,2001,9(l):77~80.
    刘波微,彭化贤,陈素清.番茄灰霉病拮抗木霉菌的筛选及效果评价[J].西南农业学报,2007,20(4):650~653.
    刘佳,许修宏,李洪涛.利用PCR-DGGE技术队自然堆肥微生物群落多样性的分析[J].东北农业大学学报,2009,40(9):35~38.
    刘佳,李婧男,文科军等.不同堆肥条件下园林废弃物中有机碳物质的动态变化[J].北方园艺,2012,(24):174~178.
    刘亮山.根结线虫病生防链霉菌的筛选及其应用研究[D].南京:南京农业大学,2005.
    刘士哲.现代实用无土栽培技术[J].北京:中国农业出版社,2001,7~13.
    刘婷,陈朱蕾,周敬宣.外源接种粪便好氧堆肥的微生物相变化研究[J].华中科技大学学报(城市科学版),2002,19(2):57~59.
    刘有胜,杨朝晖,曾光明,等. PCR-DGGE技术对城市餐厨垃圾堆肥中细菌种群结构分析[J].环境科学学报,2007,27(5):1~6.
    刘志恒,姜成林.放线菌现代生物学与生物技术[M].北京:高等教育出版社,2004,210~218.
    吕子文,方兰海,黄彩娣.美国园林废弃物的处置及对我国的启示[J].中国园林,2007,(8):90~94.
    吕子文,顾兵,方海兰等.绿化植物废弃物和污泥的堆肥特性研究[J].中国土壤与肥料,2010,1(1):57~64.
    栾青杉,孙军,宋书群,等.长江口夏季浮游植物群落与环境因子的典范对应分析[J].植物生态学报,2007,31(3):445~450.
    聂艳丽,周跃华,曾郁珉等.甘蔗渣堆肥化处理及用作山桂花育苗基质[J].东北林业大学学报,2009,37(2):50~51.
    彭亿,李裕元,李忠武,等.亚热带稻田弃耕湿地土壤因子对植物群落结构的影响[J].应用生态学报,2009,20(7):1543~1550.
    任连海,何亮,宁娜,等.餐厨垃圾高效好氧堆肥过程参数的影响因素研究[J].北京工商大学学报(自然科学版),2010,28(5):40~44.
    唐景春,周启星,张冠辉等.不同来源生物质废弃物高温堆肥过程的物理化学及微生物性质研究[J].环境科学,2007,(28):1158~1164.
    田吉林,汪寅虎.设施无土栽培基质的研究现状、存在问题与展望(综述)[J].上海农业学报,2000,16(4):67~92.
    田赟,王海燕,孙向阳等.添加竹酢液和菌剂对园林废弃物堆肥理化性质的影响[J].农业工程学报,2010,26(8):272~278.
    王宏智.园林绿化废弃物再利用的思考[J].现代园林,2011,(7):9~10.
    王惠.外源添加物在园林绿化废弃物堆腐中的应用[J].北京:北京林业大学,2011.
    王亮.牛粪好氧堆肥中微生物多样性及生产应用研究[D].北京:北京林业大学,2012.
    王淑芬,马桂珍,钱媛媛,等.采用实时荧光定量PCR技术比较提取土壤真菌DNA方法的差异[J].安徽农业科学,2011,39(33):20318~20321.
    王伟东,王小芬,朴哲,等.堆肥过程中微生物群落的动态[J].环境科学,2007,28(11):2591~2597.
    吴建峰,林先贵.土壤微生物在促进植物生长方面的作用[J].土壤,2003,(3):18~21.
    吴元喜,张晓星,胡佳华,等.木质纤维素分解菌蹄选及木质纤维素降解[J].华中农业大学学报,1997,16(6):614~617.
    席北斗,刘鸿亮,白庆中,等.堆肥中纤维素和木质素的生物降解研究现状[J].环境污染治理技术与设备,2002,3(3):19~23.
    谢关林,李斌,郝晓娟,等.利用芽抱杆菌在温室环境中控制番茄青枯病[J].植物病理学报,2006,36(l):80~85.
    闫江,江娟.生活垃圾厌氧堆肥产甲烷及古细菌多样性分析[J].环境科学与技术,2006,29(4):9~11.
    杨朝晖,刘有胜,曾光明,等.厨余垃圾高温堆肥中嗜热细菌种群结构分析[J].中国环境科学,2007,27(6):733~737.
    杨朝晖,曾光明,蒋晓云等.城市垃圾堆肥过程中的生物学问题[J].微生物学杂志,2005,25(3):57~61.
    杨朝阵,刘有胜,曾光明,等. PCR-DGGE技术对餐厨垃圾高温堆肥中嗜热细菌种群结构分析[J].中国环境科学,2007,27(6):733~737.
    杨光,袁菊,蒋秀娅,等.城市污水污泥好氧堆肥及农用技术研究[J].天津建设科技,2008:118~122.
    杨浩,王百田,武晶.不同无土栽培基质对高羊茅生长的影响[J].中国农学通报,2009,25(7):41~43.
    杨珏.农林废弃物再利用研究进展与展望[J].北方环境,2011,(7):33.
    杨恋,杨朝晖,曾光明,等.好氧堆肥高温期的嗜热真菌和嗜热放线菌群落结构[J].环境科学学报,2008,28(12):2514~2521.
    [194]杨青.辣椒炭疽病菌生防菌的筛选、鉴定及应用[D].湖南:湖南农业大学,2012.
    姚元枝.木霉菌防治油菜菌核病和辣椒白绢病的研究[J].怀化师专学报,1997,16(6):67~69.
    叶姜瑜,罗固源.微生物可培养性低的生态学释因与对策[J].微生物学报,2005,45(3):478~481.
    张广志,文成敬.木霉对玉米纹枯病的生物防治[J].植物保护学报,2005,32(4):353-356.
    张嘉超,曾光明,喻曼,等.农业废物好氧堆肥过程因子对细菌群落结构的影响[J].环境科学学报,2010,30(5):1002~1010.
    张金屯.数量生态学[M].北京:科学出版社,2004:131~180.
    张强.园林绿化废弃物堆腐及用作草花栽培基质的试验研究[D].北京:北京林业大学,2012.
    张淑静,王清海,刘幸红,等.轻基质添加生防菌对黑松育苗的影响[J].山东林业科技,2010,(2):59~61.
    张相锋,王洪涛,周辉宇等.花卉废物和牛粪联合堆肥中的氮迁移[J].环境科学,2003,24(3):126~131.
    张雪英,周顺桂,周立祥等.堆肥处理对污泥腐殖物质形态及其重金属分配的影响[J].生态学杂志,2004,23(1):30~33.
    张亚,苏品,刘双清,等.拮抗假单胞菌SU8对几种植物病原真菌的抑制作用[J].农药,2013,52(12):917~920.
    赵传鹏,浦跃朴,尹立红,等.实时荧光定量PCR法检测环境假单胞菌属细菌丰度[J].东南大学学报,2006,36(1):143~146.
    周闯.农业废弃物好氧堆肥过程中物化参数对放线菌种群的影响[J].湖南大学硕士学位论文,2013,75~78.
    周肖红.绿化废弃物堆肥化处理模式和技术环节的探讨[J].中国园林,2009,(4):7~11.
    朱玉贤.现代分子生物学(第三版)[M].北京:高等教育出版社,2007:167~170.
    朱芷威,董常生.持家基因作为相对定量内标物的稳定性比较[J].生物技术通讯,2006,17(5):807~809.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700