硅缓解金丝小枣盐胁迫的效应与机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盐碱是枣(Ziziphus jujuba Mill.)树成活生长、枣果产量提高的重要逆境。国内外对枣树耐盐生理与调控技术的研究甚少。硅是土壤中仅次于氧的第2 大元素,但对植物的可利用性往往很低。硅在植物中的生理功能近年很受关注。本文以2 年生嫁接苗为试材,在盆栽比较4 个枣优良品种耐盐性差异的基础上,通过电子显微分析技术、能谱分析技术、叶绿素荧光分析技术等着重研究了硅与金丝小枣(Z.jujuba cv.jinsixiaozao)耐盐性的关系。主要结论如下:
    1)随盐(NaCl)胁迫加重,4 个枣品种盐害发生的速度加快、等级提高,生长量减少,生物量下降,叶生理状况恶化,但不同品种各自的表现差异显著。综合评价,金丝小枣耐盐性最强,其次是梨枣(Z.jujuba cv.lizao)和大瓜枣(Z.jujuba cv.daguazao),冬枣(Z.jujuba cv. dongzao)耐盐性最弱。
    2)土壤含盐量0.1﹪不抑制金丝小枣生长,但含盐量0.3﹪以上生长受到显著抑制,生物量低于对照的50﹪。在含盐量0.3﹪和0.5﹪土壤上生长的金丝小枣,萌发前给土壤施硅(Si,0.4‰,w/w)的植株与不施硅植株的生长和生理状况有明显差异:施硅植株叶相对含水量提高,叶片细胞质膜透性( PMP)降低,光系统II(PSII)的潜在光化学活性(Fv/Fo)和最大光化学效率(Fv/Fm)提高,CO_2 同化速率(Pn)和水分利用效率( WUE)提高,气孔调节能力增强,枣头枝长度及生物量显著增大。施硅改善了盐胁迫下金丝小枣树的生长与生理。
    3)应用电子探针技术对根尖和叶片横切面上离子微域分布状况的分析结果表明,外源硅使受盐胁迫( 0.3﹪)金丝小枣细胞中的K~+ 相对含量大幅升高,根系各组织细胞中的Na~+ 和Cl-相对含量大幅降低,叶片栅栏组织细胞中的Na~+ 和Cl-相对含量大幅降低,枣树体内的离子平衡与光合细胞中的离子稳态得到了良好维持。
    4)0.3﹪NaCl 短期( 30 d)胁迫对金丝小枣叶片超微结构的伤害轻微,但长期(165 d)胁迫伤害效应显著为大;0.5﹪NaCl 短期(30 d)胁迫对金丝小枣叶片超微结构产生显著伤害,长期(165 d)胁迫则使之近乎完全破坏。给土壤施硅(Si)明显缓解前述各处理下盐分离子对金丝小枣叶片超微结构的伤害,叶绿体片层结构得到了较好保持,较大程度上维护了膜系统及其结构的正常和
Salt and alkali is one of the key stress factors inhibiting survival rate, growth, fruit yield and quality of Ziziphus jujuba Mill. The information on salt tolerance and control technology of jujube were very little in world wide. The availability of silicon in soils for plants is usually low though it is the second abundant element in soils. Some people reported that silicon could alleviated ion toxicity of plants, including Na~+ and Cl-. Nevertheless, the relation between silicon and salt tolerance of plants is still not understood well.
    The differences of salt tolerance among four super jujube cultivars were investigated in this dissertation. The main objects of the this study were focused on the relation between silicon and salt tolerance of Z.jujuba cv.jinsixiaozao, a very famous jujube variety in China, and its mechanism. X-ray electron probe microanalysis, ultra-structure observation and analysis, chlorophyll fluorescence technology and other scientific methods were used to release the secretary. Salt and silicon source was sodium chloride and silicate potassium, respectively. The test material were 2-year old grafting seedlings. The main results of the dissertation were presented as follows:
    1) Salt injure grade and speed of 4 jujube varieties, such as inhibition of growth, reduction of biomass, declining of leaf physical status, became more and more heavier with the increase of soil salt content. However, salt tolerances of 4 jujube varieties were significantly different. According to synthetic evaluation, salt tolerance of Z.jujuba cv. jinsixiazao was the strongest in the 4, second and third was Z.jujuba cv. lizao and Z.jujuba cv.Dongzao, respectively.The weakest tolerance to salt stress was Z.jujuba cv.daguazao.
    2) The experimental results also showed that salt ions had distinctively toxic effects on jinsi jujube plants grown on soils containing 0.3﹪(w/w, dw) or 0.5﹪NaCl for more than 6 months while added silicon ameliorated the toxicity of salt on jinsi jujube. The differences of growth and physiological status between the plants added and no added silicon (0.4 ‰Si, w/w, dw)under the two salt stresses were significant. Silicon increased the relative water content of leaf blade and decreased the plasma membrane permeability. The photo-system II activity of potential chemistry (Fv/Fo), maximum efficiency of photo-chemistry (Fv/Fm), net photosynthetic rate (Pn) and the water use efficiency were all promoted by added silicon. The leading stem length, a key growth index of Z.jujuba under salt stress, was much larger by added silicon. Silicon improved the growth and physiology of Z.jujuba under salt stress.
    3) The analysis results of ion micro-distribution status on the across sections of root tip and leaf blade of Z. jujuba cv jinsixiaozao clearly showed that added silicon enhanced the relative content of K+ in almost all cells of the root tip and leaf blade under salt stress while the relative weight of Na+ and Cl-in palisade tissue of leaf blade was decreased significantly . Therefore, the ion balance in the plants and the ion homeostasis in photosynthetic cells were better maintained. 4) The experimental results showed that 0.3﹪NaCl stress for 30 d lightly wounded while significantly wounded the ultra-structure of leaf blade stressed for 165 compared with that of salt stress. Same was 0.5﹪NaCl stress for 30 d and 165 d, respectively. However, added Si alleviated injure of leaf blade ultra-structure under 0.3﹪and 0.5﹪NaCl whether it was for 30 d or 165 d. The main effects of silicon on this respect were keeping with the stability and integrity of ultra-structure of membrane system under salt stress, suppressing aging of chloroplast and des-integrity of the lamellae. Silicon also increased the production of osmiophilic granule, starch grain, and other vesicles. Therefore, silicon is benefit to maintain the photosynthetic efficiency and osmotic regulation capacity of Z.jujuba.cv.jinsixiaozao under salt stress. 5) The effect of silicon on fatty acid content and composition of root and leaf membrane lipid of the fruit tree under salt stress were significantly different. In root of the plant, the content of saturated fatty acid decreased by exogenous silicon compared with no silicon addition under salt stress. Both the content of unsaturated fatty acid and the index of unsaturated fatty acid of root membrane were all promoted due to addition of silicon under salt stress. The effects of silicon on fatty acid content and composition of leaf membrane lipid were adverse to those of root under salt stress, which implied that the physiological function of silicon in alleviating the injure of salt stress to Z. jujuba cv. jinsixiaozao was closely correlated with the physiological function and growth characteristics of the tree,s organs.
引文
[1]刘友良,毛才良, 汪良驹. 植物耐盐性研究进展. 植物生理学通讯,1987,23(4):1~7
    [2]刘友良,汪良驹. 植物对盐胁迫的反应和耐盐性.见: 余叔文,汤章城主编. 植物生理与分子生物学(第二版). 北京: 科学出版社,1998
    [3]王遵亲,祝寿泉,俞仁培,等. 中国盐渍土. 北京: 科学出版社,1993
    [4]Zhu JK. Salt and draught stress signal transduction in plants. Annual Reviewe of Plant Biology, 2002, 247~267
    [5]武之新, 齐树亭. 土壤盐分对金丝小枣生长发育的影响. 中国果树, 1985, (2): 11~15
    [6]郭裕新, 杨茂林, 石凤祥. 金丝小枣生态适应性及发展区域的调查研究. 中国果树,1988,(1):11~14
    [7]马焕成, 蒋东明. 木本植物抗盐性研究进展. 西南林学院学报, 1998,18(1): 52~59
    [8] Epstein E. Silicon. Annu. Rev plant physiol plant Mol Biol, 1999, 50:641~64
    [9]Epstein E. The anomaly of silicon in plant biology. Proc Natl Acad Sci USA, 1994,91:11~17
    [10]Savant NK, Korndirfer GH, Datnoff LE, et al. Silicon nutrition and sugarcane production: a review. J Plant Nutr,1999,22(12):1853~1903
    [11]Takahashi E, Tanaka H, Miyake. Distribution of silicon accumulating plants in the plant kingdom. J. Soil plant Nutr, 1981,52:511~15
    [12]Marn S, Perry CC. Structural aspects of biologic silica Ciba foundation symposium. New York: John Wiley Sons,1996
    [13]Ma JF, Takahashi E. Effect of silicon on the growth and phosphorus uptake of rice. Plant and Soil, 1990,126:115~119
    [14] Liang YC, Shen ZG. Interaction of silicon and Boron in oilseed rape plants. J Plant Nutr,1994,17:415~425
    [15]Horst WJ, Feaht M, Numann A, Wissemeider AH, Maier P. Physiology of manganese tolerance in vigan unguicuiate (L). Warp. J Plant Nutr Soil Sci,1999,162:263~274
    [16]Inasaki K, Maier P, Fecht M, Horst WJ. Effects of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in
    cowpea ( Vigna unguicuiate (L) walp). Plant soil, 2002,238:281~288
    [17]Gong H, Chen K, Chen G, Wang S, Zhang C. Effect of silicon on the growth of wheat under drought. J Plant Nutr, 2003, 26(5):1055~1063.
    [18]Yamauchi M,Winslow MD. Effect of silicon and magnesium on yield of upland rice in the humid tropics. Plant Soil, 1998,113:265~269
    [19]Liang YC,Yang C, Shi H. Effects of silicon on growth and mineral composition of barley growth under toxic levels of aliuminum. J Plant Nutr, 2001,24(2):229~243
    [20] Li WB, SHi X H,Wang H, et al. Effects of silicon on rice leaves resistance to ultraviolet-B. Acta Botanica Sinica. 2004,46(6):691~697
    [21]Gucci R, Tattini M. Salinity tolerance in Olive. Hort Rev, 1997, 21:177~214
    [22]陈立松,刘星辉. 果树逆境生理. 北京:中国农业出版社,2003
    [23]W. 拉夏尔. 植物生理生态. 北京: 科学出版社, 1985
    [24]马凯. 十八种果树盐害症状与耐盐性. 果树科学, 1997, (1):1~5
    [25]汪良驹, 马凯, 姜卫兵,等.五种落叶果树的氯离子分布与耐盐性研究. 中国南方果树,1996,25(4):34~38
    [26]王玉祥,刘静,乔来秋等. 41 个引种树种的耐盐性评定与选择. 西北林学院学报, 2004,19(4):55~58
    [27]王志刚,包耀贤. 12个树种耐盐性田间比较试验. 防护林科技, 2000,45(4):9~11
    [28]张宝泽,赵可夫. 刺槐和沙枣耐盐性能的研究. 山东科学,1996, 9(2):35~38
    [29]荀守华,刘元铅,王开芳,等. 甜樱桃砧木的耐盐性试验初报. 落叶果树,2004,(2):6~8
    [30] 牛爱国, 张开春, 阎国华, 等. 樱桃砧木酸碱盐适应性评价. 果树学报, 2004, 21(5):482~484
    [31]史燕山,骆建霞,张涛, 等. 核果类果树砧木耐盐性差异的研究. 西北农林科技大学学报, 2004,32(3):45-48
    [32]申连英,毛永民,鹿金颖,等. 丛枝菌根对酸枣实生苗耐盐性的影响. 土壤学报, 2004, 41(3):426~432
    [33]徐呈祥,徐锡增. 硅对盐胁迫下金丝小枣叶绿素荧光参数和气体交换的影响. 南京林业大学学报, 2005,29(1)25~28
    [34]Flowers TJ. Salinisation and horticultural production. Sci.Hort, 1999,78:1~4
    [35]Bong G, Loreto F. Gas-exchange properties of salt-stressed olive (Olea europaea L.)leaves. Plant Physiol, 1989, 90:533~545
    [36]Heimler D, Tattini M, Ticci S et al. Growth, ion accumulation, and lipid composi-tion of two olive genotypes under salinity. J Plant Nutr, 1995,18:1723~1734
    [37]汪良驹,刘友良,马凯. 盐胁迫下无花果细胞质膜和液泡膜H+-ATPase活性对脯氨酸累积的影响.植物生理学报, 2000, 26:232~236
    [38] 彭建营, 彭士琪, 王永惠. 4 个枣品种北缘演化关系的研究. 河北农业大学学报,1996,19(4): 33~36
    [39]彭建营, 束怀瑞, 彭士琪,等. 与枣核性状相关联的RAPD 标记的筛选. 果树学报,2001,18(5):288~290
    [40]葛喜珍,彭士琪,王永蕙. 酸枣的染色体核型分析.河北林果研究,1997,12(4):343~346
    [41]陈永利. 酸枣和金丝小枣的核型研究. 中国果树,1988,(1):37~38
    [42]王学军,杨丰年,郭春阳,等. 金丝小枣3 个优良品系的主要性状及栽培技术. 河北林果研究. 1999,14(1): 58~61
    [43] 徐秀琴, 管跃义, 刘金亮, 等.金丝小枣3 个新品种. 河北林果研究.2000,15( 增刊):164~166
    [44]车素英,董长明,柏鲁林. 金丝魁王枣的选育及栽培技术. 落叶果树,2004(2):17~18
    [45]单公华,郭裕新,周广芳,等.新一代金丝小枣—金丝新1 号.山西果树,1998,73(3):29
    [46]高丽,周广芳,单公华,等. 金丝2 号小枣特征特性及栽培技术要点. 山东农业科学,1999,35-36
    [47]高丽,单公华,周广芳,等.枣新品种--金丝3 号. 北方果树,1999a,32:19
    [48]郭裕新.枣新品种--金丝新4 号.中国果树,1999(1):25~26
    [49] 胡富香, 纪清巨, 任淑萍, 等. 优质无核金丝小枣育苗技术. 河北林业科技, 2001,(6):40~41
    [50]张福泉,王嘉长,李峰. 枣茎段离体培养初报. 中国果树,1983, (3):46~47
    [51]刘贵仁,严仁玲,张磊,等. 金丝小枣愈伤组织诱导植株再生及染色体变异的研究. 天津农学院学报, 1995,2(1):1~6
    [52] 高凤菊, 朱金英, 戴忠民. 乐陵无核金丝小枣的组培快繁技术研究. 农业与技术,2004a,24(1):1~3
    [53] 高凤菊, 张万琴. 乐陵无核金丝小枣组培快繁影响因素研究. 落叶果树,2004b,(4):75~77
    [54] 高凤菊, 赵同凯, 张万琴. 乐陵无核金丝小枣组培苗生根移栽的研究. 落叶果树,2004c,(4):75~77
    [55] 王震星, 张磊, 刘玉琴. 枣的花药离体培养和染色体倍性变异. 植物生理学通讯,1998,34(3):180~182
    [56]罗永平,田敬义,于治国,等. 金丝小枣优质丰产技术指标. 落叶果树2002,(1):46~47
    [57]王奎武,孟德辉,吴忠强,等. 金丝小枣冠下覆草效果调查. 河北果树,2000,(2):13~14
    [58]杨彦玲,郭广杰. 种药剂防治金丝小枣裂果的效果. 河北果树,2000,(1):16~17
    [59]李志欣,刘进余. 枣量间作复合种植对农作物生长及产量的动态影响. 河北农业大学学报,2002,25(4):45~48
    [60]徐呈祥,徐锡增.枣粮间作的机制优化模式及管理技术.江苏林业科技, 2005,(1):28~32
    [61]郭欲新,杨茂林. 枣粮间作的优化模式.中国果树,1988,2:22~25
    [62]马凯. 十八种果树的盐害症状及耐盐性研究. 果树科学,1997,14(1):1~5
    [63]中国科学院上海植物生理研究所, 上海市植物生理学会.现代植物生理学实验指南. 北京: 科学出版社,1999
    [64]Dhindsa RS, Matowe W. Drought tolerance in two mosses: correlated with enzymatic defence against lipid peroxidation. J Exp Bot,1981,32:79~91
    [65]Yang G, Rhodes D. Effects of high temperature on membrane stability and chlorophyll fluorescence in glycinebetaine-deficient and glycibetaine-containing maize lines. Austral J Plant Physiol, 1996,23:437~443
    [66]Heimler D, Tattini M, Ticci S , et al. Growth, ion accumulation, and lipid composition of two olive genotypes under salinity. J Plant Nutr, 1995, 18: 1723~1734
    [67] Gucci R, Tattini M. Salinity tolerance in olive. Hort Rev, 1997,21:177~214
    [68]Lloyd J, Keriedann PE. Gas exchange, water relations and ion concentrations of leaves of salt stressed ‘Valencia’orange Citrus sinensis (L.)Osbeck. Aust J Plant Physiol, 1987,14(4):387~396
    [69]Garcia MF, Ortiz JM, Garcia AG , et al. Effect of salinity on growth, ion content and CO2 assimilation rate in lemon varieties on different rootstocks. Plant Physiol, 1993, 89(3): 427~432
    [70]García-Agustin P, Primo-Millo E. Selection of a NaCl-tolerance Citrus Plant. Plant Cell Rep, 1995,14:314~318
    [71]Storey R. Salt tolerance, ion relations and the effect of root medium on the responses of citrus to salinity. Aust J Plant Physiol. 1995,22:101~114
    [72] Larcher W, Wagner J, and Thammathaworn. A. Effects of superimposedtemperature stress on in vivo chlorophyll fluorescence of Vigna unguiculata under saline stress. J Plant Physiol,1990,136:92~102
    [73]廖祥儒,贺普超. 盐胁迫对葡萄光合色素含量的影响. 园艺学报, 1996, 23(3):300~302
    [74] Sharma PK, Hall DO. Interaction of salt stress and photoinhibition on photosynthesis in barley and sorghum. J Plant Physiol, 1991,140: 661~666
    [75]Behboudia MH, Walker RR, T?r?kaflvy E. Effects of water stress and ssalinity on photosynthesis of pistachio. Sci Hort,1986,29:251~261
    [76]Lloyd J, Keriedann PE. Gas exchange, water relations and ion concentrations of leaves of salt stressed ‘Valencia’orange Citrus sinensis (L) Osbeck. Aust J Plant Physiol, 1987,14(4):387~396
    [77] Allakhverdiev SI, Nishiyama y, Miyairi S, et al. Salt stress inhibits the repair of photodamaged photosystem II by suppressing the transcription and translation of psbA Genes in Synechocystis. Plant Physiol,130:1~11
    [78]Netondoa GW, Onyangoa JC, and Beck E. Crop physiology and metabolism. Sorghum and salinity. II. Gas Exchange and Chlorophyll Fluorescence of Sorghum under Salt Stress. Crop Sci, 2004, 44:806~811
    [79]Neto ADA, Prisco JT, Enéas-Filho J, et al. Effects of salt stress on plant growth, stomatal response and solute accumulation of different maize genotypes. Braz J Plant Physiol,2004,16(1):31~38
    [80]Rogalla H, Romheld. Role of leaf apoplast in silicon-mediated manganese to lerance of Cucumic sativus L. Plant Cell Environ, 2002,25:549~555
    [81]Neumann D, Nieden U. Silicon and heavy metal tolerance of higher plants. Phytochemistry, 2001,56(7):685~692
    [82]Liang YC. Effect of silicon on leaf ultrastructure, chlorophyll content and photosynthetic activity of barley under salt stress. Pedosphere, 1998,8(4):289~296
    [83] Huang YZ, Zhang GP. Application of measuring chlorophyll fluorescence in identification of salinity tolerance in Triticeae crops. J Triti crops, 2004,24(3):114~116
    [84] Netondoa GW, Onyangoa JC, Beck E. Crop physiology and metabolism. Sorghum and salinity. II. Gas Exchange and Chlorophyll Fluorescence of Sorghum under Salt Stress. Crop Sci, 2004,44: 806~811
    [85] Storey R, Walk RR. Citrus and salinity. Sci Hort, 1999,78:39~81
    [86]陈竹生,聂华堂,计压,等. 柑橘种质的耐盐性鉴定. 园艺学报,1992,19(4):289~295
    [87] Horiguchi T, Morita S. Mechanism of manganese toxicity and tolerance of plants. VI. Effect of silicon on alleviation of manganese toxicity of barley. J Plant Nutr, 1987, 10:2299~2310
    [88] 施卫明, 徐梦雄, 刘芷宇. 土壤-植物根系微区养分状况的研究IV. 电子探针制样方法的比较及其应用. 土壤学报, 1987,24(3): 286~290
    [89] Jucker EM, Foy CD, Paula JC et al. Studides of manganese toxicity toleranc and amelioration with silicon in snapbean. J Plant Nutr, 1999, 22:769~782
    [90] Rogalla H, Romheld. Role of leaf apoplast in silicon-mediated manganese to lerance of Cucumic sativus L. Plant Cell Environ, 2002, 25:549~555
    [91] Huang YZ, Zhang GP. Application of measuring chlorophyll fluorescence in identification of salinity tolerance in Triticeae crops. J Triti crops, 2004, 24(3):114~116
    [92] 龚明, 丁念诚, 贺子仪, 刘友良. 盐胁迫下大麦和小麦叶片脂质过氧化伤害与超微结构变化的关系. 植物学报, 1989, 31(11):841~846
    [93] 王仁雷, 华春, 刘友良. 盐胁迫下下水稻体内、积累导致光合作用下降. 植物生理学报, 2002, 28(5):385~390
    [94] 赵曼蓉, 贾恢先. 几种典型盐地植物超微结构的研究. 干旱区资源与环境研究, 1993, 7(3):334~337
    [95] 朱宇旌, 张勇. 盐胁迫下小花碱茅超微结构的研究. 中国草地, 2000,(4): 30-32,58
    [96]汤章城. 植物磷脂及其作用. 植物生理学通讯, 1981, 17(3): 8~14
    [97]张川红, 尹伟伦, 沈漫. 盐胁迫对国槐和中林46 号杨幼苗膜类脂的影响. 北京林业大学学报, 2002, 24(5/6):89~95
    [98]Mansour MMF, van Hasselt PR, Kuiper PJC. Plasma membrane lipid alterations induced by NaCl in winter wheat roots. Physiol Plant, 1994, 92: 473~478
    [99]苏维埃, 王文英, 李锦树. 植物类脂及其脂肪酸的分析技术-TLC-GLC 技术. 植物生理学通讯, 1980, 16(3):54~60
    [100]李青云, 葛会波, 胡淑明, 等. 盐胁迫下钙对草莓叶片脂肪酸含量及组成的影响. 河北农业大学学报, 2004, 27(6): 56~59

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700