卫星热辐射特性及其空间辐照环境效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代科学技术的迅猛发展,卫星热辐射特性的研究在航天技术、通信导航以及目标探测等领域的应用价值日益凸显。热控涂层是卫星表面的第一道防护屏障,在高能带电粒子、紫外、原子氧等恶劣的空间辐照环境作用下,热控涂层的光学性能发生退化,改变了卫星的热辐射特性,为空间目标的红外隐身与识别工作带来了一系列的干扰因素,研究空间环境效应对热控涂层性能退化的影响有着十分重要的意义。
     本文以卫星热辐射特性为主体研究框架,建立了一套完整的用于研究卫星热辐射特性的模型方法,特别地对空间辐照环境效应对热控涂层的退化机理展开了深入的研究,给出热控涂层性能退化的预测模型,分析了热控涂层性能退化对卫星热辐射特性的影响,主要工作包括:
     1.卫星热辐射特性的理论建模
     考虑空间轨道外热流、卫星结构、热控方式、内部载荷等因素的影响,建立了卫星温度场和红外辐射特性计算模型,给出了几种典型热控方式的数值计算模型,利用有限容积法计算得到了卫星的温度场和红外辐射通量分布,采用系统灵敏度理论分析相关参数变化对卫星热辐射特性的影响。考虑探测器视场内点源目标的成像特性,建立了空间点源目标的红外成像模型,生成了卫星在周向方向上的点源辐照强度分布。考虑地球-大气背景的红外传输特性,计算得到不同波段下的地球-大气背景的红外辐照通量分布。
     2.热控涂层对太阳辐射吸收性能退化预测模型
     分析了卫星在轨运行时所面临的复杂的空间辐照环境,提出热控涂层太阳辐射吸收性能在空间辐照环境下的退化预测模型。结合国内外公开发表的试验数据,采用最优化约束性算法,给出了几种常用热控涂层光学性能退化的预示表达式。通过误差理论对所提出的预测模型的计算精度进行讨论,并预测几种常用热控涂层在空间环境下的退化结果。
     3.热控涂层光谱性能退化特性的理论建模
     对热控涂层物理结构与能量吸收机理进行了研究,找出了影响热控涂层光谱吸收性能的各种因素,分析了各种影响因素在空间辐照环境下参数退化的概率模型。以Mie氏散射理论和等效介质理论为基础,研究了入射能量在多层非均匀折射率半透明介质涂层中的传递机理,建立了热控涂层在空间辐照条件下表面光谱吸收性能退化的计算模型,预测了高轨带电粒子和低轨原子氧环境下热控涂层光谱吸收性能的退化结果。
     4.卫星热辐射特性仿真计算集成软件的开发
     基于WINDOWS操作系统,利用软件工程的原理和方法设计开发了一套卫星热辐射特性的仿真计算应用软件,提供了完整的以人造地球卫星为典型代表的卫星温度和红外辐射特性计算仿真功能,并可以分析热控涂层在空间辐照环境下的性能退化以及对卫星热辐射特性的影响。采用MFC可视化程序设计语言开发了软件操作界面,在操作界面中可以完成卫星计算参数的输入以及相关功能的设定。采用OPENGL图形库进行计算数据的分析,并完成目标与背景的红外热场景渲染等后处理功能。
Research on thermal radiation characteristics of satellite has valuable applications in space technique, communications, navigates and targets detection. As the first protective barrier on the surface of satellite, thermal control coating is vital for the reliable operation of spacecrafts in orbit. However, the rigorous environment in space will exert the harsh effect on the spectral feature of thermal control coatings of spacecrafts. The coatings may be subjected to bombardment of ultra-fine particles and undesired radiation in the outer space. Protons, electrons, atomic oxygen, and ultraviolet radiation in space will induce performance degradation of the coatings on spacecrafts. It changes the thermal radiation characteristics of satellite and brings some unfavorable factors for the infrared stealth and target identification work of satellite. It's much important to further investigate on the degradation performance of thermal control coating exposured in space radiation.
     As thermal radiation characteristics of satellite to be the main research framework, a numerical model used to study the thermal radiation characteristics was proposed based on the computational simulation method. Especially, the environmental effects of space radiation on the degradation of thermal control coatings were carried out. Predicting model for the degradation of spectral properties of the coatings was established. Furthermore, some analysis on the variation behaviors of thermal radiation characteristics induced by the degradation of thermal control coating was carried out. The main work of this paper includes:
     1. Modeling research for thermal radiation characteristics of satellite
     Considering the influences of heat flux of space orbit, thermal control modes and heat load, temperature and infrared models of satellite were developed. The numerical models for some typical thermal control suites were proposed. The distributions of both temperature and radiation of satellites were obtained by finite volume method. Sensitivity affected by temperature-dependent parameters such as thermal conductivity and heat capacity were discussed. Infrared imaging model of point source target drawing in the district of detector was established and the distributions of its radiation intensity were produced in circumferential direction. Take into account of radiation transmission characteristic of the backgrounds consisted of earth and atmosphere, the infrared images of the backgrounds were shown in different wavelengths regions.
     2. Degradation model of solar absorption by thermal control coating
     The rigorous space environment which the thermal control coatings exposed to was introduced and the degradation model of the solar absorption was proposed. Under the guidance of the experimental data both at home and abroad, the formulations which describe the variation of optical parameters of thermal control coatings were deduced by the least square method. The accuracy of the degradation model was verified and degradation behaviors of the absorption factor for some typical thermal control coatings were predicted.
     3. Modeling for degradation behaviors of spectral properties of thermal control coatings
     By studying the physical components and the energy absorption mechanism, the factors which determine the spectral properties of the coatings are founded. Mathematical expressions for the variations of the influence factors have been introduced for complicated environment. The transmission mechanism of energy incident into a non-uniform refractive index transparent media was deeply studied based on the Mie's theory and Stratified Media theory. Based on these work, a predicting model for the degradation of spectral absorptance properties of the coatings is established. By using the theoretical model, degradation behaviors for both high orbit and low orbit was predicted which validated the above model gives a useful approach for predicting the degradation behaviors of thermal control coatings on spacecrafts in orbit.
     4. Development of integrated software for the thermal radiation analysis of satellite
     Based on WINDOWS-operating system, integrated software for thermal radiation analysis of satellite (ISTRAS) was developed. It provides simulation functions as temperature distributions and infrared characteristic of the satellite. Moreover, it can be used for degradation behavior's research of satellite exposured in space radiation. The software's interface was compiled using MFC visual programming language, one can completed inputs and settings of parameters and related functions in the user's surface. OPENGL graphics library was used to generate the three-dimensional infrared thermal imaging results of target and background.
引文
1. Rogne TJ. et al. U.S. Army tank-automotive command (TACOM) thermal image model. SPIE Imaging Infrared,1989,1110:210-215
    2. Dhar V, Khan Z. Comparison of modeled atmosphere-dependent range performance of long-wave and mid-wave IR imagers. Infrared physics and technology,2008, 51(6):520-527
    3.毕小平,黄小辉.坦克动力舱体红外辐射特性模拟.激光与红外,2009,39(5):499-502
    4.谈和平,崔国民,阮立明,夏新林,余其铮.地物目标红外热像理论建模中的蒙特卡洛罗法与并行计算.红外与毫米学报,1998,17(6):417-423
    5.罗来科,宣益民,韩玉阁.水陆坦克红外辐射特性仿真研究.红外技术,2009,31(1):18-22
    6.王章野,吴志华,鲍虎军,彭群生.红外目标与背景的真实感合成.计算机辅助设计与图形学学报,2002,14(11):1001-1004
    7. Greenleaf WG, Simiard SM, Tait M.B. Generation of realistic infrared (IR) images of tactical targets in obscured environments.SPIE,1991,1486:364-372
    8. Vaitekunas DA, Alexan K, Lawrence OE. SHIPIR/NTCS:a naval ship infrared signature countermeasure and threat engagement simulator.SPIE,1996,2744:411-424
    9.罗明东,吉洪湖,施小娟.隐身飞机上发动机红外隐身技术的分析与思考,隐身技术,2006(03):13-18
    10.施小娟,吉洪湖,罗明东.发动机背负式安装无人机的排气系统红外特征的计算研究,航空动力学报,2008,23(4):651-656
    11.夏新林,艾青,任德鹏.飞机蒙皮红外辐射的瞬态温度场分析.红外与毫米波学报,2007,,26(3):174-177
    12.石磊,华祖耀,饶颖.飞机红外辐射图像仿真研究.计算机仿真,2007,24(10):184-187
    13.李彦志,孙波,王大辉.飞机红外辐射建模与仿真.红外技术,2008,30(5):252-255
    14.韩玉阁,张振华,宣益民.大气层外弹道式目标红外辐射特性两种计算方法对比.红外技术,2011,32(9):497-501
    15.靳友林.中段弹道导弹及诱饵红外目标特性研究.南京理工大学硕士学位论文,2004
    16.张伟清.卫星红外辐射特征研究.南京理工大学博士学位论文,2006
    17.沈国上,杨宝成,蔡继光,姜瑾,高景.卫星红外辐射场理论模拟.中国空间科学技术,2005,25(2):6-10
    18.舒锐,周彦平,陶坤宇,姜义军.空间目标红外辐射特性研究.光学技术,2006.32(2):196-199
    19. http://www.mscsoftware.com/Products/CAE-Tools/MSC-Sinda.aspx
    20.潘增富,整星稳态温度的热网络分析方法.中国空间科学技术,1987,7(6):37-44
    21.潘增富,马式明.卫星瞬态温度场的计算分析.中国空间科学技术,1988,8(5):22-29
    22.翁建华,潘增富,闵桂荣.航天器实验模型的热网络分析.中国空间科学技术,1998,18(5):56-59
    23.麻慧涛,华诚生.通信卫星平台热分析建模方法研究及温度预示.中国空间科学技术,2002,22(5):54-60
    24.孙凤贤,夏新林,刘顺隆.航天器温度场的蒙特卡洛法计算.哈尔滨工业大学学报,2001,22(5):10-12
    25.侯增祺,胡金刚.航天器热控制技术.中国科学技术出版社.2007
    26.苗建印,张红星,吕巍,范含林.航天器热传输技术研究进展.航天器工程,2010,19(2):106-112
    27.张红星,苗建印,邵兴国.双储液器环路热管的设计与实验研究.中国空间科学技术.2009,29(5):8-14
    28.苗建印,向艳超,范含林.高效深低温热收集与热传输技术.航天器工程,2005,14(3):40-45
    29.苗建印,曹剑锋,侯增祺.LHP在模拟空间环境下的性能试验研究.工程热物理学报.2003,24(1):88-90
    30.周顺涛,莫青,张红星,苗建印.深冷环路热管超临界启动实验研究.低温工程.2010,(3):18-21
    31.苗建印,邵兴国.高传热能力热管的理论分析及实验研究.工程热物理学报.2001,22(1):74-77
    32.闵桂荣.卫星热控制技术(第一版).北京:宇航出版社,1991
    33. Tortorelli D A, Haber R B. First-order design sensitivities for transient conduction problems by an adjoint method. International Journal of Numerical Methods in Engineering,1989,28:733-752
    34. Gu YX, Cheng GD. Structural modeling and sensitivity analysis of shape optimization. J.Struct. Opti.,1993,6(1):29-37
    35.顾元宪,赵红兵,亢战等.瞬态热传导问题的优化设计与灵敏度分析.大连理工大学学报,1999,39(2):158-165
    36. Ishimoto T, Bevans JT. Sensitivity analysis in thermal design. Proceedings of 9th International Symposium on Space Technology and Science, Tokyo,1971
    37.韩玉阁,宣益民.卫星热设计参数的灵敏度分析.计算物理,2004,21(5):455-460
    38. Thekaerara MP, et al. Proposed standard values of the solar constant and the solar spectrμm. The J. of Environmental Sciences,1970,9-10
    39. Jacobs. Simulation of the thermal behaviors of object and its nearby surroundings. TNO publication PHL-1980-08
    40. Balfou LS, Bushlin Y. Semi-empirical model based approach for IR scene simulation.Proc.SPIE,1997,3061:616-623
    41.董雁冰,姚连兴,仇维礼,王福恒.目标和环境的光学特性,宇航出版社,北京,1995
    42.徐向荣,卞南华.红外辐射与制导.国防工业出版社,北京,1997
    43.金伟其,董岳,赵忠耀等.红外烟幕对热成像系统识别距离的影响,红外技术,1995,17(6):11-14
    44.金伟其,王吉晖,王霞等.红外成像系统性能评价技术的新进展,红外与激光工程,2009,38(1):7-13
    45.许强,金伟其,傅连秋等.超光谱成像探测系统的图谱标定和评估,光谱学与光谱分析,2007,27(9):1676-1679
    46.范永杰,金伟其,刘崇亮等.前视红外成像系统的新进展,红外与激光工程,2010,39(2):189-194
    47.王章野.地面目标的红外成像仿真及多光谱成像真实感融合研究.浙江大学博士学位论文
    48.张智丰.太空场景的可见光和红外波段真实感成像研究.浙江大学博士学位论文
    49.罗继强,吴振森,董雁冰,强噪声背景下红外弱小目标的快速检测方法,红外与激光工程,2004,33(1):47-49
    50.秦娟英,吴振森.海天背景中目标红外辐射和散射特性研究,西安电子科技大学硕士学位论文,2010
    51.谈和平,夏新林,刘林华,阮立明,红外辐射特性与传输的数值计算-计算热辐射学,2006,哈尔滨工业大学出版社
    52.宣益民,韩玉阁.地面目标与背景的红外特征.国防工业出版社,2004
    53. Donald AJ, George CT, David TW, et al. Optical properties of thermal control coatings after weathering, simulated ascent heating, and simulated space radiation exposure. NASA 2008-215259
    54. In situ electron, proton, and ultraviolet radiation effects on thermal control coatings.NASA NO.NAS5-9650
    55. Kristan P G, Rachid D. Gorden V. Reduced polarized thermal emission due to surface contamination by dew and atmospheric aerosols. Journal of quantitative spectroscopy radiative transfer.2004,88(1):64-70
    56. Arielle H. Stambler KE.Inoshita LM. et.al. Ground-Laboratory to In-Space Atomic Oxygen Correlation for the Polymer Erosion and Contamination experiment (PEACE) Polymers.NASA/TM,2011-216904
    57. Feng WQ, Ding YG, Yan DK, et al. Space combined environment simulation test on as degradation of GEO satellite thermal control coatings. Spacecraft environment engineering.2007,24(1):27-31
    58.冯伟泉,丁义刚,闫德葵等.空间电子、质子和紫外综合辐照模拟试验研究.航天器环境工程,2005,22(2):69-72
    59.冯伟泉,丁义刚,闫德葵等.地球同步轨道长寿命卫星热控涂层太阳吸收率性能退化研究.中国空间科学技术,2005(2):34-40
    60. Vasiliev VN, Grigorevskiy AV, Gordeev YP. Mathematical simulation methods to predict changes of integral and spectral optical surface characteristics of external spacecraft materials and coatings. Proceedings of 6th international conference. Toronto, Canada, 2002-05
    61. Wilkes DR, Le Master PS, Mell RJ, et al. Trend analysis of in-situ spectral reflectance data form the thermal control surfaces experiment. Third Post-retrieval Symposiμm (part2:LDEF 69 months in space),1993:755-769
    62. Marco J.Evaluation of thermal control materials degradation in simulated space environment. Proceedings of the 9th International Symposiμm on Materials in Space Environment (ESA SP-540).Noordwijk, the Netherlands,2003-06
    63.刘宇明,冯伟泉,丁义刚等.辐照环境中ZnO类热控涂层性能退化预示模型研究.航天器环境工程.2008,25(1):15-17
    64.郭亮,吉海彦.蚁群算法在近红外光谱定量分析中的应用研究.光谱学与光谱分析.2007,27(9):1703-1705
    65.李玉英,温巧燕,李丽香等.改进的混沌蚂蚁群算法.2009,30(4)733-737
    66.李丽香.一种新的基于蚂蚁混沌行为的群智能优化算法及其应用研究.北京邮电大学博士学位论文
    67.焦巍,刘光斌,张艳红.求解约束优化的模拟退火PSO算法.系统工程与电子技术.2010,32(7):1532-1536
    68. Leticia CC, Susana CE, Carlos AC. Solving engineering optimization problems with the simple constrained particle swarm optimizer,2008(10)
    69.高鹰,谢胜利.基于模拟退火的粒子群优化算法.计算机工程与应用.2004,40(1):47-50
    70.王冬,叶升锋,闵顺耕.近红外光谱分辨率对液体样品近红外定量模型影响的研究.光谱学与光谱分析,2009,29(7):1813-1817
    71.张珩,彭颖.飞行目标红外多光谱高效识别算法.计算机仿真,2009,26(1):225-228
    72. Hsuan R, Chein CY. Automatic spectral Target Recognition in Hyperspectral Imagery.IEEE,2003 (04):1232-1249
    73. Kristan PG, Rachid D, Gorden V. Reduced polarized thermal emission due to surface contamination by dew and atmospheric aerosols. Journal of Quantitative Spectroscopy & Radiative Transfer 2004; 88(1):64-70.
    74. Peter V, Charles HD. In situ electron, proton, and ultraviolet radiation effects on thermal control coatings.1969; NASA:NAS5-9650.
    75. Broadway NJ. Radiation effects design handbook:section 2, Thermal control coatings.1971; NASA:CR-1785.
    76. Wang XD, He SY, Yang DZ.A study of electron exposure effects on ZnO/K2SiO3 thermal control coatings. Materials chemistry and physics 2002,78:38-42.
    77.刘超峰,王振红,胡行方.氧化锌在真空紫外辐照下降解机理的研究.中国空间科学技术,1999,4:33-37
    78. Houdayer A, Cerny G, Klemberg-Sapieha, et.al. MeV proton irradiations and atomic oxygen exposure of spacecraft materials with SiO2 protective coatings. Nuclear Instrμments and Methods in Physics Research B,1997,131:335-340
    79. He LY, Bierwagen GP, Tallman DE. Use of a scanning thermal microscope to examine corrosion protective coatings in exposure. Progress in Organic Coatings,2003, 47:233-248
    80.刘宇明,冯伟泉,丁义刚等,SR107-ZK在空间辐照下的物性变化.宇航材料工艺,2007(4):61-64
    81. Rodriguez J, Gomez M, Ederth J. Thickness dependence of the optical properties of sputter deposited Ti oxides films. Thin Solid Films,2000,365:119-125
    82. Geotti-Bianchini F, Preo M, Guglielmi M. Infrared reflectance spectra of semitransparent SiO2 rich films on silicate glasses:influence of the substrate and film thickness. Journal of Non-Crystalline Soilds,2003,321:110-119
    83.沈志刚,赵小虎,王鑫.原子氧效应及其地面模拟试验.国防工业出版社,2006
    84. Vasiliev VN, Grigorevskiy AV, Gordeev YP. Mathematical simulation methods to predict changes of integral and spectral optical surface characteristics of external space craft materials and coatings. Proceedings of 6th international conference 2002, Toronto, Canada.
    85. Baneshi M, Maruyama S, Nakai H, Komiya A. A new approach to optimizing pigmented coatings considering both thermal and aesthetic effects. Journal of Quantitative Spectroscopy & Radiative Transfer 2009; 110(3):192-204.
    86. Baneshi M, Maruyama S, Komiya A Comparison between aesthetic and thermal performances of copper oxide and titanium dioxide nano-particulate coatings. Journal of Quantitative Spectroscopy & Radiative Transfer 2010; In press
    87. Wilkes DR, Le Master PS, Mell RJ. Trend analysis of in-situ spectral reflectance data forms the thermal control surfaces experiment. Third Post-retrieval Symposiμm (part2: LDEF 69 months in space) 1993; 755-769
    88. Marco J. Evaluation of thermal control materials degradation in simulated space environment. Proceedings of the 9th International Symposium on Materials in Space Environment (ESA SP-540).2003, Noordwijk, Netherlands.
    89. Duvignacq C, Hespel L, Roze C, Girasole T. Modeling of white paints optical degradation using Mie's theory and Monte Carlo method. Proceedings of the 9th International Symposiμm on Materials in a Space Environment 2003; Noordwijk, the Netherlands:399-406.
    90. Busbridge LW, Orchare SE. Reflection and transmission of light by a thick atmosphere according to the phase function:1+xcosO.J.of Astrophysics 1967; 149:644-655.
    91. Lii CC, Ozisik MN. Hemispherical reflectivity and transmissivity of an absorbing, isotropically scattering slab with a reflecting boundary. Int.J.Heat Mass Transfer 1973; 16:685-690.
    92. Horikoshi R, Nagasaka Y, Ohnishi A. A method for calculating thermal radiation properties of multilayer films from optical constant. International Journal of Thermophysics 1998; 19(2):547-555.
    93. Vargas WE, Greenwood P, Otterstedt J. Light scattering in pigmented coatings: experiments and theory. Solar Energy 2000,68(6):553-561.
    94. Tonon C, Roze C, Girasole T, Dinguirard M. Four-flux model for a multilayer, plane absorbing and scattering mediμm:application to the optical degradation of white paint in a space environment. Applied Optics 2001; 40(22):3718-3725.
    95. Vilaplana R, Luna R, Guirado D. The shape influence on the overall single scattering properties of a sample in random orientation.Journal of Quantitative Spectroscopy & Radiative Transfer 2010; In press.
    96. Liu LH, Hsu PF. Analysis of transient radiative transfer in semitransparent graded index mediμm.Journal of Quantitative Spectroscopy & Radiative Transfer 2007; 105:357-376.
    97. Tan HP, Wang PY, Xia XL.Transient coupled radiation and conduction in an absorbing and scattering composite layer.AIAA J.of Thermophysics and Heat Transfer 2000; 14(1): 77-87.
    98. Tan HP, Luo JF, Xia XL.Transient coupled radiation and conduction in a three-layer composite with semitransparent specular interfaces and surfaces. ASME J.of Heat Transfer 2002; 124(3):470-481.
    99. An W, Ruan LM, Tan HP, Qi H, Lew YM. Finite Element Simulation for Short Pulse Light Radiative Transfer in Homogeneous and Nonhomogeneous MediaJournal of Heat Transfer,2007,129(3):353-362
    100.Tan HP, Ruan LM, Xia XL, Transient coupled radiative and conductive heat transfer in an absorbing, emitting and scattering medium. Int.J.of Heat and Mass Transfer,1999, 42:2967-2980.
    101.Liu LH, Ruan LM, Tan HP. On the discrete ordinates method for radiative heat transfer in anisotropically scattering media.International Journal of Heat and Mass Transfer.2002, 45(15):3259-3262
    102.Van de Hulst.Light scattering by small particles.New York,John Wiley&Sons 1957
    103.Peiponen KE, Vartiainen EM. Kramers-Kronig relations in optical data inversion. Physical Review B,1991,44(15):8301-8303
    104.Lucarini V, Saarinen JJ, Peiponen KE. Kramers-Kronig relations in optical materials research.2004, NASA, CR-178
    105.傅竹西,林碧霞,何一平等.ZnO薄膜光学常熟测量.发光学报.2004,25(2):159-161
    106.陶文铨.数值传热学(第二版).西安:西安交通大学出版社,2001
    107.宣益民.计算传热学.南京理工大学出版社,1994
    108.杨世铭,陶文铨.传热学(第三版).北京:高等教育出版社,1998
    109.宣益民,韩玉阁,蔡兰波.地面目标与背景的红外辐射特征.北京:国防工业出版社,2004
    110.刘荣辉.地面立体背景与沿海地面背景红外辐射特性的研究.南京理工大学硕士学位论文,2004
    111.陈衡.红外物理学.北京:国防工业出版社,1985
    112.张伟清,宣益民,韩玉阁.地球红外辐射背景成像方法研究.红外与激光工程,2006,35(1):39-43
    113.DANKO D M. The digital chart of the world. Geolnfo Systems,1992,2:29-36
    114.BROWN J F, LOVELAND TR, OHLEN D O. The global land-cover characteristics database.Photogram metric Engineering and Remote Sensing,1999,65(9):1069-1074
    115.黄本诚,马有礼.航天器空间环境试验技术.国防工业出版社,2002
    116.Morison WD, Tennyson RC, French JB et al. Atomic oxygen studies on polymers, N89-12591,1989
    117.Feng W Q, Ding Y G, Yan D K. Space combined environment simulation test on as degradation of GEO satellite thermal control coatings. Spacecraft environment engineering,2007,24(1):27-31
    118.田志恒,潘自强.辐射计量学.北京:原子能出版社,1992:9-17
    119.复旦大学等编,原子核物理实验方法,原子能出版社,1997
    120.孙九立,张秋禹,刘金华.低地球轨道环境中原子氧对空间材料的侵蚀及防护方法.腐蚀与防护.2010,31(8):631-635
    121.黄勇,夏新林,谈和平,石家勋.含粒子半透明流层光谱吸收的蒙特卡罗法模拟.哈尔滨工业大学学报,2000,32(6):42-45
    122.余其铮.辐射换热原理.哈尔滨:哈尔滨工业大学出版社,2000.9
    123.Claire T, Carole D, Gilbert T et al. Degradation of the optical properties of ZnO-based thermal control coatings in simulated space environment. JOURNAL OF PHYSICS D: APPLIED PHYSICS,2001(34):124-130
    124.Tribble A C, Boyadjjan B, Davis J et al. Contamination control engineering design guidelines for aerospace community, NASA Contractor Report 4740
    125.孙威,田东波,闫少光.羽流污染对某型号卫星热控涂层的影响分析,航天器环境工程,2008,25(6):538-541

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700