涡扇发动机排气系统红外隐身实验装置的总体设计及性能仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以研制涡扇发动机排气系统红外隐身实验装置为目的,进行了实验装置的方案设计研究及其在安装轴对称混合排气形式喷管情况的红外特性的仿真。研究工作主要通过数值模拟来完成,其中,物理模型的建立用Unigraphics软件进行,网格划分采用Gambit软件进行,流场计算采用FLUENT软件进行,红外辐射特征的计算采用本课题组发展的涡轮发动机排气系统红外辐射强度预估软件TEESIRP(Tturbine Engine Exhaust System Infrared Radiate Prediction)进行。
     实验装置的总体设计研究主要包括以下内容,分别是:实验装置的方案设计、外涵进气形式设计、关键部件尺寸设计、风机选型和流场参数测量设计。该部分工作的特色和优点在于大量利用CFD计算来辅助设计,运用FLUENT软件计算了多种外涵进气形式下外涵截面的速度分布,并对计算结果进行比较以确定了符合实验装置设计要求的外涵进气形式设计;运用FLUENT软件计算了实验装置的关键部件不同主要尺寸参数组合情况下的外涵截面速度分布,并对计算结果进行比较确定了符合实验装置设计要求的关键部件尺寸;运用FLUENT软件计算了在内涵、外涵流量符合实验装置设计要求的情况下对风机提供动压的需求,进而根据设计余量修正及风机厂提供的多个型号风机的性能曲线选择了适合实验装置设计需求的风机型号。通过该部分研究为即将展开的实验装置零部件设计、及零部件组装设计打下了坚实的基础。
     实验装置红外特性仿真研究中,计算了其在安装轴对称喷管情况下的红外特性。计算的工作包括流场计算和红外计算两个步骤,首先运用FLUENT软件计算了在安装不同喷管情况下,实验系统的温度场、流场和浓度场分布,然后运用TEESIRP软件计算了红外辐射强度的光谱分布和空间分布。在完成计算的基础上,从燃气辐射特性分析、流场参数分布、喷管内各个部件投影面积变化等方面论证了计算结果的可靠性以及涡扇发动机轴对称喷管红外强度分布的机理。通过该部分工作预测和分析了实验装置在设计工作状态下的红外辐射特性,为实验研究的展开以及实验现象的分析打下了坚实的基础。
The objective of this thesis is to investigate the infrared stealth experiment device of the exhaust system of turbofan engine. The scheme design of infrared stealth experiment device and the Infrared Radiation (IR) behavior of experiment device installed with axisymmetrical convergent nozzle were investigated. On the numerical aspect of the study, the physical models were established with software of Unigraphics, the meshes were created with Gambit, the flow fields were computed with FLUENT. The IR characteristics were computed with an IR analysis software—TEESIRP(Turbine Engine Exhaust System Infrared Radiate Prediction)developed by research group.
     The overall design work of test equipment includes scheme design for test equipment, by-pass duct inlet design, size design for key components, fan selection and measurement design for flow parameters. The characteristic and advantage of this part is considerable usage of CFD technology and including several key points below. The first, the velocity distribution of by-pass section was calculated for various by-pass inlet forms using fluent software and the calculated results were compared to determine the by-pass inlet form which accords with the test equipment design requirements. The second, the velocity distribution of by-pass section was calculated for the combinations of various key size parameters which belong to key components of test equipment and also the calculated results was compared to determine the coincident design requirements. The last, it was calculated the needed dynamic pressure which the fan provided in the condition that the core and bypass flow rate accords with the design requirements and then fan model was chosen based on residual correction and performance curves of various fans which was provided by the fan company. The above research made good preparation for the forthcoming component design and assembly design.
     In the research of usage test equipment to simulate the infrared performance, it was calculated the infrared characteristic in the condition of axisymmetric nozzle installed. It was included flow calculation and infrared performance calculation in this part of work. Firstly the temperature filed, flow field and concentration field was calculated through fluent software calculation for various nozzles. Secondly, the spectral and spatial distribution of infrared intensity was calculated in the usage of TEESIRP software. Based on the finished calculation, the result reliability and the mechanism of infrared intensity distribution was demonstrated from the below aspects, analysis of radiation characteristic from gas, flow field parameters distribution, the projected area variation of different nozzle components. The part predicted and analyzed the infrared characteristic of test equipment under the design condition. And it also made good preparation for the development of test work and analysis of test phenomena.
引文
[1]桑建华,王钢林.固定翼飞行器红外隐身.隐身技术, 2005年第1期: 2-7
    [2]申洋,唐明文.机载红外搜索跟踪系统(IRST)综述.红外技术, 25(1),2003:13-18
    [3]胡传炘.隐身涂层技术.北京,化学工业出版社, 2004
    [4]罗明东.无人机排气系统红外隐身技术研究.南京航空航天大学博士学位论文,2006
    [5]罗明东,吉洪湖,黄伟.非加力涡轮发动机排气系统红外辐射强度的数值计算研究.航空动力学报(已录用)
    [6] Ludwig C.B, Malkmus W, Reardon J.E, et al. Handbook of Infrared Radiation from Combustion Gases. NASA-SP-3080, 1973
    [7] Rynes P, Curran A, Johnson K, Levanen D and Marttila E. New and Improved Signature Model of Ground Vehicles with Muses. ThermoAnalytics, Inc
    [8] Johnson K, Curran A, Less D, Levanen D and Marttila E. MuSes: A New Heat and Sinature Management Design Tool for Virtual Prototyping. Presented at Ninth Annual Ground Target Modeling&Validation Conference, Houghton, MI, August 1998.
    [9] IRGen Technical Description, Version 3.0, Aprile 1996.
    [10]张封北,郑礼宝,郭容伟.旋流二元喷管喷流混合特性和气动特性的研究.隐身技术,1991年第1期: 58-68
    [11]翟普,隋俊友,崔杰,赵克云.弹用航空发动机尾喷流红外抑制技术研究.推进技术, 1996,17(4): 17-20
    [12]山骐骥,卜满,郑礼宝.热喷流的红外辐射特性的测试实验研究.南京航空航天大学学报, 1995, 27(6): 791-796
    [13]郑礼宝.全尺寸二元喷管红外辐射特性研究.航空学报, 2003, 23(2): 140-142
    [14]张勃,吉洪湖.大宽高比矩形喷管的射流与外流的掺混特性的数值研究.航空动力学报, 20(1), 2005:104-110
    [15]张勃.大宽高比矩形喷管射流的掺混与红外抑制特性研究.南京航空航天大学博士学位论文, 2005
    [16]罗明东,吉洪湖,黄伟,蔡旭,张勃,高潮.非加力涡扇发动机二元喷管红外辐射特性实验研究.航空动力学报,2006,21(4):631-636
    [17]罗明东,吉洪湖,黄伟,蔡旭,张勃,高潮.涡扇发动机二元喷管热喷流的红外光谱辐射特性实验研究,推进技术(已录用)
    [18]额日其太,王强,陈渭鹏.两种涡扇发动机排气系统红外辐射特性的比较.推进技术, 2003, 24(4): 334-336
    [19]黄勇,郭志辉,魏福清,吴寿生.小突片对热射流红外辐射的影响研究.推进技术, 2001, 22(2): 122-125
    [20]张靖周.涡扇发动机内外涵强化混合、冷却与射流矢量喷管气动红外特性研究.隐身技术, 2005年第1期: 30-33
    [21]张靖周,李立国,高潮,何文斌.波瓣喷管红外抑制系统的实验研究.航空动力学报, 1997, 12(2): 212-214
    [22]张青藩,尚守堂.一种抑制超声速气流红外辐射的新途径.推进技术, 1999, 20(5): 67-71
    [23]杨旭,夏焕明,刘德彰.超音尾喷流红外抑制方案的研究.航空动力学报, 2002, 17(2): 155-159
    [24]额日其太,王志杰,吴寿生.高速热喷流条件下二元收扩喷管扩张段壁面冷却的初步试验研究.航空动力学报. 2002, 17(1): 40-44
    [25]胡江峰,张丽芬,刘振侠.发动机短舱冷却的计算研究.机械设计与制造, 2006年第10期: 6-8
    [26]罗明东,吉洪湖,黄伟,蔡旭,高潮.轴对称喷管与飞机后机身组合的红外辐射特性实验研究,南京航空航天大学学报(已录用)
    [27]罗明东,吉洪湖.带有机身下遮挡的发动机排气系统中红外光谱辐射特性数值计算研究.工程热物理学会2005年学术会议,2005年11月,北京
    [28]施小娟.涡扇发动机收敛喷管红外辐射特征及引射抑制技术研究,南京航空航天大学硕士学位论文,2007
    [29]蔡旭,吉洪湖,罗明东,黄伟,施小娟,宫禹.对流-辐射板对热喷流红外辐射的影响研究.航空学会—第六届动力年会,2006年11月,南京
    [30]黄伟,吉洪湖,罗明东,蔡旭,宫禹,高潮.喷管修型二元喷管的中红外光谱辐射特性实验研究.航空学会—第六届动力年会,2006年11月,南京
    [31] S Rooks, M.Fair and A.G.Smith Development of an experimental capability to validade infrared signature predictions of installed aircraft exhaust systems.SPIE,Vol(4718):301-311
    [32]夏春林,刘德彰.航空发动机圆套状尾喷管流场温度场数值模拟.航空动力学报, 1994,9(4): 428-430
    [33]吴达,郑克扬.排气系统的气动热力学.北京航空航天大学出版社,1989
    [34]马建隆,宋之平.实用热工手册.水利电力出版社,1992
    [35]陶文铨.数值传热学(第2版).西安,西安交通大学出版社,2001
    [36]马会民,陈汉平,苏明,等.三维引射流动数值模拟及紊流模型选择.上海交通大学学报, 2006,40(2): 326-330
    [37]吴军,谷正气,钟志华. SST湍流模型在汽车绕流仿真中的应用.汽车工程, 2003,25(4): 326-329
    [38]冯永明,刘顺隆.舰船燃气轮机变几何动力涡轮三维粘性流场的数值分析.哈尔滨工程大学学报, 2005,26(5): 580-585
    [39]沈维道,蒋智敏,童钧耕.工程热力学.北京,高等教育出版社,2002
    [40]王宝官.传热学.北京,航空工业出版社,1997
    [41]陈懋章.粘性流体动力学基础.北京,高等教育出版社,2004
    [42]张小英,王先炜.轴对称矢量喷管红外特性的数值计算研究.航空动力学报, 2004,19(5): 366-369
    [43]彭泽琰,刘刚.航空燃气轮机原理(上册).北京,国防工业出版社,2000
    [44]张小英.飞机发动机排气系统红外辐射特性计算研究.北京航空航天大学硕士学位论文,1999
    [45] Siegnal R, Howell J.R. ThermalRadiation Heat Transfer, 3rd. Hemisphere, Washington, DC. 1992
    [46]周立伟,目标探测与识别北京理工大学出版社,2004
    [47] Huddleston, S.C., Wilsted, H.D., and Ellis, C.W. Performance of Several Air Ejectors with Conical Mixing Sections and Small Secondary Flow Rates. NACA RM E8D23, 1948
    [48]胡江峰,张丽芬,刘振侠.发动机短舱冷却的计算研究.机械设计与制造, 2006年第10期: 6-8
    [49] Greathouse, W.K., and Hollister, D.P. Preliminary Air-Flow and Thrust Calibrations of Several Conical Cooling-Air Ejectors with a Primary to Secondary Temperature Ratio of 1.0. II-Diameter Ratios of 1.06 and 1.40. NACA RM E52F26, 1952
    [50]方昌德.世界航空发动机手册.北京,航空工业出版社,1996
    [51]王永仲,现代军用光学技术,科学出版社,2004

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700