基于顶层设计的车辆底盘系统协同控制理论与技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
车辆电控底盘系统是由多个子控制系统组成的,多个可控子系统相互之间影响,车辆综合性能的提高依赖于各个子系统的协同作用。子系统之间协同有利于车辆底盘子系统集成的软硬件共享、能量管理和信息交互,满足车辆安全性、舒适性和经济性的更高要求,实现车辆底盘系统集成化、智能化和网络化,这是当今车辆工程领域学术界研究的热点与难点。国内外科研人员已经在车辆底盘集成控制理论与技术方面开展了大量研究工作,但是一直尚未形成较为完善的理论和体系。
     转向与悬架作为汽车底盘系统中的两大关键零部件,相对独立而且易于控制,但是如果将他们集成,由于耦合轮胎这一非线性系统,将会使控制变得复杂。本文以转向、悬架以及集成为研究对象,通过定性定量地研究轮胎侧向力与垂向力之间关系,充分发挥轮胎性能对悬架和转向的作用和影响,并进行协同集成控制研究,运用自上而下的顶层设计理念,通过总体规划布局,使子系统之间优势互补,降低或消除子系统之间矛盾和冲突,最大程度减少驾驶意图变化和外界环境影响等引起的车身姿态变化,兼顾并改善行驶平顺性和操纵稳定性。根据这一思路,本文主要围绕着半主动悬架控制、电动助力转向控制和轮胎状态监测以及系统集成控制等方面展开研究工作。
     建立轮胎侧向力和垂向力耦合神经网络模型。借助轮胎接地压力试验系统进行了多种工况下轮胎侧偏特性试验,分析了侧偏特性与侧偏角、轮速、垂直载荷、充气压力等众多因素关系,选择558个样本,将这些数据点作为网络特征参数,训练和建立自适应神经网络模型,采用了BFGS方法进行参数辨识和网络逼近,通过理论计算验证了可行性,为悬架与转向耦合机理分析奠定理论基础。
     建立车辆多体动力学模型,其中包括转向、悬架运动学、弹性力学的非线性特性,并进行了模型与实际车辆的对比试验,同时通过台架试验标定半主动悬架中步进电机转角与减振器阻尼力的关系,为半主动悬架控制以及集成控制器的设计提供依据。
     分析了影响横摆角加速度的因素,采用转向过程稳定性指标,描述车辆在不同车速和路面附着系数下的操稳性问题,并且研究了横摆角速度与侧倾角的非线性关系。通过研究瞬态响应下的性能指标之间的相互关系,分析耦合系统对车辆综合性能的影响。
     提出了车辆底盘系统协同控制的顶层设计思想,构建了基于模糊关系网协同控制理论的车辆行驶平顺性与操纵稳定性协同机制。根据悬架与转向耦合机理,参考驾驶意图和车辆状态,针对半主动悬架(SAS)和电动助力转向(EPS),按工况进行底盘协同系统的顶层设计,将底盘协同系统分为四个子系统:轮胎子系统(TYPE)、半主动悬架子系统(SAS)、电动助力转向子系统(EPS)和顶层子系统(SYS),在每个子系统之间引入模糊关系型合同网作为协同机制来处理协调和合作的问题,实时地确定子系统模糊权值的比重。运用状态迁移原理建立子系统模块,组成多子系统协调与合作。
     构建了基于自治体技术的感知、信念、意图统一结构车辆底盘协同系统底层子系统。针对半主动悬架控制系统要求,在平顺性、操稳性和安全性之间进行切换和通信,建立了SAS子系统;针对电动助力转向系统运行过程工况复杂多变、实时性要求较高等特点,建立了EPS多工况切换模糊控制子系统;根据汽车行驶时轮胎力的计算和各种异常情况(如轮胎漏气、过低或过高气压、过高温度)预警的需要,建立了TYRE子系统。
     搭建了车辆底盘协同控制的联合仿真系统,并进行联合仿真计算。基于多体动力学原理建立系统模型,结合控制器模型,进行了随机路面、蛇行、双纽线和单脉冲角阶跃输入工况的联合仿真计算,对比分析了不同控制方法的仿真结果,检验了控制算法的有效性。
     设计了车辆底盘协同控制的快速原型半实物仿真系统和台架、道路试验系统。组建dSPACE与硬件连接构成快速原型仿真系统,通过与联合仿真相同工况的计算结果对照分析,验证了快速原型控制器模型的正确性和有效性。
     基于FlexRay网络对协同底盘系统进行了软硬件设计,同时改进设计了节流口可调式阻尼减振器。在此基础上,自主研发自测量气门嘴替代现有胎压传感器。最后,开发了车辆底盘系统协同控制器,并装车进行道路试验,通过与快速原型控制系统试验进行了比较,验证控制系统的正确性与硬件设计的可靠性。
     研究结果表明,基于顶层设计的车辆底盘系统协同控制,能够满足不同子系统在不同行驶工况下的控制要求,同时实现多个子系统在协同过程中的协调与合作。与传统分层控制方法相比,在随机路面试验中,车身垂直加速度和前后悬架动挠度均方根值性能指标均得到不同程度改善。在蛇行试验中,转向盘转角平均峰值略有减小,而转向盘转矩平均峰值下降了13.31%,横摆角速度平均峰值增加了9.77%,侧向加速度平均峰值下降了10.01%。在双纽线试验中低附着路面进行转向时,略为减少了操纵转矩,而回正过程中,增加了操纵转矩,考虑驾驶舒适性的同时保证了操稳性。在复合工况试验中,解决了传统分层控制无法避免的车身垂直加速度、车身侧倾角、俯仰角和横摆角速度振动幅值等性能指标很难同时兼顾的局限性。因此,采用顶层设计与协同控制相结合的底盘集成系统,较好地自主协调系统内部资源,减小了矛盾和冲突,在保障子系统功能充分发挥的基础上,很好地实现了底盘复杂大系统全局优化,使车辆操稳性和平顺性得到兼顾,明显提高整车综合性能。
Vehicle electronic chassis control system is made up of several sub-control systems, which affect each other and the improvement of vehicle overall performance is dependent on the cooperation of all those sub-control systems. The cooperation of those sub-systems is good for sharing of hardware and software of sub-system integration of vehicle chassis, energy management and information exchange so as meet higher requirements on safety, comfortableness and economy to realize integration, intelligence and networking, therefore, it is the main direction towards development of vehicle technology. Researchers at home and abroad have completed a lot of researches on the vehicle chassis integrated control theory and technology but a sound theory and system are yet to be established from the perspective of methodology.
     As the two key parts, the steering and suspension are relatively independent and easy to be controlled, but the two are associated with tire, which is the nonlinear system and interconnected with each other. This paper gives a qualitative and quantitative study on the relationship between side force and vertical force of tire to give full play to the impact on and tire performance with the steering and suspension as the subject. In addition, it provides cooperative integrated control study with the use of top-down top-level design concept to reduce or eliminate the conflict among all sub-systems by overall arrangement to complement each other's advantages of all sub-systems. By thus doing, the variation in vehicle body posture due to change of driving intention and external environmental influence can be optimized to the fullest extent and the driving smoothness and handling stability can be improved at the same time. Based on that train of thought, the paper is mainly developed control of semi-active suspension, electric power steering control and monitoring of tire conditions and system integrated control.
     The paper establishes a coupled neural network model of side force and vertical force of tire. On the basis of s series of tests on tire cornering characteristics under various operating conditions carried out on the tire ground pressure test bed, the relationship among the cornering characteristics and cornering angle, wheel speed, vertical load and charge pressure etc. is analyzed. And then,588samples are selected and those data points are regarded as network characteristic parameters. After that, a self-adaptive neural network model is trained and established to lay a theoretical foundation for analysis of suspension and steering mechanism with the use of BFGS method for parameter identification and network approximation and by means of comparatively validation with magic formula tire model.
     The paper also builds a vehicle multi-body dynamics model, including steering and suspension kinematics, non-linear characteristics of elastic mechanics and compares the model with actual vehicle. At the same time, the relationship between stepping motor rotation angle and damping force of shock absorber in the semi-active suspension is determined via bench test so as to provide basis for design of semi-active suspension control and integrated controller.
     The paper analyzes the factors which affect yaw rate and studies the non-linear relationship between the yaw rate and angle of roll by representing the operating stability of vehicles under different speed and different coefficient of road adhesion as stability index in the steering process. In addition, the impact on overall performance of the vehicle brought about by the coupled system is analyzed on the basis of the study of correlation of performance indexes under transient response.
     The paper proposes the top-level design concept of vehicle chassis cooperative control and builds the framework of cooperative control of top-down semi-active suspension and electric power steering. It provides a top-level design of chassis system for semi-active suspension (SAS) and electric power steering (EPS) as per the operating conditions according to the coupling mechanism of suspension and steering and with reference to driving intention and vehicle condition and divides the chassis cooperative system into four sub-systems:tire sub-system (TYPE), semi-active suspension sub-system (SAS), electric power steering sub-system (EPS) and top-level sub-system (SYS). The fuzzy relational cooperation network is introduced for each sub-system as the cooperative mechanism to deal with the coordination and cooperation so as to determine the percentage of fuzzy weight of each sub-system in real time.
     A unified bottom sub-system based on perception, conviction and intention is designed. Considering the requirements of semi-active suspension control system, switch and communication between the smoothness, operating stability and safety is realized, a SAS sub-system is established and design of damping shock absorber with adjustable throttling mouth is improved; due to complicate and changeable working conditions with high real-time demand during operation of the electric power steering, the EPS sub-system is established to realize fuzzy control of switch of multi-conditions; the TYRE sub-system is established in light of the requirement of calculation of force of tires during driving and alarming of various abnormalities (such as tire leakage, under-pressure and over-pressure and over-temperature) and inflating valve provided with automatic pressure measurement developed independently to replace the current tire pressure sensor.
     A test bed including tire, suspension and steering and a simulation system are designed. Several joint simulation tests under step-input conditions such as random road, pylon course slalom test, lemniscate test and monopulse angle are made based on the system model established in accordance with principles of multi-body dynamics and in combination of controller model. After the tests, the results under different control method are compared and analyzed to check the validity of control algorithm. A rapid prototype simulation system composed of dSPACE and hardware connections is set up to verify the correctness and effectiveness of controllers by comparison with results of the joint stimulation tests under same working conditions.
     Hardware and software design of cooperative chassis system is made on the basis of FlexRay network and the damping shock absorber with adjustable throttling mouth are improved and inflating valves provided with automatic pressure measurement to replace the current tire pressure sensors are developed independently. Finally, the cooperative controller of vehicle chassis system is developed and tested after installing on the vehicle and the correctness control system and reliability of hardware design is verified by comparison with test results of the rapid prototype control system.
     The results show that the cooperative control of vehicle chassis system based on top design could meet the requirements of different subsystems under various driving conditions. Meanwhile, the cooperation and coordination of multi-systems during the cooperative process is also achieved. Compared with the traditional hierarchical control, the RMS values of the body vertical acceleration and the dynamic deflection of the front and rear suspension is improved to different degrees in the experiment with random road excitations. In the pylon course slalom test, though the average peak value of steering wheel angle is reduced slightly, the average peak value of steering wheel torque is reduced by13.31%, and the average peak value of yaw velocity is increased by9.77%.The average peak value of lateral acceleration is also reduced by10.01%. In the lemniscate test, when the steering is performed on low adhesion road, the handling torque is decreased slightly. However, during the aligning process, the handling torque is increased. Both ride comfort and handing performance is ensured. In the complex conditions test, the proposed controller effectively solves the limitation of taking many performance indicators into account, such as the body vertical acceleration, body roll angle, body pitch angle and yaw velocity, etc, which can't be avoided by traditional hierarchical control. Therefore, the integrated chassis system with combining the top-level design and collaborative control can autonomous coordinate the system internal resources and attenuate the contradictions and conflicts between different subsystems, which achieve the global optimization of complex chassis system based on guaranteeing the full exertion of subsystem functions. The proposed chassis system gives consideration to both the vehicle handling stability and ride comfort and significantly improved the comprehensive performance of the vehicle.
引文
[1]冯崇毅.汽车电子控制技术[M].北京:人民交通出版社,2005
    [2]喻凡,林逸.汽车系统动力学[M].北京:机械工业出版社,2005
    [3]Zhao Wanzhong, Shi Guobiao, Lin Yi, Nie Hong tracking performance of electric power steering system based on the Mixed H2/H∞Strategy[J] Chinese Journal of Mechanical Engineering, 2011,24(4):584-590
    [4]Liu Jia,liu Zhongxin,Chen Zengqiang.Coordinative control of multi-agent systems using distributed nonlinear output regulation[J] Nonlinear Dynamics,2012,67 (3):1871-1881
    [5]Chang Shunchang, Lin Haiping. Study on controlling chaos of permanent magnet synchronous motor in electric vehicles[J]. International Journal of Vehicle Design,2012,58(2):387-398
    [6]S.H. Zareh, A. Sarrafan, A.A.A. Khayyat, and A. Zabihollah.Intelligent semi-active vibration control of eleven degrees of freedom suspension system using magneto-rheo logical dampers[J]. Journal of Mechanical Science and Technology,2012,26(2):323-334
    [7]Wenwen Li,Robert Raskin,Michael F.Goodchild.Semantic similarity measurement based on knowledge mining:an artificial neural net approach, International Journal of Geographical Information Science,2012,26(8):1415-1435
    [8]姜炜,余卓平,张立军.汽车底盘集成控制综述[J].汽车工程,2007,29(5):420-425
    [9]高晓然,余卓平,张立军.集成地盘控制系统的控制框架研究[J].汽车工程,2007,29(1):21-26
    [10]陈励志.先进的底盘控制系统的发展趋势[J].汽车工程,2002,24(5):455-458
    [11]刘志举.浅析中国汽车产业的发展[J].中国-东盟博览,2013,(10):16
    [12]孙洪福.汽车:呼唤优化顶层设计[J].经营与管理,2013,(09):01
    [13]Chen Huang,Long Chen,Yuan Chao-Chun.Non-linear modeling and control of semi-active suspensions with variable damping[J].Vehicle System Dynamics,2013,51(10):1568-1587
    [14]Chen Huang, Long Chen, Yuan Chao-Chun.Integrated Control of Lateral and Vertical Vehicle Dynamics Based on Multi-agent System[J]. Chinese Journal of Mechanical Engineering,2014, 27(2):304-318
    [15]Sascha J. Semmler, Peter E. Rieth. Global chassis control-the networked chassis[C]. SAE Paper, 2006-01-1954
    [16]Chen Huang, Long Chen, Yuan Chao-Chun.Nonlinear Analysis and Intelligent Control of Integrated Vehicle Dynamics[J]. Mathematical Problems in Engineering,2014,ID832864
    [17]Salman M, Zhang Z, Boustany N. Coordinated control of four wheel braking and rear steering[C]American Control Conference, IEEE,1992:6-10
    [18]赵树恩.基于多模型智能递阶控制的车辆底盘集成控制研究[D].重庆:重庆大学,2010
    [19]Matsumoto N, Tomizuka M. Vehicle lateral velocity and yaw rate control with two independent control inputs[C]American Control Conference, IEEE,1990:1868-1875
    [20]Salman M, Zhang Z, Boustany N. Coordinated control of four wheel braking and rear steering[C]American Control Conference, IEEE,1992:6-10
    [21]Nagai M, Hirano Y, Yamanaka S. Integrated control of active rear wheel steering and direct yaw moment control[C]. Proc. AVEC96. Genmany,1996
    [22]Schilke N A, Fruechte R D, Boustany N M. Integrated vehicle controlfC] Proceedings of International Congress on Transpottion Electronics. Dearborn, MI, USA,1988:97-106
    [23]Kim R, Harada H, Minabe H. Electronic control of car chassis present status and future perspective[C]Transportation Electronics.International Congress on. IEEE,1988:173-188
    [24]T.Yoshimura and Y.Emoto. Steering and suspension system of a full car model using fuzzy resoning based on single input rule modules[J]. International Journal of Vehicle Autonomous Systems 2003, 1(2):237-254
    [25]C. Doniselli, G. Mastinu, and M. Gobbi. Aerodynamic offects on ride comfort and road holding of automobiles[C]. Proc. of the XIV IAVSD Symposium,1995
    [26]Alexander Mayzus, Karolos Grigoriadis. Integrated Structural and Control Design for Structural Systems Via LMIS[C], International Conference On Control Applications,Hawai,1999:75-79
    [27]M. Harada and H. Harada. Analysis of Lateral stability with Integrated control of suspension and steering system[J]. JSAE Review,1999,20:465-471
    [28]E.Lim and J. Hedrick. Lateral and Longitudinal vehicle control coupling for automated vehicle operation[C]. Proceedings of American Control Conference,1999,3676-3680
    [29]李道飞.基于轮胎力最优分配的车辆动力学集成控制研究[D].上海:上海交通大学,2008
    [30]沈晓鸣.基于广义执行器—受控对象的车辆底盘集成控制的研究[D].上海:上海交通大学,2007
    [31]宗长富,陈国迎,梁赫奇,等.基于模型预测控制的汽车底盘协调控制策略[J].农业机械学报,2011,42(2):1-7
    [32]王欢.多轴车辆转向系统与悬架系统集成控制研究[D].吉林:吉林大学,2011
    [33]刘翔宇,陈无畏.基于DYC和ABS分层协调控制策略的ESP仿真[J].农业机械学报,2009,40(4):1-6
    [34]王其东,吴勃夫,陈无畏.基于预测控制的主动悬架与电动助力转向集成控制[J].农业机械学报,2007,38(1):1-5
    [35]陈无畏,周慧会,刘翔宇.汽车ESP与ASS分层协调控制研究[J].机械工程学报,2009,45(8):190-196
    [36]Zhao Shu-en, Li Yuling. Multi-sensor information fusion and strong tracking filter for vehicle nonlinear state estimation[J]. IEEE Intelligent Vehicles Symposium,2009,6:653-657
    [37]卢少波.汽车底盘关键子系统及其综合控制策略研究[D].重庆:重庆大学,2009
    [38]殷国栋,陈南.四轮转向直接横摆力矩鲁棒集成控制仿真研究[J].系统仿真学报,2008,20(16):4264-4268
    [39]谢晗,吴光强.基于XPC目标的实时仿真技术及实现[J].微计算机信息2006.22(12-1):200-202
    [40]崔海峰,刘昭度,马岳峰等.基于捷达GTX轿车的ABS/ASR集成控制系统[J].机械工程学报,2006,42(S1):152-156
    [41]施国标.电动助力转向助力特性仿真与控制策略研究[D].长春:吉林大学,2002
    [42]孙立军.汽车电动助力转向系统助力特性及控制策略研究[D].镇江:江苏大学,2007
    [43]包凡彪.汽车线控转向技术的发展与应用[J].汽车科技,2007(2):10-11
    [44]孙宣峰.电动助力转向系统Hoo鲁棒控制及侧向干扰研究[D].镇江:江苏大学,2008
    [45]林逸,施国标.汽车电动助力转向技术的发展现状与趋势[J].公路交通科技.2001,18(3):79-82
    [46]Kurishige M, Kifuku T, Inoue N. A Control Strategy to Reduce Steering Torque for Stationary Vehicles Equipped with EPS[J]. SAE Paper 1999-01-0403
    [47]Sam-Sang You a, Seek-Kwon Jeoeng b. Controller design and analysis for automation steering of passenger cars[J]. Mechatronic,2002,12:427-446
    [48]Aroquiadassou G, Henao H, Lanfranchi V. Design comparison of two rotating electrical machines for electric power steering[C]. Electric Machines and Drives,2005 IEEE International Conference.2005:431-436
    [49]朱敏慧.未来的EPS技术[J].汽车与配件.2009,27(7):17-19
    [50]王海峰,王文建.汽车EPS系统原理及整车应用要点[J].合肥工业大学学报(自然科学版).2009,32(9):21-24
    [51]Nobuo Sugitani, Yukihiro Fujuwara, Kenko Uchida. Electric Power Steering with H-infinity Control Designed to Obtain Road InformationfC]. Proceeding of the American Control Conference,2006:2935-2939
    [52]Christophe Lauwerys, Jan Swevers, Paul Sas. A Model Free Control Design Approach for A Semi-active Suspension of a Passenger Car [C]. American Control Conference,2005,6: 2206-2211
    [53]A.S.M. Shawkatul Islam, A.K.W. Ahmed. A Comparative Study of Advanced Suspension Dampers for Vibration and Shock Isolation Performance of Road Vehicle [J]. SAE Paper No. 2006-01-0484
    [54]Savaresi S.M., E. Silani, S. Bittanti. Acceleration-driven damper:an optimal control algorithm for comfort-oriented semi-active suspensions [J]. ASME Transactions:Journal of Dynamic Systems, Measurement and Control,2005,127:218-229
    [55]Caponetto R., O. Diamante, G. Fargione. A soft computing approach to Fuzzy Sky-Hook control of semi-active suspension [J]. IEEE Transactions on Control System Technology, 2003,11(6):786-798
    [56]Aws Abu-Khudhair, Radu Muresan, Simon X. Yang. Fuzzy Control of Semi-Active Automotive Suspensions[C]. Proceedings of the 2009 IEEE, International Conference on Mechatronics and Automation. Changchun,2009,8:2118-2122
    [57]陈龙,周孔亢,李德超.车辆半主动悬架控制技术的研究[J].农业机械学报,2002,33(1):25-28
    [58]孙建民.车辆主动悬架系统控制技术研究[D].哈尔滨:哈尔滨工程大学,2003
    [59]Keum-Shik Hong, Tae-Shik Kim, Rae-Kwan Kim. Sensitivity Control of a Semi-Active Suspension System Equipped with MR-Dampers[C]. International Conference on Control, Automation and Systems,2007,10:262-267
    [60]Makoto Yokoyama, J.Karl Hedrick, Shigehiro Toyama. A Model Following Sliding Mode Controller for Semi-Active Suspension Systems with MR Dampers[J]. Proceeding of the American Control Conference,2001,6:2652-2657
    [61]张莹,朱思洪.汽车阻尼可调减振器比较分析[J].中国制造业信息化.2006,35(7):56-60
    [62]方恩.可调阻尼减振器设计与半主动悬架研究[D].镇江:江苏大学,2004
    [63]方恩,江浩斌,周孔亢.多用途节流口式可调阻尼减振器:中国,ZL200420027668.7[P].2005-10-05
    [64]D Karnopp, M Crosby, R Harwood. Vibration control semi-active force generators [J]. ASME J. of Engineering for Industry,1974(5):619-622
    [65]汪若尘.基于大系统理论的时滞半主动悬架研究[D].镇江:江苏大学,2006
    [66]Michele Ieluzzi, Patrizio Turco, Mauro Montiglio. Development of a heavy truck semi-active suspension control [J]. Control Engineering Practice.2006,14(3):305-312
    [67]Daniel Fischer, Rolf Isermann. Mechatronic semi-active and active vehicle suspensions [J]. Control Engineering Practice.2004,12(11):1353-1367
    [68]Emanuele Guglielmino, Kevin A. Edge. A controlled friction damper for vehicle applications [J]. Control Engineering Practice.2004,12(4):431-443
    [69]管继富,武云鹏,黄华,等.车辆半主动悬架的模糊控制[J].系统仿真学报.2007,19(5):1030-1033
    [70]郑玲,邓兆祥,李以农.基于电流变减振器的汽车半主动悬架最优控制[J].重庆大学学报.2003,26(7):1-5
    [71]王辉,朱思洪.半主动空气悬架神经网络自适应控制的仿真研究[J].交通与计算机.2005,23(2):69-72
    [72]陈无畏,朱敏杰,王启瑞等.基于串联型模糊神经网络的汽车半主动悬架的研究[J].汽车工程.2000,22(2):104-108
    [73]陈龙,陈扬,江浩斌等.节流口可调式阻尼减振器的性能分析与试验研究[J].江苏大学学报(自然科学版).2004,25(3):208-211
    [74]郭孔辉,孙胜利,邢云明等.行程相关减振器的建模与试验[J].吉林大学学报(工学版).2008,38(增刊):32-36
    [75]MacIsaac Jr J D, Garrot W R. Preliminary findings of the effect of tire inflation pressure on the peak and slide coefficients of friction[J]. National Highway Traffic Safety Administration (NHTSA), Technical Report DOT,2002,809428
    [76]Schatz O. Recent Trends in Automotive Sensors[J]. IEEE Proc Sensors,2004,1:236-239
    [77]Jeff Burgress. Tyre Pressure Monitoring System Reference Design[M].2003
    [78]Pacelle M. Industrial sensing the wireless way[J]. Machine Design,2005,77(1):104-110
    [79]Burrer C. Direct Measuring Tire Pressure Monitoring Systems[J]. VDI Berichte,2004,18(29): 517-521
    [80]Burgess J. Tire pressure monitoring:An industry under pressure[J]. Sensors,2003,20(7):29-33
    [81]Youson M S, Halsband M. Flat out[J]. Engineering.2003,244(9):32-36
    [82]Lin L, Yun W J. MEMS Press Sensors for Aerospace Applications[J]. IEEE Aerospace Conference,1998,1:429-436
    [83]Fleming W J. Overview of Automotive Sensor[J]. IEEE Sensors J,2001,1:296-308
    [84]Bever T, Kandler M. Solution for Tire Pressure Monitoring Systems[C]. Berlin:International Conference on Advanced Microsystems for Automotive Applications,2003
    [85]颜重光.TPMS设计方案的思考[J].电子设计应用,2004,23(4):11-12
    [86]孔刚柱.车辆轮胎监测及自控调压系统的设计与实现[D].成都:电子科技大学,2009
    [87]何磊.基于FlexRay总线的线控转向系统双电机控制方法研究[D].长春:吉林大学,2011
    [88]罗峰,苏剑,袁大宏.汽车网络与总线标准[J].汽车工程,2003,25(4):372-376
    [89]万仁君.电动汽车分布式控制系统的总线调度与整车控制策略的研究[D].天津:天津大学,2004
    [90]秦贵和.车上网络技术[M].北京:机械工业出版社,2003
    [91]王揩,王宏,徐皑冬.下一代车载网络FlexRay及其应用研究[J].技术与市场,2008,35(16):4245
    [92]陈盈果.基于代理模型的对地观测卫星系统顶层设计方法研究[D].长沙:国防科学技术大学,2010
    [93]刘晓路.对地观测卫星系统顶层设计参数优化方法研究.[D].长沙:国防科学技术大学,2011
    [94]吴跃.直升机NAMP系统顶层设计研究[D].北京:北京航空航天大学,2003
    [95]孙剑平.舰艇紫外光通信系统顶层设计和技术研究[D].长沙:国防科学技术大学,2005
    [96]J Ferber, O Gutknecht. A mata-model for the analysis and design of organization in multi-agent systems[C],Proc of the 3rd Intl Conf on MAS,1998:258-266
    [97]靳尔东.航天器编队姿态协同控制方法研究[D].哈尔滨:哈尔滨工业大学.2009
    [98]孟子阳.基于一致性算法的多航天器姿态协同控制研究[D].北京:清华大学.2009
    [99]屈力刚.基于MAS的网络化三维协同设计研究[D].沈阳:东北大学.2007
    [100]张书亭.自顶向下协同产品设计框架和方法研究[D].杭州:浙江大学.2009
    [101]Llewelyn A I. Review of CAD/CAM[J]. Computer-Aided Design,1989,21(5):297-302.
    [102]Mantyla M. A modeling system for top-down design of assembled products[J]. IBM Journal of Research and Development,1990,34(5):636-659
    [103]Sutherland I E. Sketch pad a man-machine graphical communication system[C]Proceedings of the SHARE design automation workshop. ACM,1964:6329-6346
    [104]Pahl G. Engineering design:a systematic approach[M]. Springer,2007
    [105]Rajkumar Roy, Srichand Hinduja, Roberto Teti. Recent advances in engineering design optimisation:Challenges and future trends [J]. CIRP Annals -Manufacturing Technology, 2008,57:697-715
    [106]于江涛.多智能体模型、学习和协作研究与应用[D].杭州:浙江大学,2003
    [107]Robert Wagner, Zhaoyu Liu. Agent-Based Routing in Mobile Ad Hoc Networks[J].2006 SAE World Congress, SAE Paper No.2006-01-1429
    [108]OhByung Kwon. Multi-agent system approach to context-aware coordinated web services under general market mechanism[J]. Decision Support Systems,2006,41:380-399
    [109]Zhaotong Lian, Abhijit Deshmukh. Performance prediction of an unmanned airborne vehicle multi-agent system[J]. European Journal of Operational Research,2006,172:680-695
    [110]荀径.基于智能体和元胞自动机的列车协同控制研究[D].北京交通大学,2011
    [111]Liu Jia, Liu Zhongxin, Chen Zengqiang. Coordinative control of multi-agent systems using distributed nonlinear output regulation[J]. Nonlinear Dynamics,2012,67 (3):1871-1881
    [112]Wang Jx,Chen N,Pi Dw, Yin Gd. Agent-based coordination framework for integrated vehicle chassis control[J]. Proceedings Of The Institution Of Mechanical Engineers Part D-Journal Of Automobile Engineering,2009,223 (5):601-621
    [113]Mastrovito M, Gaballo L, Dambrosio L. Diesel engine variable-geometry turbine turbocharger controlled by a multi-agent-based algorithm[J]. Proceedings Of The Institution Of Mechanical Engineers Part D-Journal Of Automobile Engineering,2008,222 (8):1459-1470
    [114]Cho Ky,Kwon Sj,Suh Mw. Development of multi-agent for traffic simulation with vehicle dynamics model:development of vehicle and driver agent[J]. International Journal Of Automotive Technology,2006,7 (2):145-154
    [115]牛礼民.车辆半主动悬架和电动助力转向集成控制的研究与实现[D].江苏大学,2008
    [116]张威.Stateflow逻辑系统建模[M].西安:西安电子科技大学出版社,2007
    [117]吴玉波.基于微分Petri网的混杂系统建模与仿真[D].镇江:江苏大学,2007
    [118]Horling B, Lesser V. Quantitative organizational models for large-scale agent system[J]. In Proceedings of the International Workshop on Massively Multi-Agent Systems,2004, 8:297-312
    [119]Zha X F. A Knowledge Intensive Multi-agent Framework for Cooperative/Collaborative Design Modeling and Decision Support of Assembles[J]. Knowledge-based System,2002, 15:493-505
    [120]Shaban K B, Basir O A, Hassanein K,et al. Information fusion in a cooperative multi-agent system for web information retrieval[C]. NJ USA:IEEE-International Society of Information Fusion,2002,2:1256-1262
    [121]Pachcco, J Carmo. A Role Based Model for the Normative Specification of Organized Collective Agency and Agents Interaction[J]. Autonomous Agents and Multi-Agent Systems, 2003,6:145-184
    [122]马千里,郑启伦,彭宏,等.基于模糊边界模块化神经网络的混沌时间序列预测[J].物理学报,2009,58(3):1410-1419
    [123]武浩,朱拓,孔艳,等.基于径向基函数神经网络的荧光光谱技术在菌种识别中的应用[J].物理学报,2010,59(4):2394-2400
    [124]张国良,曾静,柯熙政,等.模糊控制及其MATLAB应用[M].西安:西安交通大学出版社,2002
    [125]刘普寅,吴孟达.模糊理论及其应用[M].长沙:国防科技大学出版社,1998
    [126]冯冬青.模糊智能控制[M].北京:化学工业出版社,1998
    [127]周明,孙树栋.遗传算法原理及应用[M].北京:国防工业出版社,1999
    [1281余志生.汽车理论[M].第2版.北京:机械工业出版社,1998
    [129]郭孔辉,庄哗.汽车轮胎橡胶摩擦试验研究[J].机械工程学报,2004,40(10):175-180
    [130]何志刚,董大鹏,王国林,等.轮胎超弹性本构材料参数确定的影响因素分析[J].机械工程学报,2008,44(12):296-301
    [131]Bakker E, Lidner L, Pacejka H B. A new tyre model with an application in vehicle dynamics studies[R]. SAE,890087,1989
    [132]彭旭东,孟祥恺,郭孔辉,等.冰面和干燥路面上轮胎侧偏特性的试验研究[J].机械工程学报,2004,40(7):24-28
    [133]Bakker E, Nyborg L, Pacejka H B. Tyre modeling for use in vehicle dynamics Studies[R]. SAE,870421,1987
    [134]郭孔辉,侯永平.轮胎非稳态侧偏特性非线性仿真模型[J].中国机械工程,1999,10(8):943-946
    [135]Gadola M, Maffezzoni P, Cambiaghi D. Tyre modeling with the use of neural nets for vehicle dynamics studies[C]International Tourism and Travel Fair. Applied Mechanics and Auto.SITEV, Torino,1994:57-78
    [136]Dursun A. A comparative study of neural networks and non-parametric regression models for trend and seasonal time series[J]. Trends in Applied Sciences Research,2009,4(3):126-137
    [137]董继扬,张军英,陈忠,等.自动波竞争神经网络及其在单源最短路问题中的应用[J].物理学报,2007,56(9):5013-5020
    [138]王永生,孙瑾,王昌金.变参数混沌时间序列的神经网络预测研究[J].物理学报,2008,57(10):6120-6131
    [139]陈国庆, 吴亚敏, 魏柏林.应用导数荧光光谱和概率神经网络鉴别合成色素[J].物理学报,2010,59(7):5100-5104
    [140]缪炳荣,方向华,傅秀通.SIMPACK动力学分析基础教程[M].成都,西南交通大学出版社,2008
    [141]张越今.汽车多体动力学及计算机仿真[M].长春:吉林科学技术出版社,1998
    [142]Iguchi.M. A study of manual control[J]. Journal of Mechanic Society of Japan.1959,62(4): 47-63
    [143]MacAdam C C. Application of an optimal preview control for simulation of closed-loop automobile driving[J]. IEEE Trans on Systems, Man and Cybernetics,1981,11(6):393-399
    [144]陈蓉蓉.基于Agent模型的整车SAS系统半实物仿真研究[D].镇江:江苏大学,2010
    [145]王涛.基于SIMPACK整车模型的转向和悬架性能耦合分析与可调阻尼减振器研究[D].镇江:江苏大学,2010
    [146]李娇娇.基于SIMPACK的空气悬架大客车建模与仿真研究[D].镇江:江苏大学,2011
    [147]赵华伟.客车整车空气悬架多体动力学建模与仿真研究[D].镇江:江苏大学,2010
    [148]SIMPACK User's manual, SIMAT-The Link Between SIMPACK and MATLAB
    [149]汽车操纵稳定性试验方法:蛇行试验[S].中华人民共和国国家标准,GB/T6223.1-1994
    [150]汽车操纵稳定性试验方法:转向瞬态响应试验(转向盘转角阶跃输入)[S].中华人民共和国国家标准,GB/T6223.2-1994
    [151]汽车操纵稳定性试验方法:转向轻便性试验[S].中华人民共和国国家标准,GB/T6223.5-19
    [152]FlexRay protocol specification_V2.1.http://www.flexray.com,2010
    [153]段建民,汪然,于涌川.基于μC/OS-Ⅱ的线控转向FlexRay通信控制[J].现代电子技术,2010,7(2):56-62
    [154]Christopher Temple,Florian Bogenberger,Mathias Rausch. FlexRay-FromPrinciples to Products[C]. SAE world Congress Detroit, Michigan, USA, SAEInternational, Warrendale. Pennsylvania, USA. SAE.2006,21(22):1-4
    [155]Traian Pop, Paul Pop, Petru Eles, Zebo Peng, Alexandru Andrei. Timing analysis of the FlexRay communication protocol[J]. Real-Time Systems,2009,18(10):205-235
    [156]田泽.嵌入式系统开发与应用教程[M].北京:北京航空航天大学出版社,2005
    [157]何玮,刘昭度,杨其校,等.汽车嵌入式系统的应用与发展[J].计算机应用,2005,4:18-21
    [158]胥静.嵌入式系统设计与开发实例详解—基于ARM的应用[M].北京:北京航空航天大学出版社,2005
    [159]余永权,汪明慧,黄英.单片机在控制系统中的应用[M].北京:电子工业出版社,2003
    [160]王刚.基于dSPACE的无人机飞行控制快速原型设计[D].南京:南京航空航天大学,2008
    [161]杨涤,李立涛,杨旭.系统实时仿真开发环境与应用[M].北京:清华大学出版社,2002:339-410
    [162]尹潮鸿.基于dSPACE的风机智能控制半实物仿真研究[D].北京:北京交通大学,2009
    [163]金晓华.基于dSPACE半实物仿真的电机测试平台研究[D].南京:东南大学,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700