基于自主锁止机理的管内机器人机构设计与特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代化工业技术的发展,各种粗细不均、蜿蜒迂回的管路大量存在于石油化工、制冷、核发电与居民日常生活等领域。管内机器人研究技术的发展为管道内部的检测与维修提供了新的途径。虽然管内机器人领域已有许多研究成果,但在现实复杂的管内环境中运行时仍表现出一些不足,许多研究机构正积极致力于提升各类型管内机器人的运动性能以加速其在实际生产中的工程化应用。
     针对核反应堆蒸发器、石油水平井等领域中存在的对大牵引力快速推进管道机器人的紧迫性需求问题,本文结合自主锁止机构的功能与特性,利用公理设计的方法进行基于自主锁止机理的伸缩式管内机器人的概念设计、参数优化、特性分析、虚拟仿真与样机研制,克服了传统管内机器人牵引能力受其自身与管壁间恒定最大摩擦力的限制、实现了机器人运动速度与牵引能力的可单独调节,其中“自主锁止”是指管内机器人在无需主动控制的情况下可实现与管壁的自动锁止。本文主要贡献和创新点归纳如下:
     (1)深入概括了现有各种类型的管内机器人,提出了基于接触方式的分类方法。目前管内机器人种类繁多,大小不一,难以进行不同类别间的分析与比较,研究重点集中于动力输出装置。本文以机器人与管壁间不同接触方式为划分准则将管内机器人分为三类:面接触式、点线接触式和非接触类,方便了不同类别管内机器人间运动性能对比分析。
     (2)深入分析了管内机器人的设计过程,首次将公理设计方法引入管内机器人的设计,提出基于自主锁止机理伸缩式管内机器人的概念。现有管内机器人牵引能力有限,无法超越其支撑机构与管壁间恒定的最大静摩擦力,机器人运动速度与牵引能力不能得到单独调节。本文采用公理设计的方法进行基于自主锁止机理管内机器人的概念设计与耦合性分析。作为对比,针对轮式与气囊伸缩式管内机器人的设计过程进行耦合性分析,结果显示前者为耦合设计,后者为解耦设计,找到了问题的根源。
     (3)详细设计了自主锁止式管内机器人结构参数,将概念设计具体化,提出一系列指导性设计准则与优化理论,推导出伸缩弹簧弯曲刚度的计算公式。细长、封闭且存在径向尺寸变化的管内环境对管内机器人的外形、连接单元以及安全性设计提出了全新的要求。本文围绕两种锁止结构,求出为实现自主锁止所应满足的具体关系式,优化凸轮接触轮廓,仿真计算永磁体间排斥力,求解锁止装置解锁所需最小作用力与最短时间。采用伸缩弹簧作为柔性连接单元,应用细杆弹性理论首次推导出伸缩弹簧弯曲刚度,详细设计了应用于管道内部的安全离合器。
     (4)深入研究了自主锁止结构的锁止特性,在完成锁止功能虚拟验证的基础上建立了自主锁止式管内机器人牵引能力与机械本体定位精度的计算公式。牵引能力不足是许多常见管内机器人无法应用于工程实际的一个重要因素,同时管内定位功能的实现则较多地依赖于各种传感器。本文以惯性冲击式为例进行常见管内机器人的牵引能力分析,针对两种锁止机构,定量地推导出牵引能力与自身定位精度的计算公式。结果显示,文中提出的自主锁止机构理论牵引能力可随外载荷需求自动增长。
     (5)深入研究了管内机器人在通过弯管的整个过程中所需满足的几何位形约束,提出了指导设计支撑腿弹性变形量的理论准则。合适的变形能力可以确保弹性支撑腿在整个运动过程中与管壁始终保持接触,避免通过弯管时出现的运动不连续现象,同时为机体留足尺寸空间,而现有研究仅仅得出了机器人整体外形尺寸所应满足的关系式。本文通过建立机器人在弯管中的数学模型,求得支撑腿实时变化量计算公式,通过选取不同结构参数代入Matlab程序进行分析,得出支撑腿的实时变形量及最大变形需求量,分析研究了不同结构参数对变形量的影响程度与影响规律。
     (6)针对自主锁止式管内机器人展开样机研制、综合试验系统搭建、原理性验证试验与性能测试试验。在完成理论设计与虚拟样机验证的基础上,以各设计准则为指导,研制了两台试验样机,开发了样机试验平台,完成了自主锁止式机构可行性验证试验,对机器人的爬升性能、牵引负载性能、运动速度性能、以及解耦性进行了试验测试与验证。首次提出驱动力空间比的概念,使不同类别管内机器人的驱动性能具备了可比性,量化了驱动能力。试验结果表明,两种类型自主锁止式管内机器人可以实现在管道内部的快速行走与定位。其中直径为Ф16mm的试验样机,可顺利在竖直管道内快速爬升,推动15.2N的重物前进,最大运动速度为13.72mm/s,驱动力空间比达到9.364(现有常见值均小于1),实现了运动速度与牵引负载的解耦。
With the development of modern industrial technology, plenty of pipelines withvarious diameters and shapes have formed a complex system which successfullyoccupied every corner of human daily life, even in petrochemical industry, refrigeratingindustry and nuclear power plant. The development of in-pipe robot technique providesin-service pipelines with a potential possibility to perform inside surveillances andmaintenances. Many achievements have been reported in the in-pipe robot researchdomain, but there are still many unacceptable shortages remained as the robot worksunder tough environment. Therefore, many researchers are devoting themselves toimproving the in-pipe robot performance, aiming at accelerating its application toreality.
     The request of powerful and fast moving in-pipe robot is urgent from theapplication areas like the nuclear reactor evaporator and the horizontal petroleum well.By utilizing functions and properties of self-locking mechanism, this thesis makesresearch on the telescopic in-pipe robot based on self-locking principle. It performedconcept design, parameter optimization, property analysis, virtual simulation andprototype developing, which as a result breaks through the traditional constraint ofmaximum friction imposed on in-pipe robot traction ability, and makes the movingvelocity and transaction ability individually adjustable. The referred self-locking can beexplained as, the in-pipe robot could get locked with the pipeline automatically, withoutany help of control. Main contributions and innovations of this thesis are summed up as:
     (1) Present various in-pipe robots are summarized, and a contact style basedclassification method is proposed. It is not easy to make contrast and analysis amongdifferent in-pipe robots with diverse styles and varying dimensions, while relatedresearches are focusing on actuating systems. The thesis divides in-pipe robots intothree groups depending on different contact styles with pipeline, which makes it moreconvenient to compare different in-pipe robots. One group has faces contacted withpipeline, one has lines or points, and the left one has nothing.
     (2) For the first time the Axiomatic Design (AD) method is introduced into thedesign process of in-pipe robot that has been explored, and the concept of telescopicin-pipe robot based on self-locking principle is proposed. The traction ability of presentin-pipe robot is limited by the constant maximum friction between pipeline and therobot supportive mechanism, and can’t be adjusted without putting influence on itsmoving velocity. The concept design and coupling analysis are carried out following theAD theory. As a contrast, the wheeled and pneumatic telescopic in-pipe robots are bothmade coupling analysis with the results of coupled design and decoupled design,separately.
     (3) The in-pipe robot construction is deliberately designed, which embodies theproposed concept. A series of guide specifications and optimization theories arepresented, as well as the bending rigidity of compression spring. With varying diameter,the long and thin pipeline raises new requirement for in-pipe robot construction design,linkage design and security design. Focusing on two proposed mechanisms, it derivesthe self-locking requirement relationship, optimizes the cam contact profile, simulatesand gets the repelling force between two sets of permanent magnets, calculates theminimum required force and minimum action time. As the flexible linkage of thein-pipe robot, the spring is investigated and its bending rigidity calculation formulas arefound out based on the thin elastic rod theory. The security clutch has been developedfor the application in pipelines.
     (4) The property of self-locking mechanism is explored. After successful validityof partial assembly and the whole robot, the formulation relationships for calculating themaximum driving ability and the mechanically localization accuracy are built up. Theshortage of traction ability is one of the main reasons that blocks the application ofin-pipe robots in reality, meanwhile its local ability heavily depends on various sensors.The thesis takes inertia impulse in-pipe robot as an example to make analysis on itstraction ability, and then deduces related calculation formulas about the maximumtraction ability and localization accuracy for the proposed two mechanisms. The resultshows that the traction ability of the self-locking mechanism can increase automaticallywith the rise of outside payload.
     (5) The geometry constraint is explored as the in-pipe robot passes through anelbow, and theoretical rules are proposed to guide the design of supportive legdeflection. With a proper deflection, the elastic legs remain contact with the pipeline allthe time when moving in a pipeline, thus avoiding discontinuous motions and leavingrobot body with enough space. However, reported researches have merely establishedthe constraint relation about the outline dimension. The thesis obtains the formulas ofreal-time deflection of supportive legs by setting up the mathematical model for in-piperobot inside pipelines, gets the maximum and needed deflection with the help of Matlab,and reveals how the deflection effected by different fabric parameters.
     (6) About the self-locking in-pipe robot, the prototype is developed, thecomprehensive test platform is set up, and the principle test is conducted, as well as theperformance test. Guided by the deduced design rules, two prototypes are developed.On the specialized test platform, the validity of self-locking mechanism is carried out,as well as its performance of climbing, traction ability, moving velocity and decoupling.The concept of ratio of traction ability to space is invented for quantifying the tractionabilities of different in-pipe robots. The experimental results indicate that two types ofself-locking mechanism can help in-pipe robot achieve a fast and stable moving ability,and a accuracy localization ability inside pipelines. The prototype with diameter of 16mm is proved to be capable of climbing vertically set pipelines, carrying a maximumload of15.2N, speeding up to13.72mm/s, pushing the ratio of traction ability to spaceto9.364with normal ones under1, and realizing the uncouple design between movingvelocity and traction ability.
引文
[1] J. M. M. Tur, W. Garthwaite. Robotic Devices for Water Main In-pipeInspection: A Survey [J]. Journal of Field Robotics,2010,27(4):491~508.
    [2] M. Tavakoli, L. Marques, A. T. de Almeida.3Dclimber: Climbing andManipulation Over3D Structures [J]. Mechatronics,2011,21(1):48~62.
    [3] Pipeline Inspection[EB/OL]. http://www.ndt-ed.org/AboutNDT/SelectedApplications/PipelineInspection/PipelineInspection.htm,2010-04-11/2011/3/21.
    [4]王殿君,李润平,黄光明.管道机器人的研究进展[J].机床与液压,2008,36(04):185~187.
    [5] Ntsb-Publications[EB/OL]. http://www.ntsb.gov/Publictn/P_Acc.htm,2011-01-28/2011/3/21.
    [6] Oil Spill Gulf of Mexico2010-Nola.Com[EB/OL]. http://www.nola.com/news/gulf-oil-spill/,1899-02-20/2011/3/21.
    [7] List of Oil Spills-Wikipedia, the Free Encyclopedia[EB/OL]. http://en.wikipedia.org/wiki/List_of_oil_spills,2011-01-30/2011/3/21.
    [8]常玉连,邵守君,高胜.石油工业中管道机器人技术的发展与应用前景[J].石油机械,2006,34(09):122~126.
    [9] F. O. Company. Horizontal Drilling[EB/OL]. http://www.fossiloil.com/horizontal%20drilling.htm,2011-06-05/2012-02-02.
    [10]杨宝初,丁训慎.大亚湾核电站蒸汽发生器传热管的涡流检查[J].核动力工程,1999,20(5):417~420.
    [11] J. Okamotojr, J. C. Adamowski, M. S. G. Tsuzuki, et al. Autonomous Systemfor Oil Pipelines Inspection [J]. Mechatronics,1999,9(7):731~743.
    [12] Z. Hu, E. Appleton. Dynamic Characteristics of a Novel Self-Drive PipelinePig [J]. IEEE Transactions On Robotics,2005,21(5):781~789.
    [13] J. M. Lopez, S. Sadovnychiy. Small Pig for Inspection Pipeline[C]//Electronics,Robotics and Automotive Mechanics Conference, CERMA2007, Sept.25-28,Cuernavaca, Morelos, Mexico: IEEE Computer Society,2007:585~590.
    [14] M. Durali, A. Fazeli, A. Nabi. Investigation of Dynamics and Vibration of Pigin Oil and Gas Pipelines[C]//ASME International Mechanical Engineering Congressand Exposition, IMECE2007, Nov.11-15, Seattle, WA, United states: AmericanSociety of Mechanical Engineers,2008:2015~2024.
    [15] M. Durali, A. Fazeli, M. Azimi. Investigation of Dynamics and Vibration of aThree Unit Pig in Oil and Gas Pipelines[C]//2008ASME International MechanicalEngineering Congress and Exposition, IMECE2008, Oct.31-Nov.6, Boston, MA,United states: American Society of Mechanical Engineers,2009:265~275.
    [16] H. T. Roman, B. Pellegrion. Pipe Crawling Inspection Robots: An Overview[J]. Ieee Transactions On Energy Conversion,1993,8(3):576~583.
    [17] S. Poozesh, M. Mehrandezh, H. Najjaran, et al. Design and Development of aSmart Vehicle for Inspection of in-Service Water Mains[C]//Canadian Conference onElectrical and Computer Engineering, CCECE2007, Apr.22-26, Vancouver, BC,Canada: IEEE,2007:1203~1206.
    [18] Y. Song, G. Yan, X. Xu. Research On Oil/Gas In-pipe Inspection Robot [J].Journal of Shanghai Jiaotong University (Science),2005,10E(3):221~225.
    [19] S. Park, H. D. Jeong, Z. S. Lim. Development of Mobile Robot Systems forAutomatic Diagnosis of Boiler Tubes in Fossil Power Plants and Large Size Pipelines[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, Sept.30-Oct.4, Lausanne, Switzerland: IEEE,2002:1880~1885.
    [20]张永顺.国外微型管内机器人的发展[J].机器人,2000,22(06):506~513.
    [21] Q. X. Pan, S. X. Guo, M. B. Khamesee. Development of a Novel Type ofMicrorobot for Biomedical Application [J]. Microsystem Technologies-Micro-andNanosystems-Information Storage and Processing Systems,2008,14(3):307~314.
    [22]吕恬生,宋钰,沈海东.履带式管道机器人的自适应模糊控制[J].上海交通大学学报,1997,31(09):68~71.
    [23]颜国正,丁国清,戎荣等.电磁型微小管道机器人的研究[J].上海交通大学学报,1998,32(08):122~125.
    [24]张云伟,颜国正,丁国清等.煤气管道机器人管径适应调整机构分析[J].上海交通大学学报,2005,39(06):950~954.
    [25] P. K. Liu, Z. J. Wen, L. N. Sun. An In-pipe Micro Robot Actuated byPiezoelectric Bimorphs [J]. Chinese Science Bulletin,2009,54(12):2134~2142.
    [26]王存敏,孙萍,孙麟治.电磁式管内微小移动机构的运动特性分析[J].上海大学学报(自然科学版),1999(03):222~226.
    [27]郭彤,李江雄,柯映林.微型管道机器人钹形压电复合驱动器的结构设计及优化[J].中国机械工程,2005,16(18):1610~1612.
    [28]郭彤.基于钹形压电复合驱动的微小管内机器人技术研究[D].浙江大学,2005:80~95.
    [29]郭瑜.微小型螺旋推进管道机器人设计与分析[D].国防科学技术大学,2006.
    [30]解旭辉,王宏刚,徐从启等.微小管道机器人机构设计及动力学分析[J].国防科技大学学报,2007,29(6):98~101.
    [31]许冯平,王锡名,朱新忠.一种蠕动式管道机器人行走机理研究[J].组合机床与自动化加工技术,2009(07):34~37.
    [32]许冯平,朱新忠,王锡名等.管道并联机器人行走机理研究[J].机械设计,2010,27(7):57~59,64.
    [33]孙东昌,李军远,张晓华.基于低频电磁波的管道机器人定位技术[J].控制工程,2007(Z1):159~161.
    [34]郭凤,许冯平,邓宗全等.管道机器人弯道处驱动力研究[J].哈尔滨工业大学学报,2006,38(08):1264~1266.
    [35] S. Roh, H. R. Choi. Differential-Drive In-pipe Robot for Moving Inside UrbanGas Pipelines [J]. IEEE Transactions On Robotics,2005,21(1):1~17.
    [36] O. P. I. Ltd. Onstream Pipeline[EB/OL]. http://www. onstram-pipeline.com/,2011-12-30/2012-03-04.
    [37] E. Pipeline. Inline Inspection Enduro[EB/OL]. http://www.Inline InspectionENDURO.htm,2011-06-30/2012-03-04.
    [38] Y. S. Zhang, S. Y. Jiang, X. W. Zhang, et al. A Variable-Diameter CapsuleRobot Based On Multiple Wedge Effects [J]. IEEE-ASME Transactions OnMechatronics,2011,16(2):241~254.
    [39] K. Tokida, K. Takemura, S. Yokota, et al. Robotic Earthworm UsingElectro-Conjugate Fluid [J]. International Journal of Applied Electromagnetics andMechanics,2010,33(3-4):1643~1651.
    [40] Y. S. Zhang, S. Y. Jiang, X. W. Zhang, et al. Dynamic Characteristics of anIntestine Capsule Robot with Variable Diameter [J]. Chinese Science Bulletin,2010,55(17):1813~1821.
    [41] M. Kurata, T. Takayama, T. Omata. Helical Rotation In-pipe MobileRobot[C]//20103rd IEEE RAS and EMBS International Conference on BiomedicalRobotics and Biomechatronics, BioRob2010, Sept.26-29, Tokyo, Japan: IEEEComputer Society,2010:313~318.
    [42] W. Liu, X. H. Jia, F. J. Wang, et al. An In-pipe Wireless SwimmingMicrorobot Driven by Giant Magnetostrictive Thin Film [J]. Sensors and Actuatorsa-Physical,2010,160(1-2):101~108.
    [43] P. C. Strefling, A. M. Hellum, R. Mukherjee. Modeling, Simulation, andPerformance of a Synergistically Propelled Ichthyoid [J]. IEEE/ASME Transactions OnMechatronics,2012,17(1):36~45.
    [44] S. Guo, Y. Sasaki, T. Fukuda. A New Kind of Microrobot in Pipe UsingDriving Fin[C]//IEEE/ASME International Conference on Advanced IntelligentMechatronics, July20-July24, Port Island, Kobe, Japan: IEEE,2003:697~702.
    [45] O. Adria, H. Streich, J. Hertzberg. Dynamic Replanning in UncertainEnvironments for a Sewer Inspection Robot [J]. Inernational Journal of AdvancedRobotic Systems,2004,1(1):33~38.
    [46] F. Tache, W. Fischer, G. Caprari, et al. Magnebike: A Magnetic WheeledRobot with High Mobility for Inspecting Complex-Shaped Structures [J]. Journal ofField Robotics,2009,26(5):453~476.
    [47] F. Tache, F. Pomerleau, G. Caprari, et al. Three-Dimensional Localization forthe Magnebike Inspection Robot [J]. Journal of Field Robotics,2011,28(2):180~203.
    [48]李鹏,马书根,李斌等.具有自适应能力管道机器人的设计与运动分析[J].机械工程学报,2009(01):154~161.
    [49]张永顺,邓宗全,贾振元等.管内轮式移动机器人弯道内驱动控制方法[J].中国机械工程,2002(18):1534~1538.
    [50] H. R. Choi, S. M. Ryew. Robotic System with Active Steering Capability forInternal Inspection of Urban Gas Pipelines [J]. Mechatronics,2002,12(5):713~736.
    [51]张学文,邓宗全,贾亚洲等.管道机器人三轴差动式驱动单元的设计研究[J].机器人,2008,30(1):22~28.
    [52] S. Iwashina, I. Hayashi, N. Iwatsuki, et al. Development of In-pipe OperationMicro Robots[C]//Proceedings of the19945th International Symposium on MicroMachine and Human Science, October2-October4, Nagoya, Japan: IEEE,1994:41~45.
    [53] P. Li, S. Ma, B. Li, et al. Screw Drive In-pipe Robot with Axial andCircum-Directional Inspection Ability [J]. Jixie Gongcheng Xuebao/Journal ofMechanical Engineering,2010,46(21):19~28.
    [54]孙麟治,陆林海,秦新捷等.微型机器人用于检查管道内的缺陷[J].光学精密工程,2003,11(1):11~16.
    [55] K. Nagaya, T. Yoshino, M. Katayama, et al. Wireless Piping InspectionVehicle Using Magnetic Adsorption Force [J]. IEEE/ASME Transactions OnMechatronics,2012, In Press.
    [56] Y. Kwon, B. Yi. Design and Motion Planning of a Two-Module CollaborativeIndoor Pipeline Inspection Robot [J]. IEEE Transactions On Robotics and Automation,2012, In Press.
    [57] M. Vahabi, E. Mehdizadeh, M. Kabganian, et al. Modelling of a Novel In-pipeMicrorobot Design with Ipmc Legs [J]. Proceedings of the Institution of MechanicalEngineers Part I-Journal of Systems and Control Engineering,2011,225(I1):63~73.
    [58]张永顺,贾振元,丁凡等.外磁场驱动无缆微型机器人行走特性的分析[J].机械工程学报,2003(06):135~139.
    [59]郭彤,柯映林,李江雄等.基于槽钹形压电复合驱动的仿尺蠖式微型管道机器人[J].高技术通讯,2005,15(11):35~38.
    [60] P. Liu, Z. Wen, J. Li. A Piezoelectric In-pipe Micro Robot Actuated by ImpactDrive Mechanism [J]. Guangxue Jingmi Gongcheng/Optics and Precision Engineering,2008,16(12):2320~2326.
    [61] H. Omori, T. Nakamura, T. Yada. An Underground Explorer Robot Based OnPeristaltic Crawling of Earthworms [J]. Industrial Robot-an International Journal,2009,36(4):358~364.
    [62] M. Ono, S. Kato. A Study of an Earthworm Type Inspection Robot Movable inLong Pipes [J]. International Journal of Advanced Robotic Systems,2010,7(1):85~90.
    [63]邵守君.基于虚拟样机的石油井故障探测机器人研究[D].大庆石油学院,2007.
    [64] L. Sun, P. Sun, X. Qin, et al. Micro Robot in Small Pipe with ElectromagneticActuator[C]//Proceedings of the1998International Symposium on Micromechatronicsand Human Science, Nov.25-28, Nagoya, Japan: IEEE,1998:243~248.
    [65]付宜利,李显凌,梁兆光.基于形状记忆合金的自主导管导向机器人设计[J].机械工程学报,2008,44(09):76~82.
    [66] Y. P. Lee, B. Kim, M. G. Lee, et al. Locomotive Mechanism Design andFabrication of Biomimetic Micro Robot Using Shape Memory Alloy[C]//Proceedings ofthe2004IEEE International Conference on Robotics and Automation, Apr.26-May.1,New Orleans, LA, United states: IEEE,2004:5007~5012.
    [67]张荣忻,王科俊,史伟等.基于SMA的新型蠕动式微型管道机器人研究[J].南京理工大学学报,2009,33(z1):252~256.
    [68]宋一然,颜国正,林良明.基于电磁驱动的蠕动型微机器人运动机理[J].上海交通大学学报,2000,34(11):1504~1507,1530.
    [69]孙麟治,孙萍,秦新捷等.细小管道内爬行的微机器人[J].光学精密工程,1998,6(05):57~63.
    [70]程良伦,杨宜民.微型管道机器人[J].机器人技术与应用,1998(04):16~18.
    [71]李孟春,武利生,郑利红等.电磁驱动的小型管道机器人研究[J].太原理工大学学报,2002,33(2):189~191,200.
    [72]王小龙,马骏骑,杨尚平等.一种微型管道机器人移动机构的设计[J].昆明理工大学学报(理工版),2005,30(03):46~49.
    [73] Y. Kawaguchi, I. Yoshida, K. Iwao, et al. Sensors and Crabbing for an In-pipeMagnetic-Wheeled Robot[C]//Proceedings of the19971stIEEE/ASME InternationalConference on Advanced Intelligent Mechatronics, June.16-20, Tokyo, Japan: IEEE,1997:119.
    [74] H. Yu, P. Ma, C. Cao. A Novel In-pipe Worming Robot Based OnSma[C]//IEEE International Conference on Mechatronics and Automation, July.29-Aug.1, Niagara Falls, Ontario, Canada: IEEE Computer Society,2005:923~927.
    [75] W. Neubauer. A Spider-Like Robot that Climbs Vertically in Ducts OrPipes[C]//Proceedings of the IEEE/RSJ/GI International Conference on IntelligentRobots and Systems, Sept.12-16, Munich, Germany: IEEE,1994:1178~1185.
    [76] J. A. Galvez, P. G. de Santos, F. Pfeiffer. Intrinsic Tactile Sensing for theOptimization of Force Distribution in a Pipe Crawling Robot [J]. IEEE-ASMETransactions On Mechatronics,2001,6(1):26~35.
    [77] A. Zagler, F. Pfeiffer."Moritz" a Pipe Crawler for Tube Junctions[C]//2003IEEE International Conference on Robotics and Automation, Sept.14-19, Taipei,Taiwan, China: IEEE,2003:2954~2959.
    [78] T. Idogaki, H. Kanayama, N. Ohya, et al. Characteristics of PiezoelectricLocomotive Mechanism for an In-pipe Micro Inspection Machine[C]//Proceedings ofthe19956th International Symposium on Micro Machine and Human Science, Oct.4-6,Nagoya, Japan: IEEE,1995:51~54.
    [79]罗怡,孙麟治,汪勤悫等.双压电薄膜微机器人的功耗及速度的影响因素[J].机电一体化,2000(04):35~37.
    [80] D. Yin, G. Yan, D. Yan, et al. Research On Miniature In-pipe Robot Driven byPiezoelectric Force [J]. Chinese Journal of Scientific Instrument,2000(03):221~224.
    [81]罗怡,龚振邦,孙麟治等.一种新型压电薄膜驱动器微机器人的结构及力分析[J].仪器仪表学报,2001,22(z3):337~338.
    [82]杨志欣,孙宝元,董维杰等.一种新型惯性式压电执行器研究[J].大连理工大学学报,2005,45(1):45~49.
    [83]罗怡,孙麟治,汪勤悫等.惯性冲击型微机器人支撑腿受力及其对运动速度影响的分析[J].上海大学学报(自然科学版),2000,6(02):100~102.
    [84] W. Chuanli, D. Fan, Z. Yongshun, et al. Giant Magnetostrictive Actuator inServo Valve and Micro Pipe Robot [J]. Chinese Journal of Mechanical Engineering,2005,18(1):10~13.
    [85] T. Fukuda, H. Hosokai, H. Ohyama, et al. Giant Magnetostrictive Alloy (Gma)Applications to Micro Mobile Robot as a Micro Actuator without Power SupplyCables[C]//Proceedings of the Micro Electro Mechanical Systems, Jan.30-Feb.2, Nara,Japan: IEEE,1991:210~215.
    [86] T. Fukuda, H. Hosokai, M. Uemura. Study On Rubber Gas Actuators Drivenby the Hydrogen Storage Alloy for In-pipe Inspection Mobile Robots with FlexibleStructure and On an Application [J]. Nippon Kikai Gakkai Ronbunshu, CHen/Transactions of the Japan Society of Mechanical Engineers, Part C,1989,55(514):1377~1384.
    [87] T. Fukuda, H. Hosokai, M. Uemura. Study On In-pipe Inspection MobileRobots(3Rd Report, Basic Strategy of Inspection Path Planning for Inspection MobileRobots)[J]. Transactions of the Japan Society of Mechanical Engineers, Part C,1990,56(521):104~108.
    [88]张永顺,贾振元,丁凡等.外场驱动无缆微型机器人的行走机理[J].中国机械工程,2003,14(14):1171~1176.
    [89] C. Choi, S. Jung, S. Kim. Feeder Pipe Inspection Robot with an Inch-WormMechanism Using Pneumatic Actuators [J]. International Journal of Control Automationand Systems,2006,4(1):87~95.
    [90] B. Kim, J. Lim, H. Park, et al. One Pneumatic Line Based Inchworm-LikeMicro Robot for Half-Inch Pipe Inspection [J]. Mechatronics,2008,18(7):315~322.
    [91] A. M. Bertetto, M. Ruggiu. In-Pipe Inch-Worm Pneumatic FlexibleRobot[C]//Proceedings of the2001IEEE/ASME International Conference on AdvancedIntelligent Mechatronics, July.8-July.12, Como, Italy: IEEE,2001:1226~1231.
    [92]都明宇,胥芳,张立彬等.一种新型气动蠕动机器人的机理研究[J].液压与气动,2003(3):15~16.
    [93] J. Lim, H. Park, S. Moon, et al. Pneumatic Robot Based On Inchworm Motionfor Small Diameter Pipe Inspection[C]//2007IEEE International Conference onRobotics and Biomimetics, Dec.15-18, Yalong Bay, Sanya, China: Inst. of Elec. andElec. Eng. Computer Society,2008:330~335.
    [94]张永顺,于宏海,阮晓燕等.新型肠道胶囊式微型机器人的运动特性[J].机械工程学报,2009(08):18~23.
    [95] N. P. Suh. Axiomatic Design of Mechanical Systems [J]. Journal ofMechanical Design,1995,117B:2~10.
    [96] N. P. Suh. Designing-in of Quality through Axiomatic Design [J]. IEEETransactions On Reliability,1995,44(2):256~264.
    [97] D. A. G. A. Suh. An Application of Axiomatic Design [J]. Research inEngineering Design Theory, Applications, and Concurrent Engineering-Research andApplications,1992(3):149~162.
    [98] S. J. Kim, N. P. Suh, S. G. Kim. Design of Software Systems Based OnAxiomatic Design [J]. Robotics and Computer-Integrated Manufacturing,1991,8(4):243~255.
    [99] J. W. Li, X. B. Chen, W. J. Zhang. Axiomatic-Design-Theory-Based Approachto Modeling Linear High Order System Dynamics [J]. IEEE-ASME Transactions OnMechatronics,2011,16(2):341~350.
    [100] S. Vinodh. Axiomatic Modelling of Agile Production System Design [J].International Journal of Production Research,2011,49(11):3251~3269.
    [101] N. Ananthkrishnan. Conceptual Design of an Aerospace Vehicle ControllerUsing Axiomatic Theory [J]. Journal of Aircraft,2010,47(6):2149~2151.
    [102] I. C. Bang, G. Heo. An Axiomatic Design Approach in Development ofNanofluid Coolants [J]. Applied Thermal Engineering,2009,29(1):75~90.
    [103] I. C. Bang, G. Heo, Y. H. Jeong, et al. An Axiomatic Design Approach ofNanofluid-Engineered Nuclear Safety Features for Generation Iii Plus Reactors [J].Nuclear Engineering and Technology,2009,41(9):1157~1170.
    [104] S. W. Cha, K. S. Lee, P. J. Jeong, et al. Conceptual Design of MicrocellularPlastics Bumper Parts Using Axiomatic Approach [J]. Polymer-Plastics Technology andEngineering,2009,48(10):1101~1106.
    [105] H. K. Lee, X. H. Tran, R. Tawie. A Systematic Approach for theDevelopment of Porous Concrete Based On Axiomatic Design Theory [J]. Computersand Concrete,2009,6(6):491~503.
    [106] S. W. Cha, B. J. Jeon, Y. H. Kim, et al. Parameter Design of a Coaxial CableInsulation Manufacturing Process Using Axiomatic Design and the Taguchi Method [J].Polymer-Plastics Technology and Engineering,2008,47(8):785~790.
    [107] O. Kulak, M. B. Durmusoglu. A Methodology for the Design of Office CellsUsing Axiomatic Design Principles [J]. Omega-International Journal of ManagementScience,2008,36(4):633~652.
    [108] N. P. Suh. Axiomatic Design: Advances and Application[M]. Oxford, UK:Oxford University Press,2001:50~53.
    [109] S. Cebi, O. Kulak, C. Kahraman. Applications of Axiomatic DesignPrinciples: A Literature Review [J]. Expert Systems with Applications,2010,37(9):6705~6717.
    [110] S. G. Kim, J. Peck, D. Nightingale. Axiomatic Approach for EfficientHealthcare System Design and Optimization [J]. Cirp Annals-ManufacturingTechnology,2010,59(1):469~472.
    [111] D. G. Lee, H. N. Yu, S. S. Kim, et al. Axiomatic Design of the SandwichComposite Endplate for Pemfc in Fuel Cell Vehicles [J]. Composite Structures,2010,92(6):1504~1511.
    [112] M. A. Mullens, M. Arif, R. L. Armacost, et al. Axiomatic BasedDecomposition for Conceptual Product Design [J]. Production and OperationsManagement,2005,14(3):286~300.
    [113] S. Y. Han, J. O. Kim, J. Y. Park, et al. Optimum Design of a Planar3-DofUltra-Precision Positioning Mechanism Using a Booster [J]. Fracture and Strength ofSolids Vi,2006,306-308:667~672.
    [114] J. Y. Jung, K. S. Lee, N. P. Suh. Automatically Assembled Shape GenerationUsing Genetic Algorithm in Axiomatic Design [J]. Lecture Notes in Computer Science,2005,3681LNAI:41~47.
    [115] G. Arcidiacono, G. Campatelli. Reliability Improvement of a Diesel EngineUsing the Fmeta Approach [J]. Quality and Reliability Engineering International,2004,20(2):143~154.
    [116] K. H. Hwang, K. H. Lee, G. J. Park, et al. Robust Design of a VibratoryGyroscope with an Unbalanced Inner Torsion Gimbal Using Axiomatic Design [J].Journal of Micromechanics and Microengineering,2003,13(1):8~17.
    [117] W. Chen, J. K. Allen, F. Mistree. A Robust Concept Exploration Method forEnhancing Productivity in Concurrent Systems Design [J]. ConcurrentEngineering-Research and Applications,1997,5(3):203~217.
    [118] M. A. Hart. Axiomatic Quality: Integrating Axiomatic Design with Six-Sigma,Reliability, and Quality Engineering [J]. Journal of Product Innovation Management,2006,23(5):470~472.
    [119] A. M. Goncalves-Coelho, A. J. F. Mourao, Z. L. Pereira. Improving the Useof Qfd with Axiomatic Design [J]. Concurrent Engineering-Research and Applications,2005,13(3):233~239.
    [120] P. S. Goel, N. Singh. Creativity and Innovation in Durable ProductDevelopment [J]. Computers&Industrial Engineering,1998,35(1-2):5~8.
    [121] G. Buyukozkan, J. Arsenyan, G. Ertek. Evaluation of E-Learning Web SitesUsing Fuzzy Axiomatic Design Based Approach [J]. International Journal ofComputational Intelligence Systems,2010,3(1):28~42.
    [122] X. B. Chen, J. Kai, M. Hashemi. Evaluation of Fluid Dispensing SystemsUsing Axiomatic Design Principles [J]. Journal of Mechanical Design,2007,129(6):640~648.
    [123] B. D. Cullity, C. D. Graham. Introduction to Magnetic Materials[M].2008:16~17.
    [124] C. Xu, X. Xie, Y. Dai. Kinetic Drag Force Analysis of Micro In-pipeRobot[C]//Proceedings of the2009IEEE Intelligent Vehicles Symposium, June.3-June.5, Xi'an, China: IEEE,2009:641~645.
    [125] M. Muramatsu, N. Namiki, R. Koyama, et al. Autonomous Mobile Robot inPipe for Piping Operations[C]//Proceedings of the2000IEEE/RSJ InternationalConference on Intelligent Robots and Systems, Oct.31-Nov.5, Takamatsu, Japan: IEEE,2000:2166~2171.
    [126]徐丛启.自主锁止蠕动式微小管道机器人关键技术研究[D].长沙:国防科学技术大学,2010:30~31.
    [127] H. Schempf, E. Mutschler, A. Gavaert, et al. Visual and NondestructiveEvaluation Inspection of Live Gas Mains Using the Explorer (Tm) Family of PipeRobots [J]. Journal of Field Robotics,2010,27(3):217~249.
    [128] O. Adria, H. Streich, J. Hertzberg. Dynamic Replanning in UncertainEnvironments for a Sewer Inspection Robot [J]. Inernational Journal of AdvancedRobotic Systems,2004,1(1):33~38.
    [129] J. U. N. E. Shuichi Wakimoto. A Micro Snake-Like Robot for Small PipeInspection[C]//Proceeding of the International Symposium on Micromechatronics andHuman Science, Oct.19-22, Nagoya, apan: IEEE,2003:303~308.
    [130] S. Hirose, H. Ohno, T. Mitsui, et al. Design of in-Pipe Inspection Vehicle forΦ25,Φ50,Φ150Pipes[C]//Proceeding of the1999IEEE International Conference onRobotics&Automation, May.10-15, Detroit, Michigan, Us:1999:309~314.
    [131] K. G. Uber Das Gleichgewicht Und Die Bewegung Eines Unendlich DunnenElastischen Stabes [J]. Journal Fur Die Reine Und Angewandte Mathematik,1859,56:285~313.
    [132] L. A. E. H. A Treatise On Mathematical Theory of Elasticity[M]. New York:Dover,1927.
    [133]薛纭,翁德玮,陈立群.弹性杆的Greenhill公式与Kirchhoff动力学比拟[J].动力学与控制学报,2011,9(3):193~196.
    [134]刘延柱.弹性细杆的非线性力学—DNA力学模型的理论基础[M].北京:清华大学出版社,2006.
    [135] M. Y, K. K. Analytical Solution of Spatial Elastica and its Application toKinking Problem [J]. International Journal of Solids and Structures,1997,34(27):3619~3636.
    [136]黄选剑,章军.柔性关节板弹簧骨架大挠度变形的数值计算方法[J].机械设计与制造,2010(2):46~48.
    [137]陈大鹏,周文伟.空间弹性曲杆在三维变形中的曲率2位移关系[J].西南交通大学学报,1997,32(2):123~129.
    [138]薛纭,刘延柱.受拉扭弹性细杆超螺旋形态的定性分析[J].物理学报,2009,58(9):5936~5941.
    [139]刘延柱.非圆截面弹性细杆的螺旋线平衡及稳定性[J].力学季刊,2003,24(4):433~439.
    [140]李秀莲,邵楠.非对称截面梁的弯曲正应力分析[J].青海大学学报(自然科学版),2010,28(1):67~72.
    [141] T. Miyagawa, N. Iwatsuki. Step Climbing of In-pipe Mobile Robot withWheel Drive Mechanism Using Planetary Gear Drive [J]. Seimitsu KogakuKaishi/Journal of the Japan Society for Precision Engineering,2007,73(7):828~833.
    [142] R. C. Dorf, R. H. Bishop. Modern Control Systems[M]. Texas, US: PrenticeHall,1998:202.
    [143]李勇,满军,丁凡等.圆锥和平面形磁极高速电磁铁动态特性对比[J].农业机械学报,2009,40:213~217.
    [144]刘艳明,徐宏,毛红奎.直流电磁泵电磁铁磁场ANSYS数值模拟[J].铸造技术,2008,29(11):1525~1529.
    [145]王忠巍,曹其新,栾楠等.基于信息融合的海底管道机器人自主定位控制[J].上海交通大学学报,2008(10):1707~1711.
    [146] Z. Wang, Q. Cao, N. Luan, et al. Autonomous Localization Technique ofSubmarine In-pipe Robot Based On Multi-Sensor Data Fusion [J]. Shanghai JiaotongDaxue Xuebao/Journal of Shanghai Jiaotong University,2008,42(10):1707~1711.
    [147] Z. W. Wang, Q. X. Cao, N. Luan, et al. A Novel Autonomous LocalizationTechnique of Subsea In-pipe Robot [J]. International Journal of Robotics andAutomation,2010,25(2):102~108.
    [148]谢黎明,姚晓燕,李广民.GPS定位系统在管线巡检中的应用研究[J].新技术新工艺,2010(03):27~28.
    [149]王黎,李著信,石进.基于多源信息融合的管道机器人定位技术研究[J].科技信息(学术研究),2007(31):613~618.
    [150]齐海铭,张晓华,陈宏钧等.基于超长波与对称分布天线阵的管道机器人定位技术[J].机器人,2009,31(02):104~109.
    [151] C. Choi, S. Jung. Pipe Inspection Robot with an Automatic Tracking SystemUsing a Machine Vision[C]//2006SICE-ICASE International Joint Conference, Oct.18-21, Busan, Republic of Korea: IEEE,2006:1285~1290.
    [152] J. K. Langstreth. Contact Mechanics[M]. Cambridge, UK: CambridgeUniversity Press,1985:51~119,275~323.
    [153] J. K. Ong, K. Bouazza-Marouf, D. Kerr. Fuzzy Logic Control for Use inIn-pipe Mobile Robotic System Navigation [J]. Proceedings of the Institution ofMechanical Engineers. Part I: Journal of Systems and Control Engineering,2003,217(5):401~419.
    [154] J. Kim, G. Sharma, S. S. Iyengar. Famper: A Fully Autonomous MobileRobot for Pipeline Exploration[C]//IEEE-ICIT2010International Conference onIndustrial Technology, ICIT2010, Mar.14-17,2010, Vina del Mar, Chile: IEEE.,2010:517~523.
    [155] Y. W. Zhang, G. Z. Yan. Recognition of Environment for Navigation of GasPipeline Inspection Robot Based On Monocular Vision System[C]//InternationalConference on Pipelines and Trenchless Technology2009, ICPTT2009: Advances andExperiences with Pipelines and Trenchless Technology for Water, Sewer, Gas, and OilApplications, Oct.18-21, Shanghai, China: American Society of Civil Engineers,2009:240~251.
    [156] A. Kuwada, S. Wakimoto, K. Suzumori, et al. Automatic Pipe NegotiationControl for Snake-Like Robot[C]//2008IEEE/ASME International Conference onAdvanced Intelligent Mechatronics, Oct.2-5, Xi'an, China: IEEE,2008:558~563.
    [157] A. Kuwada, Y. Adomi, K. Suzumori, et al. Snake-Like Robot NegotiatingThree-Dimensional Pipelines[C]//2007IEEE International Conference on Robotics andBiomimetics, Dec.15-18, Yalong Bay, Sanya, China: IEEE,2008:989~994.
    [158] J. Kim, M. Muramatsu, Y. Murata, et al. Omnidirectional Vision-BasedEgo-Pose Estimation for an Autonomous In-pipe Mobile Robot [J]. Advanced Robotics,2007,21(3-4):441~460.
    [159] A. Matuliauskas, B. Spruogis, A. Pikunas. Wall Press Walking In-pipe Robot[J]. Mechatronic Systems and Materials,2006,113:296~300.
    [160] T. Miyagawa, N. Iwatsuki. Moving Characteristics in Bent Pipes of In-pipeMobile Robot with Wheel Drive Mechanism Using Planetary Gear Drive [J]. SeimitsuKogaku Kaishi/Journal of the Japan Society for Precision Engineering,2008,74(12):1346~1350.
    [161]王菊芬,孟浩龙.管内检测机器人在弯管处的通过性能研究[J].中国机械工程,2008,19(13):1531~1535,1551.
    [162]吴洪冲,雷秀.管道机器人弯道通过性分析[J].机械制造与研究,2007,36(4):57~59.
    [163]阳艳梅,钱晋武,章亚男等.一种水管机器人的结构和弯道通过性分析[J].机械设计,2007,24(9):56~58.
    [164]张晓华,陈宏钧,周晓等.基于分布驱动机构的管内移动机器人转弯控制技术研究[J].高技术通讯,2003,13(09):63~66.
    [165]张学文,邓宗全,贾亚洲等.三轴差动式管道机器人驱动单元弯管通过性研究[J].中国机械工程,2008,19(23):2777~2781.
    [166] J. Park, S. Park, D. Lee, et al. Prediction Method of an In-pipe Robot'sOrientation to Pass in a Curved Pipe[C]//ICCAS-SICE2009-ICROS-SICE InternationalJoint Conference, Aug.18-Aug.21, Fukuoka, Japan: Society of Instrument and ControlEngineers (SICE),2009:5707~5711.
    [167] P. Jungwan, P. Sangyong, L. Dongwoo, et al. Prediction Method of an In-pipeRobot's Orientation to Pass in a Curved Pipe[C]//ICCAS-SICE,2009,2009:5707~5711.
    [168] K. Suzumori, T. Miyagawa, M. Kimura, et al. Micro Inspection Robot for1-in Pipes [J]. IEEE-ASME Transactions On Mechatronics,1999,4(3):286~292.
    [169]陈军,邓宗全,姜生元.管内机器人检测系统设计的关键技术[J].哈尔滨工业大学学报,2008(11):1741~1745.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700