枯草芽孢杆菌发酵豆粕生产大豆活性多肽的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大豆多肽是大豆蛋白经酸、碱或酶的水解作用后得到的由不同氨基酸组成的多肽链的通称,目前一般是指平均肽链长度为3~10个氨基酸残基,主要分子量范围为300~3000Da的低分子量短链肽。由于它们不仅具有良好的加工特性,还具有多种对人体有益的生理功能,因此它们也常被叫做大豆活性肽或大豆功能多肽等,并被视为一种很有前途的功能性食品而备受科研人员的关注。
     目前我国对大豆多肽的生产研究虽然很多,但尚未形成大规模工业化生产。其原因有两个:一在于生产成本居高不下;二蛋白酶解液往往产生苦味,严重影响了多肽制品的口味。
     为克服目前我国在大豆活性肽研究和产业化中的不足,本课题建立一套生物技术生产大豆活性肽的工艺。主要是通过微生物发酵法产酶水解豆粕中的大豆蛋白,以获得具有生理活性的大豆多肽;并通过数理优化,确立了合适的发酵工艺;同时研究了膜技术在活性肽分离纯化上的应用;对发酵菌株的产酶特性及脱苦原理进行了探讨;研究了发酵所得大豆多肽的生物活性和加工特性,并在此基础上开发出一种具有抗疲劳效果的大豆多肽功能性饮料。主要研究结果如下:
     1在参照常规酶水解蛋白工艺中蛋白水解度的测定方法基础上建立了一种适于微生物发酵水解蛋白工艺的水解度测定方法。本方法通过测定肽键的断裂数来反映蛋白被水解的程度,从原理上符合肽键被水解的规律,计算公式上反映了水解度的定义。操作简单,快速,重复性好。
     2研究了菌株Bacillus subtilis SHZ在发酵豆粕过程中代谢产酶水解大豆蛋白的动态。结果表明该菌株能产蛋白酶和羧肽酶,在发酵的0~8h,菌体主要分泌蛋白酶,将豆粕中的大豆蛋白初步水解成长链肽,发酵液略有苦昧;随着发酵的继续进行(8~16h),蛋白酶将长链肽进一步水解成段中短链肽,同时在外肽酶的作用下,肽链内部的疏水性氨基酸大量暴露,使得发酵液苦味激增;发酵中后期(24~32h),菌体开始大量分泌羧肽酶,其能从肽链的羧基末端将疏水性的氨基酸切除从而脱苦;至发酵后期(40~48h),发酵液中主要为非苦味的短链肽和游离氨基酸。控制发酵时间为36h,可以得到36h水解度为25%,分子量分布为300~1000Da的短肽链。
     3通过对比用碱性蛋白酶水解大豆蛋白所得到酶解物和用B.subtili SHZ发酵豆粕制备所得大豆多肽之间的苦味值和氨基酸组成,发现具有显著苦味的蛋白酶解液的氨基酸37.69%为疏水性氨基酸;而豆粕水解液中,疏水性氨基酸仅占总量的11.75%。利用B.subtili SHZ来发酵具有显著苦味的蛋白酶解液,发酵到20h,蛋白酶解液的苦味值由4降到0,苦味完全脱除,证实了发酵菌株具有脱苦作用并推断其中存在具有脱苦作用的肽酶产生体系。对B.subtili SHZ产肽酶特性进行进一步研究,发现其能在生长代谢过程中产生胞外的羧肽酶。对此羧肽酶进行初步分离纯化,经硫酸铵沉淀、乙醇分级沉淀和凝胶层析后,羧肽酶比活力由4.5提高到24.5,但酶蛋白和总酶活损失较大,回收率只有12.7%。将纯化后得到的B.subtili SHZ羧肽酶直接作用于苦味的蛋白酶解物上进行酶解,其能从苦味肽的羧基末端将苯丙氨酸、亮氨酸、酪氨酸、异亮氨酸等疏水性氨基酸切除,以游离态释放出来,从而生成不苦的酶解物,这就是B.subtili SHZ脱苦的机理。
     4为获得最高大豆多肽产量,采用响应曲面法对B.subtili SHZ发酵豆粕产大豆多肽的培养基组成和发酵条件进行了优化。首先采用Box-Behnken实验设计对培养基进行了优化,最终获得大豆多肽产量最高的发酵培养基组成为,豆粕(氮源)52~58g/l,葡萄糖(碳源)7~9g/l,KH_2PO_4(无机盐)3g/l。以此发酵培养基可以获得约为8mg/mL的大豆多肽,比优化前的平均6mg/mL提高了33%。接着在优化培养基的基础上,采用CCD实验设计对发酵条件进行了优化,最终获得大豆多肽产量最高的发酵条件为,发酵时间36h,温度37℃,发酵液初始pH7,摇床转速140~160rpm。以此发酵条件可以获得约为14mg/mL的大豆多肽,比上述的8mg/mL又提高了65%。按照此最优工艺发酵生产大豆多肽,豆粕中的大豆蛋白转化为大豆多肽的转化率高达60%,是常规酶解法的3倍。
     5研究了超滤对发酵液的纯化效果,结果表明在发酵液中,仅有0.85%的肽分子质量大于30KDa;有2.42%的肽分子质量在30~10KDa之间;而5~3KDa之间和小于5KDa的多肽分别占了总肽量20.4%和63.4%。同时生物活性测定表明,高分子量(≥10KDa)的多肽液自由基清除能力较低,而≤5KDa的多肽具有显著的自由基清除效果,特别是3KDa超滤膜透过液的O~(-2)·自由基和·OH自由基清除率分别高达49%和82%,比同浓度的天然抗氧化剂生育酚的自由基清除力还强。对超滤各参数的研究表明,选用料液浓度50mg/mL,料液温度30℃,操作压力0.08MPa能获得最佳膜通量和分离效果。随着截留分子量的不断降低,超滤液中肽的分子量在不断下降,纯度在逐步提高。经RP-HPLC验证,凝胶层析后所得具有最高生物活性的片段为单一多肽组分。
     6对发酵法制备的大豆多肽生物活性研究表明,其具有显著的自由基清除能力和体外抗氧化活性,活性随着纯化步骤的进行而不断提高,其中O~2~-·清除能力从最初的49%提高到62%,·OH清除能力从78%提高到90%,相对抗氧化值从2.0提高到2.8,具有最强体外抗氧化能力的是分子量约为1,300Da的短链肽。其抗氧化能力是相同浓度生育酚的1.5倍。体内抗氧化实验表明,小鼠经灌胃大豆肽后,其血液中GSH-PX活力和SOD活力都得到了提高,MDA含量均低于标准饲料对照组,存在显著性差异(P<0.01),表明大豆肽的体内抗氧化机理与其能提高生物体内的抗氧化酶活性有关。而灌胃中高剂量的大豆肽,降低MDA的效果比天然抗氧化剂生育酚(V_E)的效果还明显(P<0.01)。对大豆多肽的体内抗疲劳实验表明,三个剂量组小鼠游泳时间均比对照组延长,大豆多肽中高剂量组能显著提高小鼠的肝糖原含量(p<0.05),三个剂量组的小鼠在剧烈游泳后其血乳酸升高比值显著低于对照组,说明小鼠运动时疲劳增加延缓;而血乳酸清除比值均显著高于对照组(p<0.01),说明其运动后疲劳消除加快。根据卫生部公布的保健食品评价指标,可判断发酵法制备所得大豆多肽具有抗疲劳的功能。
     7对发酵法制备的大豆多肽加工特性研究表明,其具有良好的溶解性,能在广泛的pH范围内保持较高的氮溶指数(NSI>80%)。与大豆分离蛋白相比,具有良好的凝胶性,同时亲水性大为增加。与大豆蛋白相比,大豆多肽具有良好的乳化性能,并在广泛的pH范围内(pH2~8)均表现出最好的乳化性和乳化稳定性。同时具有更多短链肽的发酵大豆多肽其起泡性和泡沫稳定性都要优于酶解法所得大豆多肽。
     8以发酵法制备的大豆多肽为原料,开发研制了大豆多肽功能性饮料。其最佳配方是以大豆多肽液(酸溶性多肽含量16mg/mL)为母液,各种添加剂添加量(W/V)分别为β—环糊精0.4%、柠檬酸0.2%、蔗糖9%、橙汁香精0.4%。最佳灭菌工艺采用微波灭菌法(80℃,10min)。最佳贮藏条件为冷藏(4℃),在不添加任何稳定剂的情况下冷藏可放置2个月。功能性试验表明,以不同剂量的多肽饮料喂饮小鼠,实验小鼠游泳时间显著延长,其中高剂量组效果最为显著,与对照组相比,小鼠游泳时间延长了近一倍。表明该大豆多肽饮料具有一定的抗疲劳作用,
Soybean peptides, which derived from hydrolysis of soybean protein by acid, alkali or enzyme,were the general name of a group of peptides chain with different amino acid composition. Themolecular weight rang of them was defined from 300 to 1000Da with 3~10 amino acid now. They werealso defined as soybean bioactivity peptide or soybean functional peptide due to their good processfunction and bioactivity beneficial to human body and focused by researchers for their potential offunctional food.
     There are lots of studies about the production of soybean peptide in China but the industry practicein large scale still under the way due to two reasons: 1 the cost of production is high.2 the bitterness ofhydrolyzate harm to the taste of peptide produce badly.
     We established a production technology of soybean peptide with biotechnique in order to overcomethe shortage of the studies and industry practices on soybean peptide in our country. The soybeanpeptide with bioactivity was produced by fermentation defatted soybean flour with microorganism. Asuitable technology of fermentation was established by optimization with response surface methodology.The purification of soybean bioactivity peptide by membrane technique was studied. The enzymeproduction and the mechanism of debitterness of fermentation strain were discussed. The bioactivity andprocess character of soybean peptides produced by fermentation was studied and a soybean peptidebeverage with antifatigue function was developed. The main results were described as following:
     1. A new method which was suitable for fermentation technology and used for detect the degree ofhydrolysis (DH) was established at the base of traditional method. The DH was measured by calculatingthe number of peptide-bond split in new method. It accord to the rule of protein hydrolysis at the theoryand reflect the defining of DH. This method proposed in this paper was shown to be direct, sensitive,accurate and reproducible.
     2. The hydrolysis dynamic of soybean protein in defatted soybean peptide under the effect of enzymeproduced by Bacillus subtiliss SHZ was studied. Results showed that B. subtiliss SHZ can yieldedproteinase and carboxypeptidase, at the beginning of fermentation (0~8h), the strain mainly yieldedproteinase which can hydrolyzed the soybean protein into long chain peptide with slight bitterness;during 8~16h of fermentation, long chain peptide were further hydrolyzed into middle and short chainpeptide. The amino acids were exposed at the effect of carboxypeptidase which resulted to bitternessincreasing. During 24~32h, strain yielded Carboxypeptidase in larger number which can cut down theamino acids from the C-terminal of peptide and at the end of fermentation, there are mainly short chainpeptidase and free amino acid with low bitterness. When fermentation for 36h, the DH was 25% andmolecular weight range of soybean peptide was from 300 to 1000Da.
     3. The bitterness value and amino acid composition of enzyme hydrolyzate of soybean protein andsoybean peptides from the fermented liquid of defatted soybean flour were compared each other. It wasfound that there are 37.69% of hydrophobe amino acid occured in the form of peptide in enzymehydrolyzate which exhibit strong bitterness. While there is 11.75% of hydrophobe amino acid infermented liquid of defatted soybean flour and they are mainly in the form of free amino acid. Thebitterness values of enzyme hydrolyzate were reduced from 4 to 0 when fermented with B. subtilis SHZfor 20h. It proved the debitter ability of B. subtilis SHZ and it may be the effect of carboxypeptidaseproduced from B. subtilis SHZ. The enzyme analysis of strain showed that the strain can excretecarboxypeptidase during growth. After purified, the special activity of the carboxypeptidase from B.subtilis SHZ were increase from 4.5 to 24.5, but the loss of enzyme protein and total carboxypeptidaseactivity is huge, only 12.7% were reclaimed. The amino acid such as Phe, Ala, Tyr and Leu at theC-terminal of peptide of enzyme hydrolyzate can be cut down by the purified carboxypeptidase from B.subtiliss SHZ and result to nonbitternss. This is the main mechanism of debitterness of B. subtiliss SHZ.
     4. In order to obtain the highest yield of soybean peptides, the medium composition and fermentationconditions of B. subtiliss SHZ were optimization by the response surface methodology. First, themedium composition were optimized used Box-Behnken design and the optimal medium compositionwere defatted soybean flour 52~58 g/l, glucose 7~9g/l, KH_2PO_4 3g/l. It can obtain 8mg/mL soybeanpeptide at this medium and it was increased about 33% compared with the 6mg/mL before optimization.The fermentation conditions were also optimized used central composition design (CCD) and theoptimal conditions were fermentation time 36h, temperature 37℃, initial pH 7 and rotary speed was140~160rpm. The yield of soybean peptides can attain 14mg/mL at this optimal condition and it was increased about 65% compared with the 8 mg/mL which attained before. The transferring ratio ofsoybean protein to soybean peptides was 60% at optimal medium composition and fermentationconditions which is three times compared with traditional enzyme technique.
     5. The purification effect of ultrafiltration of fermented liquid was studied. Results showed that, thereare 0.85% of peptide with molecular weight over 30KDa, 2.42% of peptide with molecular weight from30KDa to 10KDa, 20.4% of peptide with molecular weight from 5KDa to 3KDa and 63.42% of peptidewith molecular weight less than 3KDa. The bioactivity analysis showed that the peptide with highmolecular weight (≥10KDa) exhibit low free radical scavenging ability. The peptide with molecularweight≤5KDa exhibited strong free radical scavenging ability. The scavenging ability to O~(-2)·and·OHof peptide with molecular weight≤3KDa were 49%and 82%, respectively. The optimal flux andisolation effect can be attained at liquid concentration 50mg/mL, liquid temperature 30℃, operatedpressure 0.08MPa. The molecular weight distribution of ultrafiltration fraction showed that the peptidechain was shorter as the cut-off molecular weight decrease and the purity was also increased. The gelfraction of soybean peptides with the highest bioactivity was a single peptide proved by RP-HPLC.
     6. The study of bioactivity of soybean peptides from fermentation showed that the soybean peptides havesignificant free radical scavenging ability and antioxidant activity in vitro. As the purification developing,the scavenging ability of O2—·was increased from 49% to 62%, the scavenging ability of·OH wasincreased from 78% to 90% and the relative antioxidant value was increased from 2.0 to 2.8. Themolecular weight of the peptide with the most antioxidant activity in vitro is about 1,300Da. The resultsof antioxidant experimental in vivo showed that the activity of GSH-PX and SOD in blood of mouseincreased and the MDA content in heart of mouse decreased after being feed with different doze soybeanpeptide (P<0.01). The increasing of GSH-PX and SOD in blood serum indicated that the antioxidantactivity of soybean peptide were related to the increase the activity of antioxidant enzyme in vivo. Theantifatigue activity in vivo of soybean peptide produced by fermentation was examined and approved byanimal model. The swimming time of rat feed with different doze of soybean peptide were increasedmarkedly approved the anti-fatigue effect of soybean peptide. The glycogen content of rat increasedmarkedly showed that the anti-fatigue effect was related to the increasing of energy storage. Theincreasing of lactic acid in the blood of rat was deferred and the reduction of lactic acid in the blood ofrat was accelerated after being feed with different doze of soybean peptides. The conclusion can be drawthat the soybean peptides produced by fermentation have the antifatigue function according to theevaluation index of health food published by sanitation ministry.
     7. The study of process character of soybean peptides from fermentation showed that the soybeanpeptides have good solubility and can keep the high NSI over 80% at abrooad pH range. Its gelation andhydrophile ability were increased compared with soybean protein. At the same time, soybean peptideshave good emulsification and can keep the good EAI and ESI at pH from 2~8. The soybean peptideswith more short chain peptides produced by fermentation have higher foaming and foaming stabilitycompared with the soybean peptides produced by enzymatic hydrolysis.
     8. A functional beverage based on the soybean peptides produced by fermentation was developed. Theoptimal prescription was following:β-dextrin 0.4%, citric acid 0.2%, sucrose 9%, OJ essence 0.4%.The optimal sterilization technique was microwave sterilization (80℃, 10min) and the optimal storecondition wascold storage at 4℃. The beverage can keep constant at this condition for 2 monthswithout any additive. The results of animal experiment showed that the swimming time of mice feedwith different doze of beverage increased significantly and the swimming time of high doze group wastwo times compared with check group. It can be conclude that the beverage have some antifatiguefunction.
引文
[1] 郭心义.我国大豆多肽生产现状及前景展望[J].粮油加工与食品机械,2004,5:13-15
    [2] 邓勇,吴煜欢.大豆多肽研究与开发:现状·问题·建议[J].中国农业大学学报,1999,4(4):89-93
    [3] Boonvisut S. Effect of heat, amylase and disulfide bond cleavage on the protein in vitro digestibility of soybean[J]. J Agric Food Chem, 1976, 24: 11-30
    [4] 段玉兰.小肽的吸收及其应用前景[J].饲料博览,2002,3:43-45
    [5] 王岗,卢德勋.肽的吸收与利用[J].饲料广角,2002,8:17-19
    [6] 黄骊虹.大豆多肽的生理功能及应用[J].食品科技,1999,3:50-51
    [7] 邹远东.超越氨基酸直指“现代病”—“大豆多肽”的极强活性和多样性[J].当代经济,2002,2:26-28
    [8] 李书国,陈辉,杜进民等.大豆多肽的功能特性及加工工艺[J].粮油食品科技,2000,8(1):14-15
    [9] 蒋文强,孙显慧.大豆多肽的功能特性及其开发应用[J].粮油加工与食品机械,2004,7:39-42
    [10] 孙显慧,蒋文强.大豆多肽功能特性及其开发应用[J].粮食与油脂,2004,5:7-10
    [11] 陈湘宁,张艳艳,范俊峰等.大豆多肽的凝胶性及抗氧化性研究[J].食品科学,2005,26(5):71-75
    [12] Smacchil E, Gobbetti M. Bioactive peptides in dairy products: synthesis and interaction with proteolytic enzymes[J]. Food Microbiol, 2000, 17: 129-141
    [13] 葛文光.大豆多肽的生理功能及作用效果[J].无锡轻工大学学报,1996,15(3):272-277
    [14] 包媛媛,林奇,谢启军.大豆多肽的生理功能及在食品工业中应用前景探讨[J].食品研究与开发,2006,27(2):141-144
    [15] 王启荣,李肃反,杨则宜等.补充大豆多肽对中长跑运动员训练期生化指标的影响[J].中国运动医学杂志,2004,23(1):33-37
    [16] 周丽丽,李素反,高红.大豆多肽对大强度训练举重运动员肌肉代谢的影响[J].中国食品学报,2006,6(1):40-43
    [17] 李世成,杨则宜.活性肽及其在运动中的应用[J].中国运动医学杂志,2003,22(2):174-176
    [18] Dragan I. Stroescu V, Stoian I, et al. Studies regarding the efficiency of Supro isolated soy protein in Olympic athletes[J]. Rev RoumPhysiol, 1992, 29(3-4): 63-70
    [19] 颜燕,徐建华,杨非.大豆多肽对辐射的保护功能[J]. 中国公共卫生 , 2004, 20(5)s 564-565
    [20]Oshima G, Sashimabukuro H, Nagawa K. Peptide inhibitors of angiotensin I-converting enzyme in digests of gelatin by bacterial collagenase[J]. Baiochim Biophys Acta, 1979, 566(1): 128-137
    [21] Ferreira S H, Rocha Silva M. Potentiation of bradykinin and eledoisin by BPF (bradykinin potentiating factor) from Bothrops jararaca venom[J]. Experientia, 1965, 21(60): 347-349
    [22] Kato H, Suzuki T. Bradykinin-potentiating peptides from the venom of Agkistrodon halys blomhoffii[J]. Experientia, 1969, 25(7): 694-695
    [23] Iukalo V H. Effect of products of alpha S1-casein proteolysis on the activity of angiotensin-converting enzyme[J]. Ukr Biokhim Zh, 2001, 73(5): 28-32
    [24] Henriques O B, Deus R B, Santos R A. Bradykinin potentiating peptides isolated from alpha-casein tryptic hydrolysate[J]. Biochem Pharmacol, 1987, 36(1): 182-184
    [25] Matsufuji H, Matsui T, Seki E, et al. Angiotensin I-converting enzyme inhibitory peptides in an alkaline protease hydrolyzate derived from sardine muscle[J]. Biosci Biotechnol Biochem, 1994, 58(12): 2244-2245
    [26] Kawasaki T, Seki E, Osajima K, et al. Antihypertensive effect of valyl-tyrosine, a short chain peptide derived from sardine muscle, on mild hypertensive subjects[J]. Hum Hypertens, 2000, 14(8): 519-523
    [27] Fujita H, Yoshikawa M. LKPNM: a prodrug-type ACE-inhibitory peptide derived from fish protein[J]. Int Immunopharmacology, 1999, 44(1-2): 123-127
    [28] Matsumura N, Fujii M, Takeda Y, et al. Angiotensin I-converting enzyme inhibitory peptides derived from bonito bowels autolysate[J]. Biosci Biotechnol Biochem, 1993, 57(5): 695-697
    [29] Fujita H, Sasaki R, Yoshikawa M. Potentiation of the antihypertensive activity of orally administered ovokinin, a vasorelaxing peptide derived from ovalbumin, by emulsification in egg phosphatidylcholine[J]. Biosci Biotechnol Biochem, 1995, 59(12) : 2344-2345
    [30] Masuda O, Nakamura Y, Takano T. Antihypertensive peptides are present in aorta after oral administration of sour milk containing these peptides to spontaneously hypertensive rats[J]. Nutr, 1996, 126(12): 3063-3068
    
    [31] Nakamura Y, Yamamoto N, Sakai K, et al. Antihypertensive effect of sour milk and peptides isolated from it that are inhibitors to angiotensin I -converting enzyme[J]. Dairy Sci, 1995, 78(6): 1253-1257
    [32] Matsui T, Li C H, Osajima Y. Preparation and characterization of novel bioactive peptides responsible for angiotensin Ⅰ-converting enzyme inhibition from wheat germ[J]. Pept Sci, 1999, 5(7): 289-297
    [33] 吴建平.大豆降压肽的生产.博士论文,1998,无锡轻工大学
    [34] Shin Z I, Ahn C W, Nam H S, et al. Fractionation ofangiotensin converting enzyme inhibitory peptide from soybean paste[J]. Korean J Food Sci Technol, 1995, 27:230-234
    [35] Wu J, Ding X. Hypotensive and physiological effect of angiotensin converting enzyme inhibitory peptides derived from soybean protein on spontaneously hypertensive rats[J]. Agric Food Chem, 2001, 49: 501-506
    [36] Shin Z I, Yu R, Park S A, et al. His-His-Leu, an angiotensin Ⅰ converting enzyme inhibitory peptide derived from Korean soybean paste, exerts antihypertensive activity in vivo[J]. Agric Food Chem, 2001, 49:3004-3009
    [37] Yee J J, Shipe W F, Kinsella J E. Antioxidant effects of soyprotein hydrolysates on copper-catalyzed methyl linoleate oxidation[J]. J Food Sci , 1980 , 45: 1082-1083
    [38] Prokorny R. Natural antioxidants for food use[J]. Trends Food Sci Technol, 1991, 2:223-227
    [39] Chen H M, Murarnoto K, Yamauchi F. Structural analysis of antioxidative peptides from Soybean β-conglycinin[J]. J Agric Food Chem, 1995, 43: 574-578
    [40] Chen H M, Muramoto K, Yamauchi F, et al. Antioxidant acvtivity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein[J]. J Agric Food Chem, 1996, 44:2619-2623
    [41] Chen H M, Muramoto K, Yamauchi F, et al. Antioxidative properties of histidine-containing peptides designed from peptide fragments found in the digests of a soybean protein[J]. J Agric Food Chem, 1998, 46:49-53
    [42] Pena-Ramos E A, Xiong Y L. Antioxidant activity of soy protein hydrolysates in liposomal system.[J]. J Food Sci, 2002, 67:2952-2956
    [43] Wu S U, Brewer M S, Soy protein isolate antioxidant effect on lipid peroxidation of ground beef and microsomal lipids[J]. J Food Sci, 1994, 59:702-706
    [44] 陈湘宁,张艳艳,李里特等.大豆蛋白水解产物中巯基的热稳定性和抗氧化作用的研究[J].食品与发酵工业,2005,31(7):19-22
    [45] 荣建华,李小定,谢笔钧.大豆肽体外抗氧化效果的研究[J].食品科学,2002,23(11):118-120
    [46] Lee K-A, Kim S-H. SSGE and DEE, new peptides isolated from a soy protein hydrolysate that inhibit platelet aggregation[J]. Food Chem, 2004, (4): 10-15
    [47] Ringseis R, Matthes B, Lehmann V, et al. Peptides and hydrolysates from casein and soy protein modulate the release of vasoactive substances from human aortic endothelial cells[J]. Biochimica et Biophysica Acta, 2005, 172:89-97
    [48] 卢亚萍,冯杰.大豆多肽的性质及其研究进展[J].饲料添加剂,2005,11:26-29
    [49] Taylor S L. Allergic and sensitivity to food components In Nutritional Toxicologyed[M]. Orlando: Hatchcock, J.N. Academic Press, 1987, 3:173-198
    [50] 牟光庆,郑冬梅,周德强等.大豆蛋白酶解及乳化性的研究[J].黑龙江八一农垦大学学报,1999,11(3):92-96
    [51] 郭清泉,张兰威.食品中活性肽的研究[J].食品与机械,1999,6:12-14
    [52] 张玲华,唐小俊,张宝玲.大豆多肽制备工艺的研究[J].食品与发酵工业,2000,27(3):37-39
    [53] 孙云霞.大豆多肽制取方法的研究[J].食品研究与开发,2004,25(5).76-78
    [54] 李理,罗泽民,卢向阳.梨形毛霉蛋白酶在大豆多肽制备中的应用[J].中国粮油学报,2001,16(1):55-58
    [55] 吴建中,赵谋明,宁正祥.酶法水解生产大豆多肽研究[J].粮油加工与食品机械,2003,1:45-47
    [56] 周利亘,陈新峰,王君虹.大豆多肽复合酶解工艺条件研究[J].食品技术,2005,7:22-25
    [57] 刘通讯,朱小乔,杨晓泉.多酶协同作用生产大豆多肽的研究[J].食品科学,2002,23(11):29-32
    [58] 吴建中,赵谋明,宁正祥.双酶法生产低苦味大豆多肽研究[J].食品工业科技,2003,4:24-27
    [59] 周利亘,陈新峰,王君虹.双酶复合法制备大豆多肽工艺的研究[J].粮油食品科技,2006,14(2):22-24
    [60] 邓成萍,薛文通,孙晓琳.双酶水解制备大豆多肽的研究[J].粮油食品科技,2006,14(1):23-24
    [61] Deeslie, W D, Cheryan, M. Functional prodrction of protein hydrolysates from a continuous ultrafiltration reactor[J]. Agric Food Chem, 1998, 36:26-31
    [62] Lahl, W J.. Amino acid supplements. Free form vs peptide bonded[M]. Part 2. Musc Development, 1990, 21(1): 40-42
    [63] 吴逸民,龚树立,文剑.大豆多肽脱苦脱色工艺在运动饮料研制中的应用[J].食品与发酵工业,2005,31(9):118-121
    [64] 周利亘,王君虹,陈新峰.大豆多肽脱色工艺优化研究[J].食品技术,2004,12:22~25
    [65] 万琦,陆兆新,高宏.脱苦大豆多肽产生菌的筛选及其水解条件的优化[J].食品科学,2003,24(2):29-32
    [66] 万琦,陆兆新,吕凤霞等.枯草芽抱杆菌生产大豆多肽溶液的加工功能特性研究[J].食品科学,2003,24(11):99-102
    [67] 邵伟,熊泽,何晓文.发酵大豆多肽及其功能研究[J].食品科技,2005,4:26-28
    [68] 李理,潘进权,杨晓泉等.液体发酵法制备风味良好的大豆多肽[J].食品与发酵工业,2003,29(1):23-26
    [69] 潘进权,李理.大豆多肽深层发酵过程中蛋白质变化的研究[J].食品工业科技,2005,26(5):67-69
    [70] 徐速,赵云财,陈成等.大豆蛋白肽发酵中的染菌原因及防治[J].大豆通报,2004,6:20-21
    [71] 安毅.陶瓷膜技术在微生物发酵法生产大豆蛋白活性肽中的应用研究[J].大豆通报,2004,6:22-23
    [72] 程丽,梁金钟.絮凝法预处理大豆蛋白活性肽发酵液的研究[J].大豆通报,2004,2:17-18
    [73] 张雁平.采用发酵法工业化生产大豆蛋白活性肽[J].大豆通报,2003,3:26-27
    [74] 邓成萍,薛文通,孙晓琳等.超滤在大豆多肽分离纯化中应用[J].食品科学,2006,27(2):192-195
    [75] Galvez A F, Chen N, Macasieb J, et al. Chemopreventive Property of a Soybean Peptide (Lunasin) That Binds to Deacetylated Histories and Inhibits Acetylation[J]. Cancer Res, 2001, 61 : 7473-7478
    [76] Penas E, Prestamo G, Gomez R. High pressure and the enzymatic hydrolysis of soybean whey proteins[J]. Food Chem, 2004, 85:641-648
    [77] Yokozeki K, Hara S. A novel and efficient enzymatic method for the production of peptides from unprotected starting materials[J]. J Biotechnol, 2005, 115:211-220
    [78] Wu J P, Ding X L. Characterization of inhibition and stability of soy-protein-derived angiotensin I-converting enzyme inhibitory peptides[J]. Food Res Int, 2002, 35:367-375
    [79] Rajapakse N, Mendis E, Jung W K, et al. Purification of a radical scavenging peptide from fermented mussel sauce and its antioxidant properties[J]. Food Res Int, 2005, 38:175-182
    [80] Je J Y, Park P J, Kim S K. Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate[J]. Food Res Int, 2005, 38:45-50
    [81] Zhang J H, Tatsumi E, Ding C H, et al. Angiotensin I-converting enzyme inhibitory peptides in douchi, a Chinese traditional fermented soybean product[J]. Food Chem, 2005, 6:24-28
    [82] Jea J Y, Parkb P J, Byun H G, et al. Angiotensin I converting enzyme (ACE) inhibitory peptide derived from the sauce of fermented blue mussel, Mytilus edulis[J]. Bioresource Technol, 2005, 96: 1624-1629
    [83] Chen J R, Suetsuna K, Yamauchi F. Isolation and characterization of immunostimulative peptides from soybean[J]. J Nutr Biochem, 1995, 6:310-313
    [84] Pedroche J, Yust M M, Lqari H, et al. Production and characterization of casein hydrolysates with a amino acid Fischer's ratio usingimmobilized proteases[J]. Int Dairy J, 2004, 14:527-533
    [85] Kukman I L, Zelenik-Blatnik M, Abram V. Isolation of low-molecular-mass hydrophobic bitter peptides in soybean protein hydrolysates by reversed-phase high-performance liquid chromatography[J]. J ChromatogrA, 1995, 704:113-120
    [86] 陈山,杨晓泉,郭祀远等.大豆肽超滤分离纯化过程的研究[J].食品与发酵工业,2003,29(1):49-52
    [87] 杨宝国,刘守春.有关蛋白质水解苦味的探讨[J].食品科学,1983,12:1-2
    [88] 周雪松.蛋白质酶解物苦味形成机理及控制研究[J].粮食与油脂,2004,8:20-24
    [89] Ney K H. Bitterness of peptides: amino acid composition and chain length. Food taste chemistry[C]. Washington (DC): J Am Chem Soc, 1979, 149-173
    [90] Ishibashi N, Sadamori K, Yamamoto O, et al. Bitterness ofphenylalanine and tyrosine-containingpeptides[J]. Agric Biol Chem., 1987, 51:3309-3313
    [91] Ishibashi N, Kubo T, Chino M, et al. Paste ofproline-contaming peptides[J]. Agric Biol Chem, 1998, 2: 95-98
    [92] Matoba T, Hayashi R, Hata T. Isolation of bitter peptides in trypic hydroiysates of casein and their chemical structures[J]. Agric Biol Chem, 1970, 34: 1235-1243.
    [93] Kukman I L, Zelenik M Abram V. Isolation of low-molecular-mass hydrophobic bitter peptides in soybean protein hydrolyzates by reverse-phase high-performance liquid chromatography[J]. J ChromatogrA, 1995, 704:113-120
    [94] Kim M R, Choi S Y, Kim C S, et al. Amino acid sequence analysis of bitter peptides from a soybean proglycinin subunit synthesized in Escherichia coli[J]. Biosci Biotechnol Biochem, 1999, 63:2069-2074
    [95] 冯红霞,陆兆新,尤华.苦味肽的形成及脱苦方法的研究[J].食品科学,2002,23(5):151-154
    [96] Pedersen B. Removing bitterness from protein hydrolysates[J]. Food Technol, 1994, 10:96-98
    [97] Tamura M, Mori N, Miyoshi T, et al. Practical debittering using model peptides and related compounds[J]. Agric Biol Chem, 1990, 54:41-51
    [98] Tokita F. Enzymatische und nicht enzymatische Ausschaltung des bittergeschmacks bei enzymatischen eieweisshydrolysaten[J]. Z Lebensm-Unters Forsch, 1969, 138:351-355
    [99] Noguchi M, Yamashita M, Arai S, et al. Bitter-masking activity of a glutamic acid-rich oligopeptide fraction[J]. J Food Sci, 1975, 40:367-369
    [100] Matsuura Y, Yugeta R, Noda K. Bitter-masking effect ofglutamylglutamic acid isomers[J]. Seikatsu Kagaku, 1980, 12:199-204
    [101] Stanly D. Non-bitter protein hydrolyzate. Can Inst Food Sci Technol J, 1981, 14:49-52
    [102] Sugiura Y. Control of bitter taste by acidic phospholipids in health food[J]. Japanese Patent 08173093, 1996
    [103] Murray T K, Baker B E. Studies on protein hydrolysis: I. Preliminary observations on the taste of enzymic proteinhydrolyzates[J]. J Food Agric Sci, 1952: 3470-3475
    [104] van Leuwen H J. Removal of a bitter peptide from tryptic hydrolyzates of casein coprecipitate by immunoadsorbent affinity chromatography [J]. Agric Biol Chem 1978, 42: 1375-1378
    [105] Lalasidis G. Four new methods of debittering protein hydrolyzates and a fraction of hydrolyzates with high content of essential amino acids[J]. Ann Nutr Alimen, 1978, 32: 709-723
    [106] Lalasidis G, Sjoberg L. Two new methods of debittering protein hydrolyzates and a fraction of hydrolyzates with exceptionally high content of essential amino acids[J]. J Agric Food Chem, 1978, 26: 742-749
    
    [107] YamasakiY. A bitter peptide in natto[J]. Nippon Kasei Gakkaishi, 1987, 38: 93-97
    [108] Izawa N, Tokuyasu K, Hayashi K. Debittering of protein hydrolyzates using Aeromonas caviae aminopeptidase[J]. J Agric Food Chem, 1997, 45: 543-545
    [109] Donnell M M, FitgeraldR, Fhaolain I N, et al. Purification and characterization of aminopeptidase P from Lactococcus lactis subsp. cremoris[J]. J Dairy Res 1997, 64: 399-407
    [110] Tan PST, van Kessewl AJM, vande Veerdonk LM, et al. Degradation and debittering of a tryptic digest from b-casein by aminopeptidase N from Lactococcus lactis subsp. cremorisG2[J]. Appl Environ Microbiol, 1993, 59: 1430-1436
    [111] Gobbetti M, Cossignani L, Simonetiti M S, et al. Effect of the aminopeptidases from Pseudomonas fluorescens ATCC 948 on synthetic bitter peptides, bitter hydrolyzate of UHT milk proteins and on the ripening of Italian caciotta type cheese[J]. Lait, 1995, 75: 169-179
    [112] Watanabe M, Shimizu J, Arai S. Debittering of a tryptic hydrolyzate of casein by incubating with the ice nucleation-active bacterium, Erwinia ananas, and its aminopeptidase at low temperature[J]. Agric Biol Chem, 1990, 54: 3351-3353
    [113] Gomez M J, Gaya P, Nunez M, et al. Debittering activity of peptidases from selected Lactobacilli strains in model cheeses[J]. Milchwissenschaft, 1996, 51: 315-319
    [114] Minagawa E, Kaminokawa S, Tsukasaki F, et al. Debittering mechanism in bitter peptides of enzymatic hydrolyzates from milk casein by aminopeptidase[J]. T J Food Sci, 1989, 54: 1225-1229
    [115] O'CuinnG, FitzGeraldR, BauchierP, et al. Generation of non-bitter casein hydrolyzates by using combinations of a proteinase and aminopeptidases[J]. Biochem Soc Trans, 1999, 27: 730-734
    [116] Arai S, NoguchiM, Kurosawa S, et al. Applying proteolytic enzymes on soybean: Deodorization effect of aspergillopeptidase A and debittering effect of Aspergillus acid carboxypeptidase[J]. J Food Sci, 1970, 35:392-395
    [117] Umetsu H, Ichishima E. Debittering mechanism of bitter peptides from soybean protein by wheat carboxypeptidase[J]. J Jpn Soc Food Sci Technol, 1988, 35:440-447
    [118] Michiko W, et al. Debittering of a tryptic hydrolysate of casein by incubating with the ice nucleation-active bacterium, Envinia ananas, and its aminopeptidases at low temperature[J]. Agric Biol Chem, 1990, 54(12): 3351-3353
    [119] Parra L. Hyfrolysis of B-casein (193-209) fragment by whole cells and fractions of Lactobacillus casei and Lactococcus lactis[J]. J Food Sci., 1999, 64(5): 899-902
    [120] 刘通讯,林勉,杨兰.鸡酶解液中苦味肤的提取及微生物法脱苦的研究[J].食品科学,1999,10:10-12
    [121] Arora G, Lee B H. Comparative studies on peptidases of Lactobacillus casei subspecies[J]. J Dairy Sci, 1990, 3: 274-279.
    [122] 吴建平,日本生理活性肽的市场动态[J].食品工业,1998(3):8-9
    [123] 龚树立,文剑,吴逸民.大豆多肽运动饮料的研制[J].食品与发酵工业,2003,29(4):86-87
    [124] 顾仁勇,刘春成,傅伟昌.菠萝汁酶解大豆多肽发酵酸豆乳的研制[J].饮料研究,2005,31(12):117-119
    [125] 潘欣,应铁进,黄斌.大豆多肽方便面的研制[J].粮油食品科技,2005,8:77-82
    [126] 邵金良,袁唯.大豆多肽木糖醇饮料加工工艺的探讨[J].食品工业科技,2005,2:116-118
    [127] 马凤玲.大豆多肽奶粉的研究[J].中国乳品,2004,30(1):140-141
    [128] 刘桂君,岳丽.大豆多肽酸乳的研制[J].食品与发酵工业,2004,30(1):140-141
    [129] 韩建春,张敏.大豆多肽饮料的加工工艺[J].食品科学,2004,25(4):200-203
    [130] 李书国.大豆多肽饮料加工工艺研究[J].西部粮油科技,1999,24(5):39-41
    [131] 徐怀德,师学文,曹剑英.大豆多肽饮料加工技术研究[J].西北农林科技大学学报(自然科学版),2004,32(7):101-103
    [132] 陈美珍,余杰.大豆牛乳多肽饮料的工艺研究[J].食品工业,2002,2:13-15
    [133] 陈美珍,余杰.大豆活性多肽口服液的研制及其功能研究[J].汕头大学学报(自然科学版)2003,18(4):14-18
    [1] 吴建中,赵谋明,宁正祥.酶法水解生产大豆多肽研究[J].粮油加工与食品机械,2003,1:45-47
    [2] 周利亘,陈新峰,王君虹.大豆多肽复合酶解工艺条件研究[J].食品技术,2005,7:22-25
    [3] 刘通讯,朱小乔,杨晓泉.多酶协同作用生产大豆多肽的研究[J].食品科学,2002,23(11):29-32
    [4] 邵伟,熊泽,何晓文.发酵大豆多肽及其功能研究[J].食品科技,2005,4:26-28
    [5] 李理,潘进权,杨晓泉,赵谋明,梁世中.液体发酵法制备风味良好的大豆多肽[J].食品与发 酵工业,2003,29(1):23-26
    [6] 张雁平.采用发酵法工业化生产大豆蛋白活性肽[J].大豆通报,2003,3:26-27
    [7] 徐力,刘立,李相鲁.玉米功能短肽的制备及其类超氧化物歧化酶活性研究[J].中国生化药物杂志,2002,23(2):78-80
    [8] 李书国,陈辉,杜进民.大豆多肽的功能特性及加工工艺[J].粮油食品科技,2000,(8)1:14-15
    [9] 赵新淮,冯志彪.蛋白质水解物水解度的测定[J].食品科学,1994,15(11):65-67
    [10] 万琦,陆兆新,高宏.脱苦大豆多肽产生菌的筛选及其水解条件的优化[J].食品科学,2003,24(2):29-32
    [11] 张龙翔,张庭芳,李令媛.生化实验方法和技术(第二版)[M].北京:高等教育出版社,1997,140-141
    [12] 何照范,张迪清.保健食品化学及其检测技术[M].北京:中国轻工业出版社,1998,141-142
    [13] Cotton F, Delobbe E, Gulbis B. Assessment of a Biuret method without concentration step for total protein determination in cerebrospinal fluid[J]. Clin Biochem, 1997, 30(4): 313-314
    [14] Iemura Y, Yamada T, Takahashi T, et al. Properties of the peptides liberated from rice protein in Sokujo-moto[J]. Biosci and Bioeng, 1999, 88(3): 276-280
    [15] Nakadai T, Nasuno S, Iguchi N. Purification and properties of acid carboxypeptidase I from Aspergillus oryzae[J].Agr Biol Chem, 1972, 36:1343-1352
    [16] 孙君社,薛毅.食品感官鉴评[M].广州:华南理工大学出版社,1994,52-88
    [17] Mogensen L, Adler-Nissen J. Evaluating bitterness masking principles by taste panel studies. In: Frontiers of flavor[J]. Proceeding of the 5th International Flavor Conference Portokarras, Chalkidiki, Greece, 1987, 7: 1-3
    [18] Nishiwaki T, Youshimizu S, Furuta M, et al. Debittering of enzymatic hydrolysates using an aminopeptidase from the edible basidiomycete Grifola frondosa[J]. Biosci and Bioeng, 2002, 93(1): 60-63
    [19] 潘进权,李理.大豆多肽深层发酵过程中蛋白质变化的研究[J].食品工业科技,2005,26(5):67-69
    [1] 杨宝国,刘守春.有关蛋白质水解苦味的探讨[J].食品科学,1983,12:1-2
    [2] 周雪松.蛋白质酶解物苦味形成机理及控制研究[J].粮食与油脂,2004,8:20-24
    [3] Pedersen B. Removing bitterness from protein hydrolysates[J]. Food Technol, 1994, 10:96-98
    [4] Tamura M, Mori N, Miyoshi T, Koyama S, Kohri H, Okai H. Practical debittering using model peptides and related compounds[J]. Agric Biol Chem, 1990, 54:41-51
    [5] Izawa N, Tokuyasu K, Hayashi K. Debittering of protein hydrolyzates using Aeromonas caviae aminopeptidase[J].J Agric Food Chem, 1997, 45:543-548
    [6] Donnell M M, Fitgerald R, Fhaolain I N, Jennings P V, O'Cuinn G. Purification and characterization of aminopeptidase P from Lactococcus lactis subsp, cremoris[J]. J Dairy Res, 1997, 64: 399-407
    [7] Tan P S T, van Kessewl A J M, van de Veerdonk L M, Zuurendonk P F, Bruns A P, Konnings W N. Degradation and debittering ofa tryptic digest from b-casein by aminopeptidase N from Lactococcus lactis subsp. cremorisG2[J]. Appl Environ Microbiol 1993, 59:143-146
    [8] Gobbetti M, Cossignani L, Simonetiti M S, Damiani P. Effect of the aminopeptidases from Pseudomonas fluorescens ATCC 948 on synthetic bitter peptides, bitter hydrolyzate of UHT milk proteins and on the ripening of Italian caciotta type cheese[J]. Lair, 1995, 75:169-179
    [9] O'Cuinn G, FitzGerald R, Bauchier P, McDonnell M. Generation of non-bitter casein hydrolyzates by using combinations of a proteinase and aminopeptidases[J]. Biochem Soc Trans 1999, 27: 730-734
    [10] Watanabe M, Shimizu J, Arai S. Debittering of a tryptic hydrolyzate of casein by incubating with the ice nucleation-active bacterium, Erwinia ananas, and its aminopeptidase at low temperature[J]. Agric Biol Chem 1990, 54:3351-3354
    [11] 邵元龙,谢和.两株枯草芽孢杆菌蛋白酶的提取及产酱香研究[J].郑州轻工业学院学报(自然科学版),2005,20(3):51-53
    [12] 田亚平,须瑛敏.一种枯草芽孢杆菌氨肽酶的纯化及酶学性质[J].食品与发酵工业,2006,32(3):7-10
    [13] 王璋.食品酶学[M].北京:中国轻工业出版社,1990,194-195
    [14] Ishibashi N, Sadamori K, Yamamoto O, et al. Bitterness ofphenylalanine and tyrosine-containing peptides[J]. Agric Biol Chem., 1987, 51: 3309-3313
    [15] Matoba T, Hayashi R, Hata T. Isolation of bitter peptides in trypic hydroiysates of casein and their chemical structures[J]. Agric Biol Chem, 1970, 34: 1235-1243.
    [16] Kukman I L, Zelenik M Abram V. Isolation of low-molecular-mass hydrophobic bitter peptides in soybean protein hydrolyzates by reverse-phase high-performance liquid chromatography[J]. J Chromatogr A, 1995, 704: 113-120
    [17] Kim M R, Choi S Y, Kim C S, et al. Amino acid sequence analysis of bitter peptides from a soybean proglycinin subunit synthesized in Escherichia coli[J]. Biosci Biotechnol Biochem, 1999, 63: 2069-2074
    [18] 万琦.微生物法生产脱苦大豆功能性多肽的研究[M].南京农业大学硕士学位论文,2003
    [19] 刘通讯,林勉,杨兰.鸡酶解液中苦味肤的提取及微生物法脱苦的研究[J].食品科学,1999,10:10-12
    [1] Box G P, Behnken D W. Some new three level design for the study of quantitative variables[J]. Technometrics, 1960, 2:456-475
    [2] Deming S N, Morgan S L. Experimental Design: A Chemomatric Approach[M]. Elsevier, Oxford, 1987
    [3] Neter J, Kutner M H, Nachtsheim C J, Wasserman W. Applied Linear Statistical models[M]. The McGraw-Hill companies, Chicago, 1996, p. 1280-1310
    [4] Ellaiah P, Adinarayana K. Response surface optimization of the cultural conditions for the production of alkaline protease[J]. J Sci Ind Res, 2001, 60:868-875
    [5] Beg Q K, Saxena R K, Gupta R. Kinetic constants determination for an alkaline protease from Bacillus mojavensis using response surface methodology[J]. Biotechnol Bioeng, 2002, 78: 289-95
    [6] Liu J Z, Weng L P, Zhang Q L, Xu H, Ji L N. Optimization of glucose oxidase production by Aspergillus niger in a benchtop bioreactor using response surface methodology[J]. Wor J Microbiol Biotechnol, 2003, 19:317-323
    [7] De Faveri D, Torre P, Perego P, Converti A. Statistical investigation on the effects of starting xylose concentration and oxygen mass flowrate on xylitol production from rice straw hydrolyzate by response surface methodology[J]. J Food Engin, 2004, 65(3): 383-389
    [8] Roberto I C, Mussatto S I, Rodrigues R B. Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor[J]. Ind Crops Produc, 2003, 17(3): 171-176
    [9] Rodrigues R B, Felipe M A, Silva JA, Vitolo M. Response surface methodology for xylitol production from sugarcane bagasse hemicellulosic hydrolyzate using controlled vacuum evaporation process variables[J]. Process Biochem, 2003, 38(8): 1231-1237
    [10] Mao X B, Eksriwong T, Chauvatcharin S, Zhong J J. Optimization of carbon source and carbon/nitrogen ratio for cordycepin production by submerged cultivation of medicinal mushroom Cordyceps militaris[J].ProcessBiochem, 2005, 40:1667-1672
    [11] Wang Y X, Lu Z X. Optimization of processing parameters for the mycelial growth and extracellular polysaccharide production by Boletus spp. ACCC50328[J]. Process Biochem, 2005, 40: 1043-1051
    [12] 张玲华,唐小俊,张宝玲.大豆多肽制备工艺的研究[J].食品与发酵工业,2000,27(3):37-39
    [13] 孙云霞.大豆多肽制取方法的研究[J].食品研究与开发,2004,25(5):76-78
    [14] 李理,罗泽民,卢向阳.梨形毛霉蛋白酶在大豆多肽制备中的应用[J].中国粮油学报,2001,16(1):55-58
    [15] 吴建中,赵谋明,宁正祥.酶法水解生产大豆多肽研究[J].粮油加工与食品机械,2003,1:45-47
    [1] 姚红娟,王晓琳.膜分离技术在低分子量生物产品分离纯化中的应用[J].化工进展,2003,2:146-152
    [2] Prokorny R. Natural antioxidants for food use[J]. Trends Food Sci Technol, 1991, 2:223-227
    [3] Chen H M, Muramoto K, Yamauchi F, et al. Antioxidant acvtivity of designed peptides based on the antioxidative peptide isolated from digests of a soybean protein[J]. J Agric Food Chem, 1996, 44: 2619-2623
    [4] Chen J R, Suetsuna K, Yamauchi F. Isolation and characterization ofimmunostimulative peptides from soybean[J]. J Nutr Biochem, 1995, 6:310-313
    [5] Kukman I L, Zelenik-Blatnik M, Abram V. Isolation of low-molecular-mass hydrophobic bitter peptides in soybean protein hydrolysates by reversed-phase high-performance liquid chromatography[J]. J ChromatogrA, 1995, 704:113-120
    [6] 吕淑霞.基础生物化学实验指导[M].北京:中国农业大学出版社,2003,77-82
    [7] 陈美珍,余杰,郭慧敏.大豆分离蛋白酶解物清除羟自由基作用的研究[J].食品科学,2002,23(1):43-46
    [8] 徐萍,黄莉,董良杰.大豆肽抗氧化性测定方法研究[J].大豆通报,2005,6:43-46
    [9] 师晓栋,陈秀兰,何海伦等.海洋蛋白酶解产物中生物活性肽的研究[J].氨基酸和生物资源.2000,22(4):13-16
    [10] 唐易全.肽化学研究中的高效液相色谱[J].色谱,1990,8(6):368-372
    [11] Shin Z I, Yu R. His-His-Leu, an angiotensin I converting enzyme inhibitory peptide derived from Korean soybean paste, exerts antihypertensive activity in vivo[J]. J Agric Food Chem. 2001,49 (6): 3004-3009
    [12] Yasuo A. Angiotensin-converting enzyme inhibitors derived from food proteins[J]. Trend in food science and technology. 1993, 4:139-144
    [13] Suetsuna K, Nakkano T. Identification of an antihypertensive peptide from peptic digest of wakamme[J]. J Nutr Biochem. 2000, 11(9): 450-454
    [1] 曲绵域,高云秋,浦钧宗.实用运动医学[M].北京:北京科学技术出版社,1996,52-63
    [2] 张雁平.采用发酵法工业化生产大豆蛋白活性肽[J].大豆通报,2003,3:26-27
    [3] 邵伟,熊泽,何晓文.发酵大豆多肽及其功能研究[J].食品科技,2005,4:26-28
    [4] 陈湘宁,张艳艳,李里特.大豆蛋白水解产物中巯基的热稳定性和抗氧化作用的研究[J].食品与发酵工业,2005,31(7):19-22
    [5] 张强,阚国仕,陈红漫.玉米抗氧化肽的分离制备及其体外抗氧化活性的研究[J].中国粮油学报,2005,20(5):36-39
    [6] 余勃,陆兆新.微生物发酵法产大豆多肽液水解度的测定[J].食品科学,2005,26(4):104-107
    [7] Netto F M, Galeazzi M A M. Production and Characterization of Enzymatic Hydrolysate from Soy Protein Isolate [J]. Lebensm Wiss. Technol, 1998, 31: 624-631
    [8] 吕淑霞.基础生物化学实验指导[M].北京:中国农业大学出版社,2003,77-82
    [9] 陈美珍,余杰,郭慧敏.大豆分离蛋白酶解物清除羟自由基作用的研究[J].食品科学,2002,23(1):43-46
    [10] 徐萍,黄莉,董良杰.大豆肽抗氧化性测定方法研究[J].大豆通报,2005,13:24-27
    [11] Marx JL. Oxygen free radical linkedto disease[J]. Science, 1987, 235:520-524
    [12] Chert H M, Muramoto K, Yamauchi F. Structural analysis ofantioxidative peptides from soybean β-conglycinin[J]. J Agric Food Chem, 1995, 43:574-578
    [13] 张学忠,王寰宇,陈松明.大豆功能短肽的制备及生理活性研究[J].大豆新加工技术,2003,24(3):36-38
    [14] 沈蓓英.大豆蛋白抗氧化肽的研究[J].中国油脂,1996,21(6):21-23
    [15] 刘大川,钟方旭.大豆肽的功能特性研究[J].中国油脂,1998,23(3):9-14
    [16] 荣建华,李小定,谢笔钧.大豆肽的理化性质及其对脂肪氧合酶活性的影响[J].食品工业科技,2002,23(8):19-21
    [17] 中华人民共和国卫生部.保健食品检验与评价技术规范[S].2003
    [1] Pearson A M. Soy protein, development in food proteins[M]. Edited by Hudson, 1983, 67-108
    [2] Fennema O R,王璋等译.食品化学(第二版)[M].北京:轻工业出版社,1991,282-313
    [3] Qi M, Hettiarachchy N S, Kalapathy U. Solubility and emulsifying properties of soy protein isolates modified by pancreatin[J]. J Food Sci, 1997, 62(6): 1110-1115
    [4] Coffman G W, Garcia V V. Functional properties and amino acid content of a protein isolate from mung-bean flour[J]. J Food Technol, 1977, 12:473-484
    [5] Akubor P I, Chukwu J K. Proximate composition and selected functional properties of fermented and unfermented African oil bean (Pentaclethra macrophylla) seed flour[J]. Plant Foods Human Nutri, 1999, 54:227-238
    [6] Pearce K N, Kinsella J E. Emulsifying properties of proteins: evaluation of a turbidimetric technique[J]. JAgric Food Chem, 1978, 26:716-722
    [7] Slattery H, Fitzgerald R J. Functional properties and bitterness of sodium caseinate hydrolysates prepared with a Bacillus proteinase[J]. J Food Sci, 1998, 63(30): 418-422
    [8] Duncan B D. Multiple range and multiple F tests[J]. Biometrics, 1955, 11, 1-42
    [9] Elmoneim A, Elkhalifa O, Schiffier B, Bernhardt R. Effect of fermentation on the functional properties of sorghum flour[J]. Food Chemistry, 2005, 92:1-5
    [10] Inyang U E, Nwadimkpa C U. Functional properties of lupin seeds protein and protein concentrates[J]. J Food Sci, 1992, 47:491-492
    [11] Arai, WaLanabe. Emulsifying and Foaming Properties of Enzymalically Modified Protein[M]. Elsevier Applied Science, London, 1998, 189-220
    [12] Giami S Y, Bekebain D A. Proximate composition and functional properties of raw and processed full-fat fluted pumpkin (Telfariria occudentalis) seed flour[J]. J Sci Food Agri, 1992, 59:321-325
    [13] 贾冬英,王文贤,姚开,张铭让.胶原蛋白多肽功能特性的研究[J].食品科学,2001,22(6):21-24
    [14] 王遂,崔凌飞.玉米皮蛋白多肽的组成与功能特性研究[J].食品科学,2002,23(11):47-49
    [15] Tsumura K, Saitoa T, Tsugea K. Functional properties of soy protein hydrolysates obtained by selective proteolysis[J].LWT, 2005, 38:255-261
    [1] 顾仁勇,刘春成,傅伟昌.菠萝汁酶解大豆多肽发酵酸豆乳的研制[J].饮料研究,2005,31(12):117-119
    [2] 潘欣,应铁进,黄斌.大豆多肽方便面的研制[J].粮油食品科技,2005,8:77-82
    [3] 马凤玲.大豆多肽奶粉的研究[J].中国乳品,2004,30(1):140-141
    [4] 刘桂君,岳丽.大豆多肽酸乳的研制[J].食品与发酵工业,2004,30(1):140-141
    [5] 韩建春,张敏.大豆多肽饮料的加工工艺[J].食品科学,2004,25(4):200-203
    [6] 陈美珍,余杰.大豆活性多肽口服液的研制及其功能研究[J].汕头大学学报(自然科学版)2003,18(4):14-18
    [7] 张龙翔,张庭芳,李令媛.生化实验方法和技术[M].高等教育出版社(第二版),1999.86
    [8] 李建武,余瑞元,袁明秀.生物化学实验原理和方法[M].北京大学出版社,1999.165
    [9] 何照范,张迪清.保健食品化学及其检测技术[M].中国轻工业出版社,1998.141
    [10] 王文义.检测含蛋白质饮料稳定性的经验公式[J].食品工业,1993,6:36~37
    [11] JJ Boza, J Vuichoud, A R Jarret, et al. protein hydrolysate vs free amino acid-based diets on the nutritional recovery of the starved rat[J]. Eur J Nutr, 2000, 39: 237~2432.5
    [12] 陈美珍,余杰.大豆牛乳多肽饮料的工艺研究[j].食品工业,2002,2:13-15
    [13] 李书国.大豆多肽饮料加工工艺研究[J].西部粮油科技,1999,24(5):39-41
    [14] 邵金良,袁唯.大豆多肽木糖醇饮料加工工艺的探讨[J].食品工业科技,2005,2:116-118
    [15] 徐怀德,师学文,曹剑英.大豆多肽饮料加工技术研究[J].西北农林科技大学学报(自然科学版),2004,32(7):101-103

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700