猪流产嗜性衣原体抗体ELISA检测与基因免疫研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流产嗜性衣原体(Chlamydophila abortus,CAB)是引起猪、牛、羊等多种动物流产、死胎、弱胎等慢性接触性疾病的一种重要病原体,孕妇也可感染而发生流产。建立准确、快速的诊断方法和研制安全、高效的疫苗是预防和控制本病的重要措施。本研究应用PCR技术获得CAB主要外膜蛋白(MOMP)全长基因和四种不同片段大小多型性外膜蛋白90(POMP90)的编码基因,构建重组表达质粒,进行原核表达获得重组蛋白,探讨了其在猪CAB感染血清学检测中的应用价值,建立了猪CAB间接ELISA抗体检测方法;并构建了momp基因真核表达质粒,及细胞因子IL-2、IFN-γ编码基因与momp基因真核共表达质粒,比较了pcDNA3.1和PCI-neo两种真核表达载体基因免疫效应的差异,探索了细胞因子和中药提取成分枸杞多糖对基因免疫的佐剂效应。
     1.本研究根据已知基因序列设计引物,以流产嗜性衣原体CP/12株的总DNA为模板,PCR扩增了momp全长基因和四种不同片段大小的pomp90基因,与pMD18-T载体连接后进行测序鉴定。将目的基因与原核表达载体pGEX-KG进行连接,构建重组表达质粒,在大肠杆菌E.coli BL21中实现了高效表达,表达产物经Western-blot检测分析,结果表明具有较强的免疫原性。进而以纯化后的五种重组蛋白作为包被抗原,建立了间接ELISA抗体检测方法,并对临床血清进行了检测。结果表明,重组MOMP蛋白不适合于建立间接ELISA抗体检测方法,而四种重组POMP蛋白建立的间接ELISA抗体检测方法均具有灵敏度高、特异性好、准确等优点,且克服了传统间接血凝试验低灵敏度、判断主观性强等缺点。
     2.将momp基因分别克隆到真核表达载体pcDNA3.1和PCI-neo,构建真核表达质粒pcDNA3.1-MOMP和PCI-MOMP,并进行了小鼠免疫试验,比较不同真核表达载体构建基因疫苗免疫效应的差异。结果表明,PCI-MOMP可诱导更高的体液免疫效应和微弱的细胞免疫,但未观察到更有效的免疫保护。
     3.将获得的猪IL-2和IFN-γ编码基因插入真核表达质粒PCI-MOMP中构建真核共表达质粒,并通过小鼠接种试验评价了两种细胞因子通过真核表达质粒混合免疫和基因共表达对基因免疫的佐剂效应。结果表明,两种细胞因子既不能增强体液免疫效应,也未观察到增强的细胞免疫效应和有效的免疫保护。
     4.将中药提取成分枸杞多糖与真核表达质粒PCI-MOMP同时对小鼠进行免疫,评价了枸杞多糖对基因免疫的佐剂效应。结果表明1,枸杞多糖可显著增强体液免疫效应,但未观察到更高的细胞免疫效应和免疫保护效果。
     本论文建立了猪流产嗜性衣原体间接ELISA抗体检测方法,探索了momp基因疫苗的免疫效应,以及不同真核表达载体对基因免疫效应的影响,细胞因子和枸杞多糖对momp基因疫苗的免疫佐剂效应,并取得了一定效果,为进一步开展猪流产嗜性衣原体病的免疫预防和诊断研究奠定了基础。
Chlamydophila abortus (CAB) is one of the important pathogens causing the abortion of sow, cow and ewe and pregnant women. The establishment of rapid and accurate diagnostic method and the development of safe and efficient vaccine are essential measures for the prevention and control of this disease. In this study, the genes encoding major outer membrane protein (MOMP) and four different fragments of polymorphic outer membrane protein-90 (POMP90) of CAB were obtained by PCR. Applicabilities of the recombinant proteins were explored and the indirect ELISA methods for detecting the CAB antibody in sera of pigs were developed. Then the vaccinal plasmids with CAB momp gene were reconstructed, and such swine cytokines as interleukin-2 (IL-2) and interferon gammar (IFN-γ) encoding genes were individually inserted into the vaccinal plasmid for the double expression. Differences of the immune responses induced by the vaccinal plasmid with pcDNA3.1 and PCI-neo as the expression vector were researched, and the immune adjuvant effects of two cytokines and the lycium bartarum polysaccharides (LBPS) were explored.
     1. In this study, the full-length momp gene and four different fragments of pomp90 gene were amplified with the specific primers and the total DNA template of CAB strain CP/12. The obtained genes identified by sequencing after linked to the pMD18-T vector were linked to the prokaryotic expression vector pGEX-KG for expression. The recombinant plasmids were high-level expressed in the E.coli BL21. Western-blot of recombinant proteins exhitited strong immunogenicities. The indirect ELISA methods established using the five purified recombinant proteins as coating antigens were clinically used to detect the serum CAB specific antibody. While the recombinant MOMP protein was not suitable for the establishment of the ELISA method, the results showed that the methods developed with the four recombinant POMPs were sensitive, specific, accurate, which can overcome the shortcomings of IHA, such as low sensitivity, subjective judgments.
     2. Then the momp gene was cloned into the eukaryotic expression vector pcDNA3.1 and PCI-neo to reconstruct the vaccinal plasmids pcDNA3.1-MOMP and PCI-MOMP. The immunities were evaluated in mice model and the efficiency of genetic vaccines with various expression vectors was discussed. The results indicated that PCI-MOMP could induce higher humoral immune and celluar immune than pcDNA-MOMP did, but effective immune protection was not observed.
     3. To increasing the immunity of momp genetic vaccination, the swine IL-2 and IFN-γencoding genes were individually inserted into the vaccinal plasmid PCI-MOMP. The adjuvant effects of the two cytokines on the genetic vaccination through co-administration and double expression were explored in mice model. The results suggested that both humoral and celluar immune response were not increased by the two cytokines, and effective immune protection failed to be induced.
     4. The adjuvant effect of LBPS on the momp genetic vaccination by co-administration was also explored in mice model. The results showed that LBPS significantly increased the humoral immune response, however the higher celluar immune response and immune protection were not observed.
     In this paper, indirect ELISA methods were established for detecting the serum swine CAB antibodies. The immune effects of CAB momp genetic vaccine were explored in mice model, incuding the difference between the plasmids constructed with different expression vector, and the adjuvant effects of two cytokines and LBPS on the genetic vaccination. This study was the basis for the further research on immune prevention and diagnosis of swine Chlamydophila abortus infection.
引文
1.陈红英,文心田,廖德惠.Dot-ELISA检测猪衣原体抗体的研究.中国畜禽传染病,1995,82(3):10-13
    2.刁永祥,余桂兰,赵永孝,李秀芬,尕切江,焦海祖,帅永玉,李英才,但琨,杨子平,段跃进,程淑敏,程桂兰,杨学礼.青海省德令哈农场猪衣原体性流产的诊断和免疫预防.中国兽医科技,1990,20(3):21-22
    3.端青,李子华.衣原体图谱.北京:科学出版社,2003:155-158
    4.何诚,朱虹,王传武,何君,张浩杰,檀华,端青.鹦鹉热衣原体重组主要外膜蛋白免疫肉鸡效果观察.中国农业大学学报,2003,13(4):60-63
    5.何启盖,陈焕春,吴斌,汪超,吴美洲,邱昌庆,李树春,逯忠新.猪衣原体病和布鲁氏菌病血清学调查.中国兽医科技,2000,30(3):13-14
    6.黄春妍.核酸疫苗抗原提呈机理研究进展.国外医学免疫学分册,2003,26(2):102-104
    7.江涛.猪弓形虫病分子诊断方法的建立和基因免疫研究[博士学位论文].武汉:华中农业大学图书馆,2006
    8.李杰.CpG ODN对新城疫Lasota活疫苗的免疫增强效应[硕士学位论文].北京:中国农业大学,2005
    9.李英才,易奇珍.猪流产衣原体灭活苗的研制.中国兽医科技.1995,25(11):3-7
    10.林学颜,张玲.现代细胞与分子免疫学.北京:科学出版社,2000:162-199
    11.刘伯庶,王琼秋,刘佳升,李永斌.云南省红河州猪衣原体病血清学调查.中国兽医杂志,2006,42(7):33-34
    12.罗建,杨小燕,戴爱玲,李晓华.规模化猪场母猪衣原体病的血清流行病学调查.福建畜牧兽医,2006,28(5):4-5
    13.苗振川,哈斯阿古拉,赵亚芳,张宝发,郭志成,张鹤龄.用聚合酶链反应检测羊流产衣原体的初步研究.中国兽医杂志,1999,25(2):3-4
    14.邱昌庆,高双娣,周继章,程淑敏,帅永玉.猪衣原体病的调查.动物医学进展,2003,24(2):88-91
    15.邱昌庆,周继章,程淑敏,曹小安,高双娣,贾文孝.乳牛衣原体病灭活疫苗的研制.中国兽医科学,2006,36(5):343-347
    16.邱昌庆,周继章,高双娣,程淑敏,段跃进,李英才,陈桂华,杨学礼.湖北等六省(区)规模化猪场猪衣原体病的监测.中国兽医科技,1998,28(10):3-5
    17.邱昌庆,周继章,谷玉辉.猪源鹦鹉热衣原体外膜主蛋白编码基因的克隆和序列测定.中国兽医科技,2002,32(6):10-14
    18.邱昌庆.动物衣原体疫苗.中国兽医科技,1997,27(12):15-17
    19.邱昌庆.关注鹦鹉热衣原体对养猪业的危害.今日养猪业.2004,2:22-24
    20.邱昌庆.衣原体分类研究进展.中国兽医科技,2000,30(12):19-21
    21.任慧英.猪繁殖与呼吸综合征病毒DNA疫苗的研究.[博士学位论文]北京:中国农业大学图书馆,2004
    22.萨姆布鲁克J,拉塞尔DW.分子克隆实验指南.第3版.黄培堂等译.北京:科学出版社2002,1123-1126
    23.帅永玉,李英才,杨子平.羊流产衣原体卵黄囊甲醛灭活油佐剂苗的研究.中国兽医科技,1989,11:3-7
    24.王琼秋,张家问,张荣华.云南省红河州家畜衣原体病的调查.中国预防兽医学报,2000,22(6):465-466
    25.谢琴,高跃路,何存利,史建斌,祁茹.单克隆抗体在动物衣原体病血清诊断上的应用.中国预防兽医学报,2001,23(5):391-392
    26.谢琴,何存利,史建斌,张明林,祁茹.用单克隆抗体快速诊断衣原体病.动物医学进展,2001,22(4):65-66
    27.杨琪.猪流产嗜性衣原体Omp-1基因及其重组蛋白免疫应答的研究.[硕士学位论文]北京:中国农业大学图书馆,2006
    28.杨宜生,姜天童,方雨玲.衣原体和动物衣原体病.武汉:湖北科技出版社,1994
    29.易奇珍,陈泽祥,郑列丰,周国基.广西猪衣原体病血清学调查.中国兽医杂志,1994,20(6):20
    30.于恩庶,李子华,焦新安.新发现和再肆虐的传染病续编.香港:亚洲医药出版社,2000.169-170
    31.赵越.DNA免疫学特性及其应用的研究进展.国外医学微生物学分册,1999,22(1):4
    32.周方红.核酸疫苗研究进展.预防兽医学进展,1999,1(3):17-20
    33.周继章,邱昌庆,张小英,曹小安.禽源鹦鹉热衣原体MOMP基因重组腺病毒载体的构建与鉴定.中国兽医科学,2006,36(1):13-17
    34.周继章,邱昌庆,张小英,蔺国珍,曹小安,张琳,程淑敏.鸡源鹦鹉热衣原体MOMP基因重组腺病毒的稳定性和SPF雏鸡免疫试验.第四军医大学学报,2007,28(2):100-103
    35.朱彩华,张声平.枸杞多糖对肝癌H22荷瘤鼠的抑瘤和免疫增强作用.营养学报,2006,28(2):182-183
    36.朱虹,张浩杰,何君,宋立华,端青.鹦鹉热衣原体重组主要外膜蛋白诱导小鼠免疫应答的观察.微生物学免疫学进展,2003,31(3):35-36
    37.朱其太.衣原体分类新进展.中国兽医杂志,2001,37(4):30-31
    38.祝峥,钱子刚,胡云章,胡凝珠,朱常成.枸杞多糖作为甲型肝炎疫苗佐剂免疫效果的实验研究.云南中医学院学报,2006,29(2):28-30
    39.Amin AS.Application of touchdown enzyme time release(TETR)-PCR for diagnosis of Chlamydophila abortus infection. Res Vet Sci, 2003, 74(3):213-217
    40. Anderson IE, Herring AJ, Jones GE. Development and evaluation of an indirect ELISA to detect antibodies to abortion strains of Chlamydia psittaci in sheep sera. Vet microbiol, 1995, 43(1): 1-12
    41. Babiuk LA, Pontarollo R, Babiuk S, Loehr B, van Drunen, Littel-van den Hurk S. Induction of immune responses by DNA vaccines in large animals. Vaccine, 2003,21, 649-658
    42. BaehrW, Zhang Y X, Joseph T, Su H, Nano FE, Everett KD, Caldwell HD. Mapping antigenic domains expressed by Chlamydia trachomatis major outer membrane protein genes. Proc Natl Acad Sci USA. 1988,85: 4000-4004
    43. Baghian A, Shaffer L, Storz J. Antibody response to epitopes of chlamydial major outer membrane proteins on infectious elementary bodies and of the reduced polyacrylamide gel electrophoresis-separated form. Infect Immun, 1990, 58(5): 1379-1383
    44. Barry ME, Pinto-Gonzalez D, Orson FM., McKenzie GJ, Petry GR, Barry MA. Role of endogenous endonucleases and tissue site in transfection and CpG-mediated immune activation after naked DNA injection. Hum Gene Ther, 1999,10, 2461-2480.
    45. Berry LJ, Hickey DK, Skelding KA, Bao S, Rendina AM., Hansbro PM, Gockel CM, Beagley KW. Transcutaneous immunization with combined cholera toxin and CpG adjuvant protects against Chlamydia muridarum genital tract infection. Infect Immun, 2004, 72, 1019-1028
    46. Brade L, Schramek S, Schade U, Brade H. Chemical, biological, and immunochemical properties of the Chlamydia psittaci lipopolysaccharide. Infect Immun, 1986, 54(2): 568-574
    47. Brown J, Entrican G. Interferon-gamma mediates long-term persistent Chlamydial psittaci infection in vitro. J Comp Pathol, 1996,115: 373-383
    48. Brunham RC, Peeling RW . Chlamydia trachomatis antigens : role in immunity and pathogenesis. Infect Agents Dis, 1994, 3: 218-233
    49. Buendia A J, Cuello F, Delrio L, Gallego MC, Caro MR, Salinas J. Field evaluation of a new commercially available ELISA based on a recombinant antigen for diagnosing Chlamydophila abortus(Chlamydia psittaci serotype 1). Vet Microbiol, 2001, 78: 229-239
    50. Bush RM and Everett KDE. Molecular evolution of the Chlamydiaceae. Int J Syst Evol Microbiol, 2001,51:203-220
    51. Buxton D. Potential danger to pregnant women of Chlamydia psittaci from sheep. Vet Rec, 1986, 118:510-511
    52. Buzoni GD, Guilloteau L, Bernard F, Bernard S, Chardes T, and Rocca A. Protection against Chlamydia psittaci in mice conferred by Lyt-2~+T cells. Immunology, 1992, 77(2): 284-288
    53. Caldwell HD., Kromhout J, Schachter J. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect Immun, 1981, 31: 1161 -1176.
    54. Cevenini R, Sarov I, Rumpianesi F, Donati M, Melega C, Varotti C, and La M. Placa Serum specific IgA antibody to Chlamydia trachomatis in patients with chlamydial infections detected by ELISA and an immunofluorescence test. J Clin Pathol, 1984,37(6): 686-691
    55. Chalmers WS, Simpson J, Lee SJ. Use of a live chlamydial vaccine to prevent ovine enzootic abortion. Vet Rec, 1997,141:63-67
    56. Creelan JL and McCullough SJ. Evaluation of strain-specific primer sequences from an abortifacient strain of ovine Chlamydophila abortus (Chlamydia psittaci) for the detection of EAE by PCR. FEMS Microbiol Lett, 2000,190:103-108
    57. De Sa C, Souriau A, Bernard F, Salinas J, Rodolakis A. An oligomer of the major outer membrane protein of Chlamydia psittaci is recognized by monoclonal antibodies which protect mice from abortion. Infect Immun, 1995, 63: 4912-4936.
    58. Dean R, Harley R, Helps C, Caney S, Gruffydd-Jones T. Use of quantitative real-time PCR to monitor the response of Chlamydophila felis infection to doxycycline treatment. .J Clin Microbiol, 2005,43: 1858-1864
    59. Denamur E, Sayada C, Souriau A, Orfila J, Rodolakis A, Elion J. Restriction pattern of the major outer-membrane protein gene provides evidence for a homogeneous invasive group among ruminant isolates of Chlamydia psittaci. J Gen Microbiol, 1991,137: 2525-2530
    60. Donnelly JJ, Ulmer JB, Shiver JW, Liu MA. DNA vaccines. Annu Rev Immunol, 1997, 15, 617-648
    61. Eko FO, He Q, Brown T, McMillan L, Ifere GO, Ananaba GA, Lyn D, Lubitz W, Kellar KL, Black CM and Igietseme JU. A novel recombinant multisubunit vaccine against Chlamydia. J Immunol, 2004,173(5):3375-3382
    62. Engel JN. Heat shock response of murine Chlamydia trachomatis. J Bacteriol, 1990, 172(12): 6959-6972
    63. Everett K D E, Bush R M, Anderson A A. Emended description of the order Chlamydiales, proposal of arachlamydiaceae fam. Nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae with description of five new species, and standards for the identi(?)cation of organisms. Int J Syst Bacteriol. 1999, 49: 415-440
    64. Fukushi H, Nojiri K, Hirai K. Monoclonal antibody typing of Chlamydia psittaci strains derived from avian and mammalian species. J Clin Microbiol, 1987,25(10): 1978-1981
    65. Gentschev I, Dietrich G, Spreng S. Delivery of protein antigens and DNA by virulence-attenuated strains of Salmomella typhimurium and Listeria monocytogenes. J Biotechnol, 2000, 83:19-26
    66. Gluzman Y. SV40-transformed simian cells support the replication of early SV40 mutants. Cell, 1981,23, 175
    67. Griffiths PC, Plater JM, Horigan MW, Rose MPM, Venables C, Dawson M. Serological diagnosis of ovine enzootic abortion by comparative inclusion immunofluorescence assay, recombinant lipopolysaccharide enzyme-linked immunosorbent assay, and complement fixation test. J Clin Microbiol, 1996,34(6): 1512-1518
    68. Gurunathan S, Klinman DM, Seder RA. DNA vaccines: immunology, application, and optimization. Annu Rev Immunol, 2000,18,927-974.
    69. He C, Li SW, Yang L, He GM, Liu W, Yao B. Induction of a protective immune response against Chlamydophila psittaci SPF chickens following vaccination with omp-1 and CpG oligonucleotides as an adjuvant. Bull Vet Inst Pulawy, 2007,51: 351-356
    70. Hechard C, Grepinet O, Rodolakis A. Evaluation of protection against Chlamydophila abortus challenge after DNA immunization with the major outer-membrane protein-encoding gene in pregnant and non-pregnant mice. J Med Microbiol, 2003, 52: 35-40.
    71. Hechard C, Grepinet O, Rodolakis A. Molecular cloning of the Chlamydophila abortus groEL gene and evaluation of its protective efficacy in a murine model by genetic vaccination. J Med Microbiol, 2004,53: 861-868
    72. Hechard C, Grepinet O, Rodolakis A. Protection evaluation against chlamydophila abortus challenge by DNA vaccination with a dnaA'-encoding plasmid in pregnant and non-pregnant mice. Vet Res, 2002,33: 313-326
    73. Hinton DG, Shipley A, Galvin JW, Harkin JT, Brunton RA. Chlamydiosis in workers at a duck farm and processing plant. Aust Vet J, 1993, 70 (5): 174-176
    74. Hiraoka K, Koike H, Yamamoto S, Tomita N, Yokoyama C, Tanabe T, Aikou T, Ogihara T, Kaneda, Morishita R. Enhanced therapeutic angiogenesis by cotransfection of prostacycin synthase gene or optimization of intramuscular injection of naked plasmid DNA. Circulation, 2003,108: 2689-2696
    75. Hoelzle LE, Hoelzle K, Wittenbrink MM. Expression of the Major Outer Membrane Protein (MOMP) of Chlamydophila abortus, Chlamydophila pecorum, and Chlamydia suis in Escherichia coli using an Arabinose-inducible Plasmid Vector. J Vet Med B, 2003, 50: 383-389
    76. Hoelzle LE., Hoelzle K, Wittenbrink MM. Recombinant major outer membrane protein (MOMP) of Chlamydophila abortus, Chlamydophila pecorum, and Chlamydia suis as antigens to distinguish chlamydial species-specific antibodies in animal sera. Vet Microbiol, 2004,103: 85-90
    77. Huang MTF, Gorman CM. Intervening sequences increase efficiency of RNA 3' processing and accumulation of cytoplasmic RNA. Nucl Acids Res, 1990,18: 937-947
    78. Huang X, Hu Y, Zhao X., Lu Y, Wang J, Zhang F, Sun J. Sulfated modification can enhance the adjuvant activity of astragalus polysaccharide for ND vaccine. Carbohyd Polym, 2008,73:303-308
    79. Huminer D, Pitlik S, Kitayin D, Weissman Y, Samra Z. Prevalence of Chlamydia psittaci infection among persons who work with birds. Isr J Med Sci, 1992, 28 (10): 739-741.
    80. Igietseme JU, Murdin A. Induction of protive immunity against Chlamydia trachomatis genital infection by a vaccine based on major outer membrane protein-lipophilic immune response-stimulating complexes. Infect Immun, 2000, 68: 6798-6806
    81. Igietseme JU, Black CM, Caldwell HD. Chlamydia Vaccines; Strategies and Status. BioDrugs, 2002,16: 19-35
    82. Igietseme JU, Eko FO, Black CM. Contemporary approaches to designing and evaluating vaccines against Chlamydia. Vaccines, 2003,2(1): 129-146
    83. Igietseme JU, Ramsey KH, Magee DM, Williams DM, Kincy TJ, Rank RG. Resolution of murine chlamydial genetal infection by the adoptive transfer of a biovar-specific, Th1 lymphocyte clone. Reg Immunol, 1993,5: 317-324
    84. Igietseme JU, Uriri IM, Kumar SN. Route of infection that induces a high intensity of gamma interferon-secreting T cells in the genital tract produces optimal protection against Chlamydia trachomatis infection in mice. Infect Immun, 1998,66: 4030-4035
    85. Jin HL, Kang YM, Zheng GX, Xie Q, Xiao C, Zhang X, Yu Y, Zhu K, Zhao G, Zhang F, Chen A, Wang B. Induction of active immune suppression by co-immunization with DNA- and protein-based vaccines. Virology, 2005,337: 183-191
    86. Johansson M, Schon K, Ward M, Lycke N. Studies in knockout mice reveal that antichlamydial protection requires Thl cells producing IFN-gamma. Scand J Immunol, 1997, 46: 546-552
    87. Kaltenboeck B, Kousalas KG, Storz J. Detection and strain differentiation of Chlamydia psittaci mediated by a two-step polymerase chain reaction.J Clin Microbiol, 1991,29: 1969-1975.
    88. Kaltenboeck B, Heard D, DeGraves FJ, Schmeer N. Use of synthetic antigens improves detection by enzyme-linked immunosorbent assay of antibodies against abortigenic Chlamydia psittaci in ruminants. J Clin Microbiol, 1997,35: 2293-2298
    89. Kong XF, Hu YL, Rui R, Wang DY, Li XR. Effects of Chinese herbal medicinal ingredients on peripheral lymphocyte proliferation and serum antibody titer after vaccination in chicken. Inter Immunopharmacol, 2004,4: 975-982
    90. Kozak M. Circumstances and mechanisms of inhibition of translation by secondary structure in eucaryotic mRNAs. Mol Cell Biol, 1989, 9, 5134-5142
    91. Krieg AM. Immune effects and mechanisms of action of CpG motifs. Vaccine, 2000,19: 618-622
    92. Laroucau K, Souriau A, Rodolakis A. Improved sensitivity of PCR for Chlamydophila using pmp genes. Vet Microbiol, 2001,82: 155-164
    93. Livingstone M, Entrican G, Wattegedera S, Buxton D, McKendrick D, and Longbottom D. Antibody Responses to Recombinant Protein Fragments of the Major Outer Membrane Protein and Polymorphic Outer Membrane Protein POMP90 in Chlamydophila abortus-Infected Pregnant Sheep. Clin Diag Lab Immun, 2005,12(6): 770-777.
    94. Longbottom D, Coulter LJ. Animal chlamydioses and zoonotic implications. J Comp Pathol, 2003,128: 217-244
    95. Longbottom D, Fairley S, Chapman S, Psarrou E, Vretou E, Livingstone M.. Serological diagnosis of ovine enzootic abortion by enzyme-linked immunosorbent assay with a recombinant protein fragment of the polymorphic outer membrane protein POMP90 of Chlamydophila abortus. J Clin Microbiol, 2002, 40: 4235-4243
    96. Longbottom D, Livingstone M. Vaccination against chlamydial infections of man and animals. Vet J, 2006,171:263-275
    97. Longbottom D, Psarrou E, Livingstone M, Vretou E. Diagnosis of ovine enzootic abortion using an indirect ELISA (rOMP91B iELISA) based on a recombinant protein fragment of the polymorphic outer membrane protein POMP91B of Chlamydophila abortus. FEMS Microbiol Lett, 2001,195: 157-161
    98. Longbottom D, Russell M, Jones GE, Lainson FA, Herring AJ. Identification of a multigene family coding for the 90 kDa proteins of the ovine abortion subtype of Chlamydia psittaci. FEMS Microbiol Letter, 1996,142: 277-282
    99. Longbottom D, Russell M, Dunbar SM. Molecular cloning and characterization of the genes coding for the highly immunogenic cluster of 90-kilodalton envelope proteins from the Chlamydia psittaci subtype that causes abortion in sheep. Infect Immun, 1998,66:1317-1324
    100. Longbottom D. Chlamydia vaccine development. J Med Microbiol, 2003, 52: 537-540
    101. Markey B, Wan C, Vaughan R. Quantitative detection of chlamydial infections in animals using a real time polymerase chain reaction assay based on a conserved region of the 16s RNA gene. Diagnosis and Pathogenesis of Animal Chlamydioses. SIENA: Bononia University Press. 2005: 129-139
    102. McCafferty MC. Immunity to Chlamydia psittaci with particular reference to sheep. Vet Microbiol, 1990,25:87-99
    103. Mccauley LM, Lancaster MJ, Butler KL, Ainsworth CG. Comparison of ELISA and CFT assays for Chlamydophila abortus antibodies in ovine sera. Aust Vet J, 2007,85:325-328
    104. McClukie MJ, Millan CLB, Gramzinski RA, Robinson HL, Santoro JC, Fuller JT, Widera G, Haynes JR, Purcell RH, Davis HL. Route and method of delivery of DNA vaccine influence immune response in mice and non-human primates. Mol Med, 1999,5:287-300
    105. Meijer A, Kwakkel GJ, de Vries A. Species identification of Chlamydia isolates by analysing restriction fragment length polymorphism of the 16S-23SrRNA spacer region. J Clin Microbiol, 1997,35: 1179-1183
    106. Messmer TO, Skelton SK, Moroney JF, Daugharty H, Fields BS. Application of a Nested, Multiplex PCR to Psittacosis Outbreaks.J Clin Microbiol, 1997,35: 2043-2046
    107. Millman KL, Tavare S, and Dean D. Recombination in the omp-1 Gene but Not the omcB Gene of Chlamydia Contributes to Serovar-Specific Differences in Tissue Tropism, Immune Surveillance, and Persistence of the Organism. J Bacteriol, 2001,193(20): 5997-6008
    108. Morrison RP, Belland RJ, Lyng K and Caldwell HD. Chlamydial disease pathogenesis. The 57kD Chlamydial hypersensitivity antigen is a stress response protein. J Exp Med, 1989, 170: 1271-1283
    109. Morrison RP, Feilzer K, Tumas DB. Gene knockout mice establish a primary protective role for major histocompatibility complex class II -restricted responses in Chlamydia trachomatis genital tract infection. Infect Immun, 1995, 63: 4661-4668
    110. Morrison SG, Morrison RP. Resolution of secondary Chlamydia trachomatis genital tract infection in immune mice with depletion of both CD4+ and CD8+ T cells. Infect Immun, 1995, 69: 2643-2649
    111. Ongor H, Cetinkaya B, Acik MN. Detection of Chlamydophila abortus in Ovine Milk by Immunomagnetic Separation-Polymerase Chain Reaction. J Vet Med. B 2004,50:43-45
    112. Pal S. Barnhart K M, Wei Q. DNA vaccination with the outer membrane protein gene induces acquired immunity to Chlamydia trachomatis infection. J Infect Dis, 1997,176: 1035-1040
    113. Penttila T, Vuola JM, Puurula V, Anttila M, Sarvas M, Rautonen N, Makela PH, Puolakkainen M. Immunity to Chlamydia pneumoniae induced by vaccination with DNA vectors expressing a cytoplasmic protein (Hsp60) or outer membrane proteins (MOMP and 0mp2). Vaccine, 2000,19, 1256-1265.
    114. Perry LL, Feilzer K, Portis JL, Caldwell HD. Distinct homing pathways direct T lymphocytes to the genital and intestinal mucosae in Chlamydia-infected mice. Immunol, 1998,160:2905-2914
    115. Pettersson B, Andersson A, Leitner T, Olsvik O, Uhlen M, Storey C and Black CM. Evolutionary relationships among members of the genus Chlamydia based on 16S ribosomal DNA analysis. J Bacteriol, 1997,179: 4195-4205
    116. Ramshaw IA, Ramsay AJ . The prime-boost strategy: exciting prospects for improved vaccination. Immunol Today, 2000,21: 163-165
    117. Rekiki A, Hammami S, Rodolakis A Comparative evaluation of a new commercial recombinant ELISA and the complement fixation test for the diagnosis of Chlamydophila abortus infection in naturally infected flocks in Tunisia. Small Ruminant Res, 66: 58-63
    118. Rodolakis A, Bernard F. Vaccination with temperature-sensitive mutant of Chlamydia psittaci against enzootic abortion of ewes. Vet Rec, 1984,114: 193-194
    119. Sachse, K, Hotzel H, Slickers P, Ellinger T, and Ehricht R. DNA microarray-based detection and identification of Chlamydia and Chlamydophila spp. Mol Cell Probes, 2005,19:41-50
    120. Saito T, Ohnishi J, Mori Y, Iinuma Y, Ichiyama S, Kohi F. Infection by Chlamydophilia avium in an elderly couple working in a pet shop. J Clin Microbiol, 2005,43: 3011-3013
    121. Salinas J, Souriau A, Cuello F, Rodolakis A. Antigenic diversity of ruminant Chlamydia psittaci strains demonstrated by the indirect microimmunofluorescence test with monoclonal antibodies.Vet Microbiol. 1995,43: 219-226
    122. Salti-Montesanto V, Tsoli E, Papavassiliou P, Psarrou E, Markey BK, Jones GE, Vretou E. Diagnosis of ovine enzootic abortion, using a competitive ELISA based on monoclonal antibodies against variable segments 1 and 2 of the major outer membrane protein of Chlamydia psittaci serotype 1. Am J Vet Res, 1997, 58: 228-235
    123. Sanderson TP, Andersen AA, Miller LD, Andrews JJ, Janke BH, Larson DL, Schwartz KJ. An indirect microimmunofluorescence test for detection of chlamydial antibodies in ovine fetal fluids. J Vet Diagn Invest, 1994, 6 (3): 315-320
    124. Sheehy N, Markey B, Gleeson M, and Quinn PJ. Differentiation of Chlamydia psittaci and C. pecorum strains by species-specific PCR.J Clin Microbiol, 1996, 34 (12): 3175-3179
    125. Srivastava PK, Menoret A, Basu S, Binder RJ. and McQuade KL. Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world. Immunity, 1998,8: 657-665
    126. Starnbach MN, Bevan MJ, Lampe MF. Protective cytotoxic T lymphocytes are induced during murine infection with Chlamydia trachomatis. Immunology, 1994,153: 5183-5189
    127. Stephens RS. Chlamydial Genomics and Vaccine Antigen Discovery. J Infect Dis, 2000, 181: 521-523
    128. Strugnell RA, Drew D, Mercieca J, DiNatale S, Firez N, Dunston SJ, Simmons CP, Vadolas J. DNA vaccines for bacterial infections. Immunol Cell Biol, 1997, 75, 364-369
    129. Su H, Feilzer K, Caldwell HD, Morrson RP. Chlamydia trachomatis genital tract infection of antibody-deficient gene knockout mice. Infect Immun, 1997, 65: 1993-1999
    130. Svanholm C, Bandholtz L, Castanos-Velez E, Wigzell H and Rottenberg ME. Protective DNA immunization against Chlamydia pneumoniae. Scand J Immunol, 2000,51: 345-353
    131. Tan TW, Herring AJ, Anderson IE, Jones G Protection of sheep against Chlamydia psittaci infection with a subcellular vaccine containing the major outer membrane protein. Infect Immun, 1990,58,3101-3108
    132. Thomson NR, Yeats C, Bell K, Holden MTG, Bentley SD, Livingstone M, Tarraga AMC, Harris B, Doggett J, Ormond D, Mungall K, Clarke K, Feltwell T, Hance Z, Sanders M, Quail MA, Price C, Barrell BG Parkhill J and Longbottom D. The Chlamydophila abortus genome sequence reveals an array of variable proteins that contribute to interspecies variation. Genome Res,2005,15: 629-640
    
    133. Turner MS, Giffard PM. Expression of Chlamydia psittaci and human immunodeficiency virus-derived antigens on the cell surface of Lactobacillus fermentum BR11 as fusion to bspA. Infect Immun, 1999,67:5486-5489
    134. Vanrompay D, Cox E, Volchaert G, Goddeeris B. Turkeys are protected from infection with Chlamydia psittaci by plasmid DNA vaccination against the major outer membrane protein. Clin Exp Immunol, 1999a, 118: 49-55
    135. Vanrompay D, Cox E, Vandenbussche F, Volckaert G, Goddeeris B. Protection of turkeys against Chlamydia psittaci challenge by gene gun-based DNA immunizations. Vaccine, 1999b, 17: 2628-2635
    136. Verminnen K, Van Loock M, Cox E, Goddeeris BM, Vanrompay D. Protection of turkeys against Chlamydophila psittaci challenge by DNA and rMOMP vaccination and evaluation of the immunomodulating effect of 1α,25-dihydroxyvitamin D3. Vaccine, 2005, 23, 4509-4516
    137. Vretou E, Giannikopoulou P, Longbottom D and Psarrou E. Antigenic Organization of the N-Terminal Part of the Polymorphic Outer Membrane Proteins 90, 91 A, and 91B of Chlamydophila abortus. Infect Immun, 2003,73: 3240-3250
    138. Wang BK, Xang ST, Zhou JH. Effect of lycium barbarum polysaccharides on the immune responses of T, CTL and NK cells in normal and cydophosphamide-treated mice. 中国药理学与 毒理学杂志, 1990,4(1): 39-43
    139. Wang DY, Hu YL, Sun JL, Kong XF, Zhang BK, Liu JG. Comparative study on adjuvanticity of compound Chinese herbal medicinal ingredients. Vaccine, 2005,23: 3704-3708
    140. Watson MW, Lambden PR. Everson JS, Clarke IN. Immunoreactivity of the 60 kDa cysteine-rich proteins of Chlamydia trachomatis, Chlamydia psittaci and Chlamydia pneumoniae expressed in Escherichia coli. Microbiology, 1994,140: 2003-2011
    141. Wolff J A, Malone R W, Williams P, Chong W, Acsadi G, Jani A, Feigner P L. Direct gene transfer into mouse muscle in vivo. Science, 1990,247(49): 1465-1468
    142. Wood MM, Timms P. Comparison of nine antigen detection kits for diagnosis of urogenital infections due to Chlamydia psittaci in koalas. J Clin Microbiol, 1992, 30: 3200-3205
    143. Wyllie S, Ashley RH, Longbottom D. The major outer membrane protein of Chlamydia psittaci functions as a porin-like ion channel. Infect Immun, 1998, 66: 5202-5207
    144. Zhang DJ, Yang X, Berry J, Shen C, McClarty G, Brunham RC. DNA vaccination with the major outer-membrane protein gene induces acquired immunity to Chlamydia trachomatis (mouse pneumonitis) infection. J Infect Dis, 1997,176: 1035-1040.
    145. Zhang DJ, Yang X, Shen C, Brunham RC. Characterization of immune responses following intramuscular DNA immunization with the MOMP gene of Chlamydia trachomatis mouse pneumonitis strain. Immunology, 1999, 96: 314-322
    146. Zhang DJ, Yang X, Shen C, Lu H, Murdin A, Brunham RC. Priming with Chlamydia trachomatis major outer membrane protein DNA followed by MOMP ISCOM boosting enhanced protection and is associated with increased immunoglobulin A and Th1 cellular immune responses. Infect Immun, 2000, 68: 3074-3078
    147. Zugel U and Kaufmann SH. Immune response against heat shock proteins in infectious diseases. Immunobiology, 1999,201: 22-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700