软集理论及其在决策中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现实世界中,事物以及事物之间的关系是极其复杂的,由于客观存在的随机性、模糊性以及某些事物或现象体现的不充分性,导致人们对事物的认识往往是不精确、不完全的,具有一定程度的不确定性。不确定性普遍存在于经济、工程、环境、社会科学和商业管理等领域的许多重要问题中。概率论、模糊集理论和区间数学是常用的处理不确定性问题的数学工具,其中概率论和模糊集理论是分别处理随机性和模糊性的有力工具。软集理论是Molodtsov于1999年从参数化角度提出的一种新的处理不确定性问题的数学工具,模糊集合可以看作是一种特殊的软集合。目前,软集理论已经成功应用到许多领域如运筹学、测度论、博弈论、企业竞争力的综合评价、文本分类、数据挖掘、农村土地使用权的估价、信用资料的处理、外贸进出口量的预测、医疗诊断、洪水预测、决策等等。同时,软集合理论方面的研究也在不断完善,大体可分为三个方向:一是继续探讨软集合本身所具有的性质,如定义新的运算、提出软集合的子类等;二是在软集合上讨论各种代数结构,如软群、软环、软模、软BCK/BCI代数、软BCH代数等;三是将软集合与已有的各种处理不确定性的方法相结合,如模糊软集合、直觉模糊软集合、区间值模糊软集合等。
     本文继续探讨软集合的理论和应用,提出了软P-超群和软超模,结合软集合和2型模糊集合定义了2型模糊软集合,并研究其在决策中的应用。同时阐明了决策、推理、知识编译之间的关系,并指出基于扩展规则的知识编译方法的不足,提出了两种有效的启发式策略分别用于指导待扩展子句和变量的选择,降低了知识编译后目标子句集的规模,进而提高了在线推理的效率。本文的创新成果具体如下:
     首先,我们讨论了软集合的代数超结构,代数超结构是代数结构的扩展。我们定义了软P-超群、正规软P-超群、软子P-超群、正规软子P-超群,并且在它们的基础上讨论了软集合的各种运算,得到了一些相关性质。同时,我们研究了软P-超群的同态和同构,证明了软P-超群的三个同构定理。超模是另一种代数超结构,我们继续讨论了软集合的代数超结构,给出软超模、软子超模的定义并得到一些基本性质。相应地,利用软超模的同态与同构我们证明了软超模的三个同构定理。进一步,利用正规模糊子超模的概念,我们证明了软超模的三个模糊同构定理。
     其次,我们结合软集合与2型模糊集合,提出了2型模糊软集合,作为模糊软集合的扩展。2型模糊集合是在模糊集合的基础上提出的,它比模糊集合具有更强的表达能力。因此,2型模糊软集合比模糊软集合具有更强的处理不确定性问题的能力。我们定义了2型模糊软集合的交、并、补等基本运算,并且证明一些基本定律的成立。同时,利用2型模糊软集合的水平软集合的概念,提出了一种基于2型模糊软集合的灵活决策方法。其优点主要体现在如下两个方面:一是不用直接处理2型模糊软集合,降低了计算的复杂性;二是该算法具有灵活性,可以根据决策者的偏好来得到不同的决策结果。
     最后,我们提出了基于启发式策略的扩展规则知识编译方法。知识编译将推理过程分为两个阶段:离线编译阶段和在线推理阶段。离线编译阶段得到的知识库规模对之后的在线推理的效率起着至关重要的作用。我们对基于扩展规则的知识编译方法进行深入研究后发现,该方法对待扩展子句的选择没有考虑子句之间的内在关系,而且在选择变量进行扩展时,没有使用任何启发式策略,只是采用顺序扩展的方式。为了减小编译后的子句集规模,我们提出了两种启发式策略MCN策略和MO策略分别用于指导扩展过程中子句与变量的选择。实验结果表明,MCN策略和MO策略都可以大幅度减小编译后的子句集规模,两种启发式策略同时使用,效果更为明显。
The objects and the relation among them are very complicated in real world. Because of the randomness and fuzziness existing objectively, and insufficiency revealed themselves by objects or phenomena, it leads the knowledge for world to be often imprecise and incomplete, and manifest uncertainty to some extent. Uncertainties are pervasive in many complicated problems in engineering, economics, environment, medical science and social science. Theory of probability, theory of fuzzy sets and the interval mathematics can be considered as mathematical tools for dealing with uncertainties, where theory of probability and theory of fuzzy sets are the most appropriate theories for dealing with the randomness and fuzziness, respectively. Soft set theory, introduced by Molodtsov from parametrization perspective in 1999, has been considered as an effective mathematical tool for modeling uncertainties. Fuzzy sets can be considered as a special case of soft sets. Recently, soft set theory has been applied to many different fields, such as operational research, game theory, measurement theory, business competitive capacity evaluation, classification of the natural textures, rural land usage right evaluation, personal credit evaluation, forecasting the export and import volume, medical diagnosis, flood alarm model, decision making, and so on. At the same time, researches on theoretical aspect of soft sets are progressing rapidly. This work can be classified into three classes. The first class is to continue to study the properties of soft sets. The second class is to discuss the algebraic structures of soft sets, such as soft groups, soft rings, soft BCK/BCI-algebras, BCH-algebras, and so on. The third class is to combine soft sets with other theories for dealing with uncertainties, for example, fuzzy soft sets, interval-valued fuzzy soft sets and intuitionistic fuzzy soft sets.
     The thesis is to continue to study the theory and applications of soft sets. We present the soft polygroups and soft hypermodules, define the type-2 fuzzy soft sets by the combination of soft sets and type-2 fuzzy sets, and consider the application of type-2 fuzzy soft sets in decision making. Also, we discuss the relation among decision making, automated reasoning and knowledge compilation, and point out the disadvantages existing in the algorithm of knowledge compilation using extension rule. Furthermore, we propose two heuristic strategies, MCN and MO, to lead the chooses of relevant clause and variable, respectively, in order to reduce the times of using extension rule, and further decrease the size of the compiled knowledge base. The contributions of this thesis are concretely as follows:
     Firstly, we consider the algebraic hyperstructures of soft sets. Algebraic hyperstructures are the generalization of algebraic structures. Polygroup is a kind of algebraic hyperstructures. We introduce soft polygroups, normal soft polygroups, soft subpolygroups, normal soft subpolygroups, consider several operations on them, and obtain some related results. Also, we define the homomorphism and isomorphism of soft polygroups, and establish three isomorphism theorems of soft polygroups. Hypermodule is also a kind of algebraic hyperstructures. We study the soft hypermodules and soft subhypermodules, and investigate some basic properties. Accordingly, we derive three isomorphism theorems of soft hypermodules by using the homomorphism and isomorphism of soft hypermodules. By using normal fuzzy subhypermodules, three fuzzy isomorphism theorems of soft hypermodules are established.
     Secondly, we present type-2 fuzzy soft sets which are based on the combination of type-2 fuzzy sets and soft sets, as a generalization of fuzzy soft sets. The concept of a type-2 fuzzy set was introduced by Zadeh as an extension of the concept of an ordinary fuzzy set. Type-2 fuzzy sets have more powerful expressiveness than ordinary fuzzy sets. Therefore, type-2 fuzzy soft sets have more power for handling uncertainty than fuzzy soft sets. We define some operations and prove some basic laws on type-2 fuzzy soft sets. Moreover, we propose a flexible approach to decision making based on type-2 fuzzy soft sets by using level soft sets of type-2 fuzzy soft sets. The advantages of the approach are mainly twofold. First, it is simpler and easier for application in practical problems, because we do not need to treat type-2 fuzzy soft sets directly in decision making but only deal with the related the crisp level soft sets after choosing certain threshold pairs. Second, it can be seen as an adjustable approach to type-2 fuzzy soft sets based decision making because the final optimal decision is in relation to the decision criteria used by decision makers.
     Finally, we propose knowledge compilation using extension rule based on heuristic strategies. Knowledge compilation approach splits the reasoning process into two phases: an off-line compilation phase and an on-line query-answering phase. The size of the compiled knowledge base is crucial to the effectiveness in on-line reasoning phase. After a deep research on the approach of knowledge compilation using extension rule, we found that the approach does not consider the relation among clauses, when it chooses a clause to extend. Also, when it chooses a variable to extend, the approach does not consider any heuristic strategy and extends variable sequentially. In order to decrease the size of the compiled knowledge base, we propose two heuristic strategies, MCN and MO, to lead the chooses of relevant clause and variable, respectively. Experimental results indicate that the MCN and MO play a great role in minimizing the size of the compiled knowledge base. When MCN and MO are used together, the efficiency is better.
引文
[1] Zadeh L A. Fuzzy sets[J]. Information and Control, 1965, 8: 338-353.
    [2] Gorzalzany M B. A method of inference in approximate reasoning based on interval-valued fuzzy sets[J]. Fuzzy Sets Systems, 1987, 21: 1-17.
    [3]肖智.基于软信息的软决策新方法研究[D]: [博士学位论文].重庆:重庆大学, 2003.
    [4] Molodtsov D. Soft set theory–First results[J]. Computers and Mathematics with Applications, 1999, 37 (4-5): 19-31.
    [5] Molodtsov D. The Theory of Soft Sets[M]. Moscow: URSS Publishers, 2004 (in Russian).
    [6] Maji P K, Biswas R, Roy A R. Soft set theory[J]. Computers and Mathematics with Applications, 2003, 45: 555-562.
    [7] Ali M I, Feng F, Liu X, et al. On some new operations in soft set theory[J]. Computers and Mathematics with Applications, 2009, 57 (9): 1547-1553.
    [8] Cagman N, Enginoglu S. Soft matrix theory and its decision making[J]. Computers and Mathematics with Applications, 2010, 59: 3308-3314.
    [9] Gong K, Xiao Z, Zhang X. The bijective soft set with its operations[J]. Computers and Mathematics with Applications, 2010, 60: 2270-2278.
    [10] Xiao Z, Gong K, Xia S, et al. Exclusive disjunctive soft sets[J]. Computers and Mathematics with Applications, 2010, 59: 2128-2137.
    [11] Jiang Y, Tang Y, Chen Q, et al. Extending soft sets with description logics[J]. Computers and Mathematics with Applications, 2010, 59: 2087-2096.
    [12] Maji P K, Biswas R, Roy A R. Fuzzy soft sets[J]. Journal of Fuzzy Mathematics, 2001, 9 (3): 589-602.
    [13] Majumdar P, Samanta S K. On similarity measure of fuzzy soft sets[C]. Proc. of the International Conference on Soft Computing & Intelligent Systems. 2007. 40-44.
    [14] Majumdar P, Samanta S K. Similarity measure of soft sets[J]. New Mathematics and Natural Computation, 2008, 4 (1): 1-12.
    [15] Majumdar P, Samanta S K. Generalised fuzzy soft sets[J]. Computers and Mathematics with Applications, 2010, 59: 1425-1432.
    [16] Jiang Y, Tang Y, Chen Q, et al. Extending fuzzy soft sets with fuzzy description logics[J]. Knowledge-Based Systems, 2011, 24: 1096-1107.
    [17] Maji P K, Biswas R, Roy A R. Intuitionistic fuzzy soft sets[J]. Journal of Fuzzy Mathematics, 2001, 9 (3): 677-692.
    [18] Maji P K, Roy A R, Biswas R. On intuitionistic fuzzy soft sets[J]. Journal of Fuzzy Mathematics, 2004, 12(3): 669-683.
    [19] Maji P K. More on intuitionistic fuzzy soft sets[C]. in: Sakai H, Chakraborty M K, Hassanien A E, Slezak D, Zhu W, eds. Proc. of the 12th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. LNCS 5908, Berlin: Springer, 2009. 231-240.
    [20] Yang X, Lin T Y, Yang J, et al. Combination of interval-valued fuzzy set and soft set[J]. Computers and Mathematics with Applications, 2009, 58 (3): 521-527.
    [21] Jiang Y, Tang Y, Chen Q, et al. Interval-valued intuitionistic fuzzy soft sets and their properties[J]. Computers and Mathematics with Applications, 2010, 60: 906-918.
    [22] Aktas H, Cagman N. Soft sets and soft groups[J]. Information Sciences, 2007, 177 (13): 2726-2735.
    [23] Sezgin A, Atagun A O. Soft sets and normalistic soft groups[J]. Computers and Mathematics with Applications, 2011, 62: 685-698.
    [24] Jun Y B, Lee K J, Khan A. Soft ordered semigroups[J]. Mathematical Logic Quarterly, 2010, 56 (1): 42-50.
    [25] Feng F, Jun Y B, Zhao X. Soft semirings[J]. Computers and Mathematics with Applications, 2008, 56 (10): 2621-2628.
    [26] Acar U, Koyuncu F, Tanay B. Soft sets and soft rings[J]. Computers and Mathematics with Applications, 2010, 59: 3458-3463.
    [27] Sun Q M, Zhang Z L, Liu J. Soft sets and soft modules[C]. in: Wang G, Li T, Grzymala-Busse J W, Miao D, Skowron A, Yao Y, eds. Proc. of The Third International Conference on Rough Sets and Knowledge Technology. LNCS 5009, Berlin: Springer, 2008. 403-409.
    [28] Li F. Soft Lattices[J]. Global Journal of Science Frontier Research, 2010, 10 (4): 56-58.
    [29] Shabir M, Naz M. On soft topological spaces[J]. Computers and Mathematics with Applications, 2011, 61: 1786-1799.
    [30] Aygunoglu A, Aygun H. Some notes on soft topological spaces[J]. Neural Computing and Applications, DOI: 10.1007/s00521-011-0722-3.
    [31] Jun Y. B. Soft BCK/BCI-algebras[J]. Computers and Mathematics with Applications, 2008, 56: 1408-1413.
    [32] Jun Y B, Park C H. Applications of soft sets in ideal theory of BCK/BCI algebras[J]. Information Sciences, 2008, 178: 2466-2475.
    [33] Zhan J, Jun Y B. Soft BL-algebras based on fuzzy sets[J]. Computers and Mathematics with Applications, 2010, 59: 2037-2046.
    [34] Kazanc? O, Y?lmaz S, Yamak S. Soft sets and soft BCH-algebras[J]. Hacettepe Journal of Mathematics and Statistics, 2010, 39 (2): 205-217.
    [35] Park C H, Jun Y B, Qzturk M A. Soft WS-algebras[J]. Communications of the Korean Mathematical Society, 2008, 23 (3): 313-24.
    [36] Jun Y B, Park C H. Applications of soft sets in Hilbert algebras[J]. Iranian journal of Fuzzy systems, 2009, 6 (2): 75-86.
    [37] Jun Y B, Zhan J. Soft ideals of BCK/BCI-algebras based on fuzzy set theory[J]. International Journal of Computer Mathematics, 2011, 88 (12): 2502-2515.
    [38] Aygunoglu A, Aygun H. Introduction to fuzzy soft groups[J]. Computers and Mathematics with Applications, 2009, 58: 1279-1286.
    [39] Yang C. Fuzzy soft semigroups and fuzzy soft ideals[J]. Computers and Mathematics with Applications, 2011, 61(2): 255-261.
    [40] Gunduz C, Bayramov S. Fuzzy Soft Modules[J]. International Mathematical Forum, 2011, 6 (11): 517-527.
    [41] Tanay B, Kandemir M B. Topological structure of fuzzy soft sets[J]. Computers and Mathematics with Applications, 2011, 61: 2952-2957.
    [42] Zhou J, Li Y, Yin Y. Intuitionistic fuzzy soft semigroups[J]. Mathematica Aeterna, 2011, 1(3): 173-183.
    [43] Gunduz (Aras) C, Bayramov S. Intuitionistic fuzzy soft modules[J]. Computers and Mathematics with Applications, doi:10.1016/j.camwa.2011.07.036.
    [44]肖智,李潆兵,钟波,等.基于软集合的企业竞争力综合评价方法研究[J].统计研究, 2003, 10: 52-54.
    [45] Xiao Z, Chen L, Zhong B, et al. Recognition for Soft Information Based on the Theory of Soft Sets[C]. Proc. of 2005 International Conference on Services Systems and Services Management. 2005. 1104-1106.
    [46] Mushrif M M, Sengupta S, Ray A K. Texture Classification Using a Novel, Soft-Set Theory Based Classification Algorithm[C]. in: Narayanan P J, Nayar S K, Shum H Y, eds. Proc. of 7th Asian Conference on Computer Vision. LNCS 3851, Berlin: Springer, 2006. 246-254.
    [47] Kovkov D V, Kolbanov V M, Molodtsov D A. Soft sets theory-based optimization[J]. Journal of Computer and Systems Sciences International, 2007, 46 (6): 872-880.
    [48] Herawan T. Deris M M. A soft set approach for association rules mining[J]. Knowledge- Based Systems, 2011, 24: 186-195.
    [49]张仕廉,陈玲燕.软集合理论在农村土地使用权估价中的应用[J].乡镇经济, 2008, 24: 37-39.
    [50] Zou Y, Xiao Z. Data analysis approaches of soft sets under incomplete information[J]. Knowledge-Based Systems, 2008, 21 (8): 941-945.
    [51] Qin H., Ma X, Herawan T, et al. Data Filling Approach of Soft Sets under Incomplete Information[C]. Proc. of the 3rd Asian Conference on Intelligent Information and Database Systems. LNCS 6592, Berlin: Springer, 2011. 302-311.
    [52] Rose A N M, Hassan H, Awang M I, et al. Solving Incomplete Datasets in Soft Set Using Supported Sets and Aggregate Values[J]. Procedia Computer Science, 2011, 5: 354-361.
    [53]刘子君.软集合条件下的个人信用评价方法研究[J].工业技术经济, 2005, 24 (8): 126-127.
    [54] Xiao Z, Gong K, Zou Y. A combined forecasting approach based on fuzzy soft sets[J]. Journal of Computational and Applied Mathematics, 2009, 228: 326-333.
    [55]龚科.基于软集合理论的外贸出口量预测方法研究[D]: [博士学位论文].重庆:重庆大学,2010.
    [56] Xiao Z, Chen W. A Partner Selection Method Based on Risk Evaluation Using Fuzzy Soft Set Theory in Supply Chain[M]. in: Wu D D, ed. Modeling Risk Management in Sustainable Construction, Computational Risk Management Part 1. Berlin: Springer, 2011. 19-27.
    [57] Das P K, Borgohain R. An application of fuzzy soft set in medical diagnosis using fuzzy arithmetic operations on fuzzy number[J]. SIBCOLTEJO, 2010, 5: 107-116.
    [58] Chetia B, Das P K. An Application of Interval-Valued Fuzzy Soft Sets in Medical Diagnosis[J]. International Journal of Contemporary Mathematical Sciences, 2010, 5: 1887- 1894.
    [59] Kalayathankal S J, Singh G S. A fuzzy soft flood alarm model[J]. Mathematics and Computers in Simulation, 2010, 80: 887-893.
    [60]卫贵武.基于模糊信息的多属性决策理论与方法[M].北京:中国经济出版社, 2010.
    [61] Maji P K, Roy A R, Biswas R. An application of soft sets in a decision making problem[J]. Computers and Mathematics with Applications, 2002, 44: 1077-1083.
    [62] Chen D, Tsang E C C, Yeung D S, et al. The parameterization reduction of soft sets and its applications[J]. Computers and Mathematics with Applications, 2005, 49: 757-763.
    [63] Kong Z, Gao L, Wang L, et al. The normal parameter reduction of soft sets and its algorithm[J]. Computers and Mathematics with Applications, 2008, 56: 3029-3037.
    [64] Rose A N M, Herawan T, Deris M M. A Framework of Decision Making Based on Maximal Supported Sets[C]. Advances in Neural Networks, Proc. of 7th International Symposium on Neural Networks. LNCS 6063, Berlin: Springer, 2010. 473-482.
    [65] Cagman N, Enginoglu S. Soft set theory and uni-int decision making[J]. European Journal of Operational Research, 2010, 207: 848-855.
    [66] Jiang Y, Liu H, Tang Y, Chen Q. Semantic decision making using ontology-based soft sets[J]. Mathematical and Computer Modelling, 2011, 53: 1140-1149.
    [67] Roy A R, Maji P K. A fuzzy soft set theoretic approach to decision making problems[J]. Journal of Computational and Applied Mathematics, 2007, 203: 412-418.
    [68] Kong Z, Gao L, Wang L. Comment on“A fuzzy soft set theoretic approach to decision making problems”[J]. Journal of Computational and Applied Mathematics, 2009, 223: 540-542.
    [69] Feng F, Jun Y B, Liu X, et al. An adjustable approach to fuzzy soft set based decision making[J]. Journal of Computational and Applied Mathematics, 2010, 234: 10-20.
    [70] Jiang Y, Tang Y, Chen Q. An adjustable approach to intuitionistic fuzzy soft sets based decision making[J]. Applied Mathematical Modelling, 2011, 35: 824-836.
    [71] Feng F, Li Y, Leoreanu-Fotea V. Application of level soft sets in decision making based on interval-valued fuzzy soft sets[J]. Computers and Mathematics with Applications, 2010, 60: 1756-1767.
    [72] Qin H, Ma X, Herawan T, et al. An Adjustable Approach to Interval-Valued Intuitionistic Fuzzy Soft Sets Based Decision Making[C]. Proc. of the Third international conference on Intelligent information and database systems. LNCS 6592, Berlin: Springer, 2011. 80-89.
    [73]王永庆.人工智能原理与方法[M].陕西:西安交通大学出版社, 1998.
    [74]张英.智能决策推理技术的研究与应用[D]: [硕士学位论文].北京:北京科学技术大学,2009.
    [75]殷明浩.自动推理和智能规划中若干问题研究[D]: [博士学位论文].吉林:吉林大学,2008.
    [76]吴瑕.基于扩展规则的定理证明的研究[D]: [博士学位论文].吉林:吉林大学,2006.
    [77] Dieter F, Arno S. Using KIV to Specify and Verify Architectures of Knowledge-Based Systems[C]. Proc. of International Conference on Automated Software Engineering. 1997. 71-81.
    [78] Wolfgang R. The KIV System: Systematic Construction of Verified Software[C]. Proc. of 11th International Conference on Automated Deduction. 1992. 753-757.
    [79] Blanchet B. An Efficient Cryptographic Protocol Verifier Based on Prolog Rules[C]. In 14th IEEE Computer Security Foundations Workshop. 2001. 82-96.
    [80] Chevalier Y, Vigneron L. Automated Unbounded Verification of Security Protocols[C]. Proc. of the Computer-Aided Verification Conference. 2002. 324-337.
    [81] Armando A, Compagna L. SAT-based Model-Checking for Security Protocols Analysis[J]. International Journal of Information Security, 2008, 7 (1): 3-32.
    [82] Robinson J A. A machine oriented logic based on the resolution principle[J]. Computer Machine, 1965, 12: 23-41.
    [83] Davis M, Putnam H. A computing procedure for quantification theory[J]. Journal of the ACM, 1960, 7: 201-215.
    [84] Davis M, Logemann G, Loveland D. A machine program for theorem-proving[J]. Communications of the ACM, 1962, 5(7): 394-397.
    [85] Lin H, Sun J, Zhang Y. Theorem Proving Based On the Extension Rule [J]. Journal of Automated Reasoning, 2003, 31 (1):11-21.
    [86] Lin H, Sun J. Knowledge Compilation Using the Extension Rule [J]. Journal of Automated Reasoning, 2004, 32(2): 93-102.
    [87]孙吉贵,李莹,朱兴军等.一种新的基于扩展规则的定理证明算法[J].计算机研究与发展, 2009, 46(1): 9-14.
    [88]李莹,孙吉贵,吴瑕等.基于IMOM和IBOHM启发式策略的扩展规则算法[J].软件学报, 2009, 20(6): 1521-1527.
    [89] Wu X, Sun J, Lin H, et al. Modal extension rule [J]. Process in Natural Science, 2005, 15(6): 550-558.
    [90] Yin M, Lin H, Sun J. Counting models using Extension Rules [C]. Proc. of the Twenty-Second National Conf on Artificial Intelligence. Menlo Park, CA: AAAI press, 2007: 1916-1917.
    [91]殷明浩,林海,孙吉贵.一种基于扩展规则的#SAT求解系统[J].软件学报, 2009, 20(7): 1714-1725.
    [92] Comer S D. Polygroups derived from cogroups[J]. Journal of Algebra, 1984, 89: 397-405.
    [93] Davvaz B, Corsini P, Leoreanu-Fotea V. Fuzzy n-ary subpolygroups[J]. Computers and Mathematics with Applications, 2009, 57: 141-152.
    [94] Jantosciak J. Homomorphism equivalence and relations in hypergroups[J]. Rivista di Mathematica Pura ed Applicata, 1991, 9: 23-47.
    [95] Davvaz B. Isomorphism theorems of polygroups[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2010, 33(3): 385-392.
    [96] Krasner M. A class of hyperrings and hyperfields[J]. International Journal of Mathematics and Mathematical Sciences, 1983, 6(2): 307-312.
    [97] Vougiouklis T. Hyperstructures and Their Representations[M]. Palm Harber: Hadronic Press Inc, 1994.
    [98]詹建明, Davvaz B, Shum K P.超模的同构定理[J].数学学报(中文版), 2007, 50(4): 909-914.
    [99] Zhan J, Davvaz B, Shum K P. A new view on fuzzy hypermodules[J]. Acta Mathematica Sinica (English Series), 2007, 23(8): 1345-1356.
    [100] Zhan J, Davvaz B, Shum K P. On fuzzy isomorphism theorems of hypermodules[J]. Soft Computing, 2007, 11: 1053-1057.
    [101] Zadeh L A. The concept of a linguistic variable and its application to approximate reasoning-1[J]. Information Sciences, 1975, 8: 199-249.
    [102] John R I. Type 2 fuzzy sets: an appraisal of theory and applications[J]. International Journal of Uncertainty, Fuzziness Knowledge-Based Systems, 1998, 6 (6): 563-576.
    [103] Mizumoto M, Tanaka K. Some properties of fuzzy sets of type-2[J]. Information and Control, 1976, 31: 312-340.
    [104] Mendel J M, John R I. Type-2 fuzzy sets made simple[J]. IEEE Transactions on Fuzzy Systems, 2002, 10: 117-127.
    [105] Karnik N N, Mendel J M. Operations on type-2 fuzzy sets[J]. Fuzzy Sets and Systems, 2001, 122: 327-348.
    [106] Marty F. Sur une generalization de la notion de group[C]. Proc. of 8th Congress of Scandinavian Mathematicians. Stockholm, 1934. 45-49.
    [107] Mittas J. Hypergroupes canoniques[J]. Mathematica Balkanica, 1972, 2: 165-179.
    [108] Bonansinga P, Corsini P. Sugli omomrfismi di semi-ipergruppi e di ipergruppi[J]. Bol U M I, 1982, 6(1-B): 717-727.
    [109] Comer S D. Polygroups derived from cogroups[J]. Journal of Algebra, 1984, 89 (2): 397-405.
    [110] Lasser R. Applications of the theory of hypergroups[J]. Mathematical and Computer Modelling, 1988, 11: 210-211.
    [111] Rota R. Hyperaffine planes over hyperrings[J]. Discrete Mathematics, 1996, 155(1-3): 215-223.
    [112] Procesi R, Rota R. On some classes of hyperstructures[J]. Discrete Mathematics, 1999, 208: 485-497.
    [113] Freni D. A new characterization of the derived hypergroup via strongly regular equivalences[J]. Communications in Algebra, 2002, 30 (8): 3977-3989.
    [114] Freni D. Strongly transitive geometric spaces: Applications to hypergroups and semigroups theory[J]. Communications in Algebra, 2004, 32 (3): 969-988.
    [115] Davvaz B, Salasi A. A realization of hyperrings[J]. Communications in Algebra, 2006, 34 (12): 4389-4400.
    [116] Davvaz B, Vougiouklis T. Commutative rings obtained from hyperrings (Hv-rings) withα*-relations[J]. Communications in Algebra, 2007, 35 (11): 3307-3320.
    [117] Stefanescu M, Cristea I. On the fuzzy grade of hypergroups[J]. Fuzzy Sets and Systems, 2008, 159(9): 1097-1106.
    [118] Procesi R, Rota R. Complementary multiplicative hyperrings[J]. Discrete Mathematics, 2008, 308(2-3): 188-191.
    [119] Anvariyeh S M, Davvaz B. Strongly transitive geometric spaces associated to hypermodules[J]. Journal ofAlgebra, 2009, 322(4): 1340-1359.
    [120] Leoreanu-Fotea V. A new type of fuzzy n-ary hyperstructures[J]. Information Sciences, 2009, 179(15): 2710-2718.
    [121] Zhan J, Davvaz B, Shum K P. On probabilistic n-ary hypergroups[J]. Information Sciences, 2010, 180(7): 1159-1166.
    [122] Cristea I, Stefanescu M, Angheta C. About the fundamental relations defined on the hypergroupoids associated with binary relations[J]. European Journal of Combinatorics, 2011, 32: 72-81.
    [123] Delvaux L, Daele A V. Algebraic quantum hypergroups[J]. Advances in Mathematics, 2011, 226 (2): 1134-1167.
    [124] Corsini P, Leoreanu V. Applications of Hyperstructure Theory(Advances in Mathematics)[M]. Dordrecht: Kluwer Academic Publishers, 2003.
    [125] Corsini P. Prolegomena of Hypergroup Theory[M]: Second edition. 1993.
    [126] Davvaz B, Leoreanu-Fotea V. Hyperring Theory and Applications[M]. USA: International Academic Press, 2007.
    [127] Vougiouklis T. Hyperstructures and Their Representations[M]. Palm Harber, USA: Hadronic Press Inc, 1994.
    [128] Comer S D. Extension of polygroups by polygroups and their representations using colour schemes[C]. in: Freese R S, Garcia O C, eds. Proc. of the Fourth International Conference on Universal Algebra and Lattice Theory. Lecture Notes in Mathematics 1004, Berlin: Springer, 1982. 91-103.
    [129] Comer S D. Combinatorial aspects of relations[J]. Algebra Universalis, 1984, 18: 77-94.
    [130] Comer S D. Hyperstructures associated with character algebra and color schemes[C]. in: Vougiouklis T, ed. New Frontiers in Hyperstructures. Palm Harbor: Hadronic Press, 1996. 49-66.
    [131] Davvaz B, Poursalavati N S. On polygroup hyperrings and representations of polygroups[J]. Journal of the Korean Mathematical Society, 1999, 36 (6): 1021-1031.
    [132] Davvaz B. On polygroups and permutation polygroups[J]. Mathematica Balkanica, 2000, 14 (1-2): 41-58.
    [133] Zahedi M M, Bolurian M, Hasankhani A. On polygroups and fuzzy subpolygroups[J]. Journal of Fuzzy Mathematics, 1995, 3: 1-15.
    [134] Davvaz B, Corsini P. Generalized fuzzy polygroups[J]. Iranian Journal of Fuzzy Systems, 2006, 3(1): 59-75.
    [135] Davvaz B, Zhan J, Shum K P. Generalized fuzzy polygroups endowed with interval valued membership functions[J]. Journal of Intelligent & Fuzzy Systems, 2008, 19: 181-188.
    [136] Vougiouklis, T. The fundamental relation in hyperrings. The general hyperfield, in: Proc. Fourth International Congress on Algebraic Hyperstructures and Applications. World Scientific Press, 1991. 203-211.
    [137] Davvaz B. Isomorphism theorems on hyperrings[J]. Indian Journal of Pure and Applied Mathematics, 2004, 35 (3): 321-331,.
    [138] Davvaz B, Koushky A. On hyperring of polynomials[J]. Italian Journal of Pure and Applied Mathematics, 2004, 15: 205-214.
    [139] Zhan J, Davvaz B, Shum K P. Generalized fuzzy hyperideals of hyperrings[J]. Computers and Mathematics with Applications, 2008, 56: 1732-1740.
    [140] Mirvakili S, Davvaz B. Relations on Krasner (m, n)-hyperrings[J]. European Journal of Combinatorics, 2010, 31: 790-802.
    [141] Davvaz B. Fuzzy Krasner (m, n)-hyperrings[J]. Computers and Mathematics with Applications, 2010, 59 (12): 3879-3891.
    [142] Massouros C G. Free and cyclic hypermodules[J]. Annali di Matematica Pura ed Applicata , 1998, 150(5): 153-166.
    [143] Ameri R. On categories of hypergroups and hypermodules[J]. Journal of Discrete Mathematical Sciences & Cryptograph, 6(2) (2003) 121-132.
    [144] Anvariyeh S M, Mirvakili S, Davvaz B.θ*-relation on hypermodules and fundamental modules over commutative fundamental rings[J]. Communications in Algebra, 2008, 36: 622-631.
    [145] Kazanc? O, Yamak S, Davvaz B. The lower and upper approximations in a quotient hypermodule with respect to fuzzy sets[J]. Information Sciences, 2008, 178: 2349-2359.
    [146] Leoreanu-Fotea V. Fuzzy hypermodules[J]. Computers and Mathematics with Applications, 2009, 57: 466-475.
    [147] Anvariyeh S M, Davvaz B. Strongly transitive geometric spaces associated to hypermodules[J]. Journal of Algebra, 2009, 322: 1340-1359.
    [148] John R, Coupland S. Type-2 fuzzy logic and the modelling of uncertainty in applications[J]. Human-Centric Information Processing, 2009, 185-201.
    [149] Mizumoto M, Tanaka K. Fuzzy sets of type 2 under algebraic product and algebraic sum[J]. Fuzzy Sets and Systems, 1981, 5: 277-290.
    [150] Nieminen J. Algebraic structure of fuzzy sets of type-2[J]. Kybernetica, 1977, 13: 261-273.
    [151] Karnik N N, Mendel J M, Liang Q. Type-2 Fuzzy Logic Systems[J]. IEEE Transactions on Fuzzy Systems, 1999, 7: 643-658.
    [152] Hagras H. A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots[J]. IEEE Transactions on Fuzzy Systems, 2004, 12(4): 524-539.
    [153] John R, Coupland S. Type-2 Fuzzy Logic: A Historical View[J]. IEEE Computational Intelligence Magazine, 2007, 2 (1): 57-62.
    [154] Yager R R. Fuzzy subsets of type II in decisions[J]. Journal of Cybernetics, 1980, 10: 137-159.
    [155] Chen S M, Lee L W. Fuzzy multiple attributes group decision-making based on the interval type-2 TOPSIS method[J]. Expert Systems with Applications, 2010, 37(4): 2790-2798.
    [156] Wagenknecht M, Hartmann K. Application of fuzzy sets of type 2 to the solution of fuzzy equation systems[J]. Fuzzy Sets and Systems, 1988, 25: 183-190.
    [157] Karnik N N, Mendel J M. Applications of type-2 fuzzy logic systems to forecasting of time-series[J]. Information Sciences, 1999, 120: 89-111.
    [158] Mendel J M. Uncertainty, fuzzy logic, and signal processing,Signal Processing, 2000, 80(6): 913-933.
    [159] Rhee F C H, Hwang C. A type-2 fuzzy c-means clustering algorithm[C]. Proc. of IEEE Fuzzy Conference. 2001. 1926-1929.
    [160] John R I, Innocent P R, Barnes M R. Neuro-fuzzy clustering of radiographic tibia image data using type 2 fuzzy sets[J]. Information Sciences, 2000, 125: 65-82.
    [161] Wu K C. Fuzzy interval control of mobile robots[J]. Computers & Electrical Engineering, 1996, 22(3): 211-229.
    [162] Hagras H. A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots[J]. IEEE Transactions on Fuzzy Systems, 2004, 12(4): 524-539.
    [163] Lynch C, Hagras H, Callaghan V. Embedded type-2 FLC for real-time speed control of marine and traction diesel engines[C]. Proc. of IEEE fuzzy conference. 2005. 347-352.
    [164] John R I, Innocent P R. Modeling uncertainty in clinical diagnosis using fuzzy logic[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 2005, 35(6):1340-50.
    [165] Innocent P R, John R I. Computer aided fuzzy medical diagnosis[J]. Information Sciences, 2004, 162 (2): 81-104.
    [166] Wang C H, Cheng C S, Lee T T. Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN)[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B, 2004, 34 (3): 1462-1477.
    [167] Lin F J, Chou P H. Adaptive Control of Two-Axis Motion Control System Using Interval Type-2 Fuzzy Neural Network[J]. IEEE Transactions on Industrial Electronics, 2009, 56(1): 178-193.
    [168] Juang C F, Tsao Y W. A Self-Evolving Interval Type-2 Fuzzy Neural Network With Online Structure and Parameter Learning[J]. IEEE Transctions on fuzzy systems, 2008, 16 (6): 1411-1424.
    [169] Shu H, Liang Q, Gao J. Wireless Sensor Network Lifetime Analysis Using Interval Type-2 Fuzzy Logic Systems[J]. IEEE Transactions on Fuzzy Systems, 2008, 16(2): 416-427.
    [170] Gu L, Zhang Y Q. Web shopping expert using new interval type-2 fuzzy reasoning[J]. Soft Computing, 2007, 11 (8): 741-751.
    [171] Choi B I. Rhee F C H. Interval type-2 fuzzy membership function generation methods for pattern recognition[J]. Information Sciences, 2009, 179 (13): 2102-2122.
    [172] Zadeh L A. A fuzzy-se-theoretic interpretation of linguistic hedges[J]. Journal of Cybernetics, 1972, 2(3): 4-34.
    [173] Selman B, Kautz H. Knowledge compilation and theory approximation [J]. Journal of the ACM, 1996, 43(2): 193-224.
    [174] Cadoli M and Donini F M. A survey on knowledge compilation [J]. AI Communications, 1997, 10(3): 137-150.
    [175] Murray N V and Rosenthal E. Duality in Knowledge Compilation Techniques [C]. Proc. of the 15th Int Symp on Methodologies for Intelligent Systems. LNCS 3488, Berlin: Springer, 2005: 182-190.
    [176] Pipatsrisawat K, Darwiche A. New Compilation Languages Based on Structured Decomposability [C]. Proc. of the Twenty-Third National Conf on Artificial Intelligence. Menlo Park, CA: AAAI press, 2008: 517-522.
    [177] Bryant R E. Symbolic Boolean manipulation with ordered binary decision diagrams [J]. ACM Computing Surveys, 1992, 24(3): 293-318.
    [178] Marquis P. Knowledge compilation using theory prime implicates [C]. Proc. of the Fourteenth Int Joint Conf on Artificial Intelligence. San Francisco, CA: Morgan Kaufmann, 1995: 837-843.
    [179] Darwiche A. Decomposable negation normal form [J]. Journal of the ACM, 2001, 48 (4): 608-647.
    [180] Hahnle R, Murray N V and Rosenthal E. Normal forms for knowledge compilation [C]. Proc. of the 15th Int Symp on Methodologies for Intelligent Systems. LNCS 3488, Berlin: Springer, 2005: 304-313.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700