光热转换聚醚基定形相变储能材料的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
可见光占太阳辐射能的40%以上,但由于其低的热效应,难以直接被相变储能材料所利用,本论文针对此科学问题,设计合成了光热转换定形相变储能材料,即以色素(染料、碳材料)为太阳光吸收介质,以高热焓值的聚乙二醇单甲醚(MPEG)或聚乙二醇(PEG)为相变储能分子,构筑光热转换与相变储能功能于一体的功能材料,实现对太阳辐射中可见光的有效利用。
     论文通过对聚醚端羟基进行化学改性,引入环氧基或异氰酸酯基,得到可反应性聚醚;色素通过重氮化-偶合、氯磺化、缩合或自由基等化学反应,使其具有反应性或在有机溶剂中具有良好的分散性;再以化学键链接构筑聚醚型光热转换定形相变储能材料,主要包括交联型、缩聚高分子型和碳掺杂复合型三类光热转换定型相变储能材料,采用UV-Vis、FT-IR、1H-NMR和13C-NMR谱图对相变储能材料进行了结构鉴定。
     首先,将反应性聚乙二醇单甲醚及反应性染料接枝到多乙烯多胺上,得到多胺型光热转换有机固-液相变储能材料,保留部分可反应性氨基,以甲苯-2,4-二异氰酸酯(TDI)或三聚氯氰为交联剂,通过交联反应,得到交联定形相变储能材料,赋予材料定形相变储能性能及较强刚性的同时,实现了高的光热转换存储效率(对应单波段,q>0.94;可见光400~700nm,η>0.74)和高的储能密度(△H>100J/g)。
     以具有两个等反应活性基团(羟基、氨基)的染料和聚乙二醇为缩聚单体,利用TDI梯度反应活性,通过两步缩合法,获得嵌段缩聚型光热转换有机定形相变储能材料,赋予材料较好的柔韧性、成模性及拉丝性能,同时实现了高的光热转换存储效率(对应单波段,η>0.90;可见光400~700nm,η>0.76)、高的储能密度(最大储能密度高达142.9J/g)、定形相变储能等性能。
     将碳材料(碳黑、多壁碳纳米管或单壁碳纳米管)通过表面化学改性,使其具有良好的有机溶剂分散性,通过超声辅助方法,将表面改性的碳材料均匀的掺杂到定形相变储能材料中,得到碳基复合型光热转换定形相变储能材料,实现了对可见光的全波段吸收与转换(400~700nm,η>0.84),提高了有机定形相变储能材料的导热性能(单壁碳纳米管含量达到2%时,材料的导热效率提高了25.1%)。
The visible light accounts for approximately40%of solar radiation, which almost cannot be directly or effectively applied by phase change materials due to low thermal efficiency. In the present thesis, in view of this scientific issue, novel organic photothermal conversion materials were designed and synthesized based on colorants and phase change materials. The colorants (dyes and carbon) in the photothermal conversion materials were used as a photon antenna that served as an effective "photon capturer and molecular heater" of light-to-heat conversion, and the phase change material stored heat energy by a phase transition with high energy storage density. The novel materials have some notable advantages, such as UV-Vis sunlight-harvesting, light-thermal conversion and thermal energy storage for the realization of the highly efficient utilization of solar radiation.
     In this thesis, epoxy group or an isocyanate group was introduced to the terminal hydroxyl group of polyether (polyethylene glycol monomethyl ether or polyethylene glycol) by chemical modification that obtained reactive polyether; the colorant was designed and synthesized or surface-modified by using the diazotization-coupling, chlorosulfonated condensation or radical reaction to obtain the colorant with reactive or excellent dispersion in organic solvents. Then the light-thermal conversion organic shape-stabilized phase-change materials were designed and synthesized by chemical bond, which mainly contained cross-linking shape-stabilized materials, polycondensation polymer shape-stabilized materials and carbon/phase change material (PCM) composites. These photothermal conversion materials were characterized by UV-Vis, FT-IR,'H-NMR and13C-NMR.
     Firstly, the reactive MPEG and the reactive dyes were grafted onto polyethylene polyamine to obtain the organic photothermal conversion solid-liquid phase change engergy storage materials with the remaining amine gruops. Using toluene-2,4-diisocyanate (TDI) and cyanuric chloride as crosslingking agents, the remaining reactive amino groups of the solid-liquid phase change engergy storage materials were cross-linked, and the cross-lingking shape-stabilized phase change materials were obtained. The materials have some notable advantages, such as shape-stabilized properties in phase change process and strong rigidity. Simultaneously, the materials have a high photothermal conversion and energy storage efficiency (single band,η>0.94; visible light400-700nm,η>0.74) and high energy storage density (△H>100J/g).
     Secondly, the dyes containing two reactive groups (hydroxyl or amino group) and PEG were conducted by TDI through a two-step polymerization process. Then, the linear polycondensation photothermal conversion materials were obtained, and the materials exhibited high strength and flexibility. Simultaneously, the materials have a high photothermal conversion and energy storage efficiency (single band, η>0.90; visible light400~700nm, η>0.76), high energy storage density (△Hmax=142.9J/g) and hape-stabilized phase change energy storage and so on.
     Finally, the surfaces of carbon materials (carbon black, multi-walled carbon nanotubes and single-walled carbon nanotubes) were modified by reacting them with4-nitrophenyldiazonium cations to obtain a uniform dispersion in organic solvents. The surface-modified carbon was successfully hybridized by using ultrasound in PCM, thereby obtaining novel carbon/PCM composites. The materials have some notable advantages, such as a full band absorption of sunlight (400~700nm, η>0.84), a high thermal conductivity as compared to pure organic materials (content of2%, the material thermal efficiency is improved by25.1%); Additionally, a preliminary study showed that carbon/PCM composites exhibited high strength and flexibility.
引文
[1]Robertson N. Catching the rainbow:light harvesting in dye-sensitized solar cells [J]. Angewandte Chemie International Edition,2008,47 (6):1012-1014.
    [2]Cristino V, Caramori S, Argazzi R, et al. Efficient photoelectrochemical water splitting by anodically grown WO3 electrodes [J]. Langmuir,2010,27 (11):7276-7284.
    [3]Kraemer D, Poudel B, Feng H-P, et al. High-performance flat-panel solar thermoelectric generators with high thermal concentration [J]. Nature Materials,2011,10 (7):532-538.
    [4]Ying W, Guo F, Li J, et al. Series of new D-A-π-A organic broadly absorbing sensitizers containing isoindigo unit for highly efficient dye-sensitized solar cells [J]. ACS Applied Materials & Interfaces, 2012,4 (8):4215-4224.
    [5]Hao F, Wang X, Zhou C, et al. Efficient light harvesting and charge collection of dye-sensitized solar cells with (001) faceted single crystalline anatase nanoparticles [J]. The Journal of Physical Chemistry C.2012,116(36):19164-19172.
    [6]Dai L. Functionalization of graphene for efficient energy conversion and storage [J]. Accounts of Chemical Research,2012,46 (1),31-42.
    [7]Shengqiang X, Samuel C P, Huaxing Z, Wei Y, Recent progress on highly efficient bulk heterojunction polymer solar cells [M]. Washington, American Chemical Society,2010.
    [8]Liu C, Li F, Ma L-P, Cheng H-M. Advanced materials for energy storage [J]. Advanced Materials,2010, 22 (8):E28-E62.
    [9]Barnham K W J, Mazzer M, Clive B. Resolving the energy crisis:nuclear or photovoltaics? [J]. Nature Materials,2006,5 (3):161-164.
    [10]Tritt T M, Bottner H, Chen L. Thermoelectrics:direct solar thermal energy conversion [J]. Mrs Bulletin,2008,33 (04):366-368.
    [11]Armaroli N, Balzani V. The future of energy supply:challenges and opportunities [J]. Angewandte Chemie International Edition,2007,46 (1-2):52-66.
    [12]Chen H, Shao L, Ming T, et al. Understanding the photothermal conversion efficiency of gold nanocrystals [J]. Small,2010,6 (20):2272-2280.
    [13]Fujigaya T, Morimoto T, Niidome Y, Nakashima N. NIR laser-driven reversible volume phase transition of single-walled carbon nanotube/poly(N-isopropylacrylamide) composite Gels [J]. Advanced Materials,2008,20 (19):3610-3614.
    [14]Verma P, Varun, Singal S K. Review of mathematical modeling on latent heat thermal energy storage systems using phase-change material [J]. Renewable and Sustainable Energy Reviews,2008,12 (4): 999-1031.
    [15]Pasupathy A, Velraj R, Seeniraj R V. Phase change material-based building architecture for thermal management in residential and commercial establishments [J]. Renewable and Sustainable Energy Reviews,2008,12 (1):39-64.
    [16]Soares N, Costa J J, Gaspar A R, Santos P. Review of passive PCM latent heat thermal energy storage systems towards buildings' energy efficiency [J]. Energy and Buildings,2013,59:82-103.
    [17]Rathod M K, Banerjee J. Thermal stability of phase change materials used in latent heat energy storage systems:A review [J]. Renewable and Sustainable Energy Reviews,2013,18:246-258.
    [18]Bolton J R. Photochemical conversion and storage of solar energy [J]. Journal of Solid State Chemistry,1977,22(1):3-8.
    [19]Wang Y, Foo C Y, Hoo T K, et al. Designed smart system of the sandwiched and concentric architecture of RuO(2)/C/RuO(2) for High performance in electrochemical energy storage [J]. Chem-Eur J,2010,16 (12):3598-3603.
    [20]Wang Y, Wu F D. Self-assembled echinus-like nanostructures of mesoporous CoO nanorod@CNT for lithium-ion batteries [J]. Journal of Materials Chemistry,2011,21 (18):6636-6641.
    [21]Wang Y, Zhang H J, Wei J, et al. Crystal-match guided formation of single-crystal tricobalt tetraoxygen nanomesh as superior anode for electrochemical energy storage [J]. Energ Environ Sci, 2011,4(5):1845-1854.
    [22]Granqvist C G. Solar energy materials [J]. Advanced Materials,2003,15 (21):1789-1803.
    [23]Shen Y, Skirtach A G, Seki T, et al. Assembly of fullerene-carbon nanotubes:temperature indicator for photothermal conversion [J]. Journal of the American Chemical Society,2010,132 (25): 8566-8568.
    [24]Hasnain S M. Review on sustainable thermal energy storage technologies, Part Ⅰ:heat storage materials and techniques [J]. Energy Conversion and Management,1998,39 (11):1127-1138.
    [25]Alkan C, Sari A. Fatty acid/poly(methyl methacrylate) (PMMA) blends as form-stable phase change materials for latent heat thermal energy storage [J]. Solar Energy,2008,82 (2):118-124.
    [26]Shukla A, Buddhi D, Sawhney R L. Solar water heaters with phase change material thermal energy storage medium:a review [J]. Renewable and Sustainable Energy Reviews,2009,13 (8):2119-2125.
    [27]欧阳德来.表面多孔化材料的光-热转换性能研究[D],昆明理工大学硕士学位论文,2005.
    [28]Allen S R, Hammond G P, Harajli H A, et al. Integrated appraisal of a solar hot water system [J]. Energy,2010,35 (3):1351-1362.
    [29]Keliang L, Jie J, Tin-tai C, et al. Performance study of a photovoltaic solar assisted heat pump with variable-frequency compressor-acase study in tibet [J]. Renewable Energy,2009,34 (12): 2680-2687.
    [30]Calise F, Dentice d'Accadia M, Palombo A. Transient analysis and energy optimization of solar heating and cooling systems in various configurations [J]. Solar Energy,2010,84 (3):432-449.
    [31]Chen Y, Athienitis A K, Galal K. Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house:Part 1, BIPV/T system and house energy concept [J]. Solar Energy,2010,84 (11):1892-1907.
    [32]Chen Y, Galal K, Athienitis A K. Modeling, design and thermal performance of a BIPV/T system thermally coupled with a ventilated concrete slab in a low energy solar house:Part 2, ventilated concrete slab [J]. Solar Energy,2010,84 (11):1908-1919.
    [33]Chwieduk D A. Some aspects of modelling the energy balance of a room in regard to the impact of solar energy [J]. Solar Energy,2008,82 (10):870-884.
    [34]Armaroli N, Balzani V. The future of energy supply:challenges and opportunities [J]. Angewandte Chemie International Edition,2007,46 (1-2):52-66.
    [35]侯毓汾,吴祖望,胡家振.从绿叶到激光光盘:颜色与化学[M].北京:清华大学出版社,]985.
    [36]熊涛,何美凤.光热转换材料及太阳能热水器的现状和发展方向[J].材料导报,2010,(19):57-60.
    [37]谢光明.太阳能光热转换的核心材料——光谱选择性吸收涂层的研究与发展过程[J].新材料产业,2011,(05):55-58.
    [38]Guo X-Z, Zhang Y-D, Qin D, et al. Hybrid tandem solar cell for concurrently converting light and heat energy with utilization of full solar spectrum [J]. Journal of Power Sources,2010,195 (22): 7684-7690.
    [39]Zhang X, Xiao Y, Qian X. Highly efficient energy transfer in the light harvesting system composed of three kinds of boron-dipyrromethene derivatives [J]. Organic Letters,2007,10 (1):29-32.
    [40]Becker K, Lupton J M. Efficient light harvesting in dye-endcapped conjugated polymers probed by single molecule spectroscopy [J]. Journal of the American Chemical Society,2006,128 (19): 6468-6479.
    [41]Wang H, Qian G, Wang M, et al. Enhanced luminescence of an erbium (Ⅲ) ion-association ternary complex with a near-infrared dye [J]. The journal of physical chemistry. B, Condensed matter, materials, surfaces, interfaces & biophysical,2004,108 (23):5.
    [42]袁渭康,颜色与有机分子结构[M].化学工业出版社,北京,2000.
    [43]Liu M, Saman W, Bruno F. Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems [J]. Renewable and Sustainable Energy Reviews,2012,16 (4):2118-2132.
    [44]Oro E, de Gracia A, Castell A, et al. Review on phase change materials (PCMs) for cold thermal energy storage applications [J]. Applied Energy,2012,99:513-533.
    [45]Zhang Y, Zhou G, Lin K, et al. Application of latent heat thermal energy storage in buildings: State-of-the-art and outlook [J]. Build Environ,2007,42 (6):2197-2209.
    [46]Kuznik F, David D, Johannes K, Roux J-J. A review on phase change materials integrated in building walls [J]. Renewable and Sustainable Energy Reviews,2011,15 (1):379-391.
    [47]Raj V A A, Velraj R. Review on free cooling of buildings using phase change materials [J]. Renewable and Sustainable Energy Reviews,2010,14 (9):2819-2829.
    [48]Rodriguez-Ubinas E, Ruiz-Valero L, Vega S, Neila J. Applications of phase change material in highly energy-efficient houses [J]. Energy and Buildings,2012,50:49-62.
    [49]Rao Z, Wang S, Zhang Z. Energy saving latent heat storage and environmental friendly humidity-controlled materials for indoor climate [J]. Renewable and Sustainable Energy Reviews, 2012,16 (5):3136-3145.
    [50]Zhou D, Zhao C Y, Tian Y. Review on thermal energy storage with phase change materials (PCMs) in building applications [J]. Applied Energy,2012,92:593-605.
    [51]Mondal S. Phase change materials for smart textiles-an overview [J]. Applied Thermal Engineering, 2008,28 (11-12):1536-1550.
    [52]Ying B-a, Kwok Y-l, Li Y, et al. Assessing the performance of textiles incorporating phase change materials [J]. Polymer Testing,2004,23 (5):541-549.
    [53]Kenisarin M, Mahkamov K. Solar energy storage using phase change materials [J]. Renewable and Sustainable Energy Reviews,2007,11 (9):1913-1965.
    [54]Sharma A, Tyagi V V, Chen C R, Buddhi D. Review on thermal energy storage with phase change materials and applications [J]. Renewable and Sustainable Energy Reviews,2009,13 (2):318-345.
    [55]Kenisarin M M. High-temperature phase change materials for thermal energy storage [J]. Renewable and Sustainable Energy Reviews,2010,14 (3):955-970.
    [56]Garcia-Romero A, Diarce G, Ibarretxe J, et al. Influence of the experimental conditions on the subcooling of Glauber's salt when used as PCM [J]. Solar Energy Materials and Solar Cells,2012,102: 189-195.
    [57]Barton J, The application of differential scanning calorimetry (DSC) to the study of epoxy resin curing reactions epoxy resins and composites I [M]. Springer Berlin/Heidelberg,1985.
    [58]Telkes M. Nucleation of supersaturated inorganic salt solutions [J]. Industrial & Engineering Chemistry,1952,44(6):1308-1310.
    [59]Biswas D R. Thermal energy storage using sodium sulfate decahydrate and water [J]. Solar Energy, 1977,19(1):99-100.
    [60]Marliacy P, Solimando R, Bouroukba M, Schuffenecker L. Thermodynamics of crystallization of sodium sulfate decahydrate in H2O-NaCl-Na2SO4: application to Na2SO4·10H2O-based latent heat storage materials [J]. Thermochim Acta,2000,344 (1-2):85-94.
    [61]沈学忠,张仁元.相变储能材料的研究和应用[J].节能技术,2006,24(5):460-463.
    [62]Chen C, Liu S, Liu W, et al. Synthesis of novel solid-liquid phase change materials and electrospinning of ultrafine phase change fibers [J]. Solar Energy Materials and Solar Cells,2012,96: 202-209.
    [63]Bicer A, Sari A. Synthesis and thermal energy storage properties of xylitol pentastearate and xylitol pentapalmitate as novel solid-liquid PCMs [J]. Solar Energy Materials and Solar Cells,2012,102: 125-130.
    [64]赵杰.SMA-g-PCM定形相变材料的制备与性能研究[D].大连理工大学硕士学位论文,2010.
    [65]Baker J. New technology and possible advances in energy storage [J]. Energy Policy,2008,36 (12): 4368-4373.
    [66]Feng L, Zheng J, Yang H, et al. Preparation and characterization of polyethylene glycol/active carbon composites as shape-stabilized phase change materials [J]. Solar Energy Materials and Solar Cells, 2011,95 (2):644-650.
    [67]Senturk S B, Kahraman D, Alkan C, Gokce 1. Biodegradable PEG/cellulose, PEG/agarose and PEG/chitosan blends as shape stabilized phase change materials for latent heat energy storage [J]. Carbohydrate Polymers,2011,84 (1):141-144.
    [68]Yang H, Feng L, Wang C, et al. Confinement effect of SiO2 framework on phase change of PEG in shape-stabilized PEG/SiO2 composites [J]. European Polymer Journal,2012,48 (4):803-810.
    [69]Karaman S, Karaipekli A, Sari A, Bicer A. Polyethylene glycol (PEG)/diatomite composite as a novel form-stable phase change material for thermal energy storage [J]. Solar Energy Materials and Solar Cells,2011,95 (7):1647-1653.
    [70]Sari A, Alkan C, Bicer A. Synthesis and thermal properties of polystyrene-graft-PEG copolymers as new kinds of solid-solid phase change materials for thermal energy storage [J]. Materials Chemistry and Physics,2012,133 (1):87-94.
    [71]Alkan C, Gunther E, Hiebler S, et al. Polyurethanes as solid-solid phase change materials for thermal energy storage [J]. Solar Energy,2012,86 (6):1761-1769.
    [72]Li W-D, Ding E-Y. Preparation and characterization of cross-linking PEG/MDI/PE copolymer as solid-solid phase change heat storage material [J]. Solar Energy Materials and Solar Cells,2007,91 (9):764-768.
    [73]Meng Q, Hu J. A temperature-regulating fiber made of PEG-based smart copolymer [J]. Solar Energy Materials and Solar Cells,2008,92 (10):1245-1252.
    [74]Lu D-f, Di Y-y, Dou J-m. Crystal structures and solid-solid phase transitions on phase change materials (1-CnH2n+1NH3)2CuCl4(s) (n=10 and 11) [J]. Solar Energy Materials and Solar Cells,2013, 114:1-8.
    [75]Xi P, Xia L, Fei P, et al. Preparation and performance of a novel thermoplastics polyurethane solid-solid phase change materials for energy storage [J]. Solar Energy Materials and Solar Cells, 2012,102:36-43.
    [76]Whitman C A, Johnson M B, White M A. Characterization of thermal performance of a solid-solid phase change material, di-n-hexylammonium bromide, for potential integration in building materials [J]. Thermochim Acta,2012,531:54-59.
    [77]Wang C, Feng L, Li W, et al. Shape-stabilized phase change materials based on polyethylene glycol/porous carbon composite:the influence of the pore structure of the carbon materials [J]. Solar Energy Materials and Solar Cells,2012,105:21-26.
    [78]San A, Alkan C, Lafci O. Synthesis and thermal properties of poly(styrene-co-ally alcohol)-graft-stearic acid copolymers as novel solid-solid PCMs for thermal energy storage [J]. Solar Energy,2012,86 (9):2282-2292.
    [79]樊耀峰,张兴祥.有机固-固相变材料的研究进展[J].材料导报,2003,17(7):50-53.
    [80]Farid M M, Khudhair A M, Razack S A K, Al-Hallaj S. A review on phase change energy storage: materials and applications [J]. Energy Conversion and Management,2004,45 (9-10):1597-1615.
    [81]Chen C, Liu W, Yang H, et al. Synthesis of solid-solid phase change material for thermal energy storage by crosslinking of polyethylene glycol with poly (glycidyl methacrylate) [J]. Solar Energy, 2011,85 (11):2679-2685.
    [82]Sari A, Alkan C, Bicer A, Karaipekli A. Synthesis and thermal energy storage characteristics of polystyrene-graft-palmitic acid copolymers as solid-solid phase change materials [J]. Solar Energy Materials and Solar Cells,2011,95 (12):3195-3201.
    [83]Xi P, Duan Y, Fei P, et al. Synthesis and thermal energy storage properties of the polyurethane solid-solid phase change materials with a novel tetrahydroxy compound [J]. European Polymer Journal,2012,48 (7):1295-1303.
    [84]Pielichowska K, Pielichowski K. Biodegradable PEO/cellulose-based solid-solid phase change materials [J]. Polymers for Advanced Technologies,2011,22 (12):1633-1641.
    [85]Li Y, Wu M, Liu R, Huang Y. Cellulose-based solid-solid phase change materials synthesized in ionic liquid [J]. Solar Energy Materials and Solar Cells,2009,93 (8):1321-1328.
    [86]Xi P, Gu X, Cheng B, Wang Y. Preparation and characterization of a novel polymeric based solid-solid phase change heat storage material [J]. Energy Conversion and Management,2009,50 (6): 1522-1528.
    [87]Su J-C, Liu P-S. A novel solid-solid phase change heat storage material with polyurethane block copolymer structure [J]. Energy Conversion and Management,2006,47 (18-19):3185-3191.
    [88]Cao Q, Liu P. Hyperbranched polyurethane as novel solid-solid phase change material for thermal energy storage [J]. European Polymer Journal,2006,42 (11):2931-2939.
    [89]Jiang Y, Ding E, Li G. Study on transition characteristics of PEG/CDA solid-solid phase change materials [J]. Polymer,2002,43 (1):117-122.
    [90]Guo Y, Tong Z, Chen M, Liang X. Solution miscibility and phase-change behavior of a polyethylene glycol-diacetate cellulose composite [J]. Journal of Applied Polymer Science,2003,88 (3):652-658.
    [91]ZANG Y N, DING E Y. Energy storage properties of phase change materials prepared from PEG/CPP [J]. Chinese Chemical Letters,2005,16 (10):4.
    [92]ZHANG Mei N Y, JIANG Zhen-Hua. Preparation and properties of polymeric solid-solid phase change materials of polyethylene glycol(PEG)/poly(vinyl alcohol)(PVA) copolymers by graft copolymerization [J]. Chemical Journal of Chinese Universities,2005,26 (1):170-174.
    [93]赵杰.SMA-g-PCM定形相变材料的制备与性能研究[J].大连理工大学2010.
    [94]Meng Q, Hu J. A poly(ethylene glycol)-based smart phase change material [J]. Solar Energy Materials and Solar Cells,2008,92 (10):1260-1268.
    [95]Zhang Z, Shi G, Wang S, et al. Thermal energy storage cement mortar containing n-octadecane/expanded graphite composite phase change material [J]. Renewable Energy,2013,50: 670-675.
    [96]Xu B, Li Z. Paraffin/diatomite composite phase change material incorporated cement-based composite for thermal energy storage [J]. Applied Energy,2013,105:229-237.
    [97]Li B, Liu T, Hu L, et al. Facile preparation and adjustable thermal property of stearic acid-graphene oxide composite as shape-stabilized phase change material [J]. Chemical Engineering Journal,2013, 215-216:819-826.
    [98]Cai Y, Gao C, Zhang T, et al. Influences of expanded graphite on structural morphology and thermal performance of composite phase change materials consisting of fatty acid eutectics and electrospun PA6 nanofibrous mats [J]. Renewable Energy,2013,57:163-170.
    [99]Zhang L, Zhu J, Zhou W, et al. Thermal and electrical conductivity enhancement of graphite nanoplatelets on form-stable polyethylene glycol/polymethyl methacrylate composite phase change materials [J]. Energy,2012,39 (1):294-302.
    [100]Zhang J, Zhang X, Wan Y, et al. Preparation and thermal energy properties of paraffin/halloysite nanotube composite as form-stable phase change material [J]. Solar Energy,2012,86 (5):1142-1148.
    [101]Li M, Wu Z. A review of intercalation composite phase change material:Preparation, structure and properties [J]. Renewable and Sustainable Energy Reviews,2012,16 (4):2094-2101.
    [102]Fang G, Li H, Cao L, Shan F. Preparation and thermal properties of form-stable palmitic acid/active aluminum oxide composites as phase change materials for latent heat storage [J]. Materials Chemistry and Physics,2012,137 (2):558-564.
    [103]Wang Y, Xia T D, Zheng H, Feng H X. Stearic acid/silica fume composite as form-stable phase change material for thermal energy storage [J]. Energy and Buildings,2011,43 (9):2365-2370.
    [104]Li M, Wu Z, Kao H. Study on preparation, structure and thermal energy storage property of capric-palmitic acid/attapulgite composite phase change materials [J]. Applied Energy,2011,88 (9): 3125-3132.
    [105]Cai Y, Ke H, Dong J, et al. Effects of nano-SiO2 on morphology, thermal energy storage, thermal stability, and combustion properties of electrospun lauric acid/PET ultrafine composite fibers as form-stable phase change materials [J]. Applied Energy,2011,88 (6):2106-2112.
    [106]Li J, Xue P, Ding W, et al. Micro-encapsulated paraffin/high-density polyethylene/wood flour composite as form-stable phase change material for thermal energy storage [J]. Solar Energy Materials and Solar Cells,2009,93 (10):1761-1767.
    [107]Cai Y, Wei Q, Huang F, Gao W. Preparation and properties studies of halogen-free flame retardant form-stable phase change materials based on paraffin/high density polyethylene composites [J]. Applied Energy,2008,85 (8):765-775.
    [108]Chen C, Wang L, Huang Y. Electrospun phase change fibers based on polyethylene glycol/cellulose acetate blends [J]. Applied Energy,2011,88 (9):3133-3139.
    [109]Wang Y, Xia T D, Feng H X, Zhang H. Stearic acid/polymethylmethacrylate composite as form-stable phase change materials for latent heat thermal energy storage [J]. Renewable Energy, 2011,36(6):1814-1820.
    [110]Sari A, Alkan C, Kolemen U, Uzun O. Eudragit S (methyl methacrylate methacrylic acid copolymer)/fatty acid blends as form-stable phase change material for latent heat thermal energy storage [J]. Journal of Applied Polymer Science,2006,101 (3):1402-1406.
    [111]Lipponen S, Saarikoski E, Rissanen M, Seppala J. Preparation and properties of cellulose/PE-co-AA blends [J]. European Polymer Journal,2012,48 (8):1439-1445.
    [112]Pielichowska K, Pielichowski K. Novel biodegradable form stable phase change materials:Blends of poly(ethylene oxide) and gelatinized potato starch [J]. Journal of Applied Polymer Science,2010,116 (3):1725-1731.
    [113]Fang X, Zhang Z, Chen Z. Study on preparation of montmorillonite-based composite phase change materials and their applications in thermal storage building materials [J]. Energy Conversion and Management,2008,49 (4):718-723.
    [114]Chen M, Zheng S, Wu S, Xu G. Melting intercalation method to prepare lauric acid/organophilic montmorillonite shape-stabilized phase change material [J]. J. Wuhan Univ. Technol.-Mat. Sci. Edit., 2010,25 (4):674-677.
    [115]Li M, Wu Z, Kao H, Tan J. Experimental investigation of preparation and thermal performances of paraffin/bentonite composite phase change material [J]. Energy Conversion and Management,2011, 52 (11):3275-3281.
    [116]Wang W, Yang X, Fang Y, Ding J. Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid-liquid phase change materials [J]. Applied Energy,2009, 86 (2):170-174.
    [117]Tang B, Qiu M, Zhang S. Thermal conductivity enhancement of PEG/SiO2 composite PCM by in situ Cu doping [J]. Solar Energy Materials and Solar Cells,2012,105:242-248.
    [118]Wang X, Guo Q, Zhong Y, et al. Heat transfer enhancement of neopentyl glycol using compressed expanded natural graphite for thermal energy storage [J]. Renewable Energy,2013,51:241-246.
    [119]Mehrali M, Latibari S T, Mehrali M, et al. Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite [J]. Energy Conversion and Management, 2013,67:275-282.
    [120]Fan L, Khodadadi J M. Thermal conductivity enhancement of phase change materials for thermal energy storage:A review [J]. Renewable and Sustainable Energy Reviews,2011,15(1):24-46.
    [121]王晓,丁晴,姚晓莉等.石蜡基碳纳米管复合相变材料的热物性研究[J].热科学与技术,2013,2:124-130.
    [122]Mesalhy O, Lafdi K, Elgafy A, Bowman K. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix [J]. Energy Conversion and Management,2005,46 (6):847-867.
    [123]Zhang S, Cheng X, Yang J. Synthesis and application of direct black dyes containing 4,4'-diaminodiphenyl sulfonamide [J]. Dyes and Pigments,1999,43 (3):167-172.
    [124]Gao W, Zhang S, Yang J, Huang L. Metal phthalocyanine catalyzed oxidation of 4-nitrotoluene-2-sulfonic acid to 4,4'-dinitrostilbene-2,2'-disulfonic acid [J]. Dyes and Pigments,2000, 44(3):155-159.
    [125]Tang B, Zhang S, Yang J, Liu F. Synthesis of a novel water-soluble crosslinking polymeric dye with good dyeing properties [J]. Dyes and Pigments,2006,68 (1):69-73.
    [126]Xiao J, Zhang S, Yang J, Huang Q. Study on chemical bonding of Polycarboxylic acid Black on cotton and its dyeing and finishing properties [J]. Dyes and Pigments,2007,73 (1):111-117.
    [127]Li Y, Zhang S, Yang J, et al. Synthesis and application of novel crosslinking polyamine dyes with good dyeing performance [J]. Dyes and Pigments,2008,76 (2):508-514.
    [128]He L, Zhang S, Tang B, et al. Dyeability of Polylactide Fabric with Hydrophobic Anthraquinone Dyes [J]. Chinese Journal of Chemical Engineering,2009,17 (1):156-159.
    [129]Tang L, Tang B, Zhang S. Preparation and Dyeing Performance of a Novel Crosslinking Polymeric Dye Containing Flavone Moiety [J]. Chinese Journal of Chemical Engineering,2011,19 (4):661-665.
    [130]Wang Y, Tang B, Ma W, Zhang S. Synthesis and UV-protective properties of monoazo acid dyes based on 2-hydroxy-4-methoxybenzophenone [J]. Procedia Engineering,2011,18:162-167.
    [131]Wang Y, Tang B, Zhang S. A visible colorimetric pH sensitive chemosensor based on azo dye of benzophenone [J]. Dyes and Pigments,2011,91 (3):294-297.
    [132]汤艳峰.交联染色用交联剂的合成及应用性能研究[D].大连理工大学博士学位论文,2006.
    [133]Patel D R, Patel K C. Synthesis, antimicrobial activity and application of some novel quinazolinone based monoazo reactive dyes on various fibres [J]. Dyes and Pigments,2011,90 (1):1-10.
    [134]Yazdanbakhsh M-r, Abbasnia M, Sheykhan M, Ma'mani L. Synthesis, characterization and application of new azo dyes derived from uracil for polyester fibre dyeing [J]. Journal of Molecular Structure,2010,977 (1-3):266-273.
    [135]Son Y-A, Park Y-M, Shin C-J, Kim S-H. Self-assembly multi-layer of diazonium resin and its coupling reaction with J-acid and H-acid [J]. Dyes and Pigments,2007,72 (3):345-348.
    [136]Kim Y D, Cho J H, Park C R, et al. Synthesis, application and investigation of structure-thermal stability relationships of thermally stable water-soluble azo naphthalene dyes for LCD red color filters [J]. Dyes and Pigments,2011,89 (1):1-8.
    [137]Jeong E, Freeman H S, Claxton L D. Synthesis and characterization of selected 4,4'-diaminoalkoxyazobenzenes [J]. Dyes and Pigments,2010,87 (2):100-108.
    [138]Rangnekar D W, Tagdiwala P V. Synthesis of 2,4-dihydro-6-methyl-4-phenyl-2-(4-substituted phenyl)pyrazolo[3,4-d]-1,2,3-triazole derivatives and their use as fluorescent whitener [J]. Dyes and Pigments,1986,7 (4):289-298.
    [139]Bhat S D, Manokaran A, Sahu A K, et al. Novel self-supported natural and synthetic polymer membranes for air humidification [J]. Journal of Applied Polymer Science,2009,113 (4):2605-2612.
    [140]Elabd Y A, Hickner M A. Block copolymers for fuel cells [J]. Macromolecules,2011,44 (1):1-11.
    [141]Li N W, Cui Z M, Zhang S B, Xing W. Synthesis and characterization of rigid-rod sulfonated polyimides bearing sulfobenzoyl side groups as proton exchange membranes [J]. Journal of Membrane Science,2007,295 (1-2):148-158.
    [142]Chai Z L, Wang C, Zhang H J, et al. Nafion-carbon nanocomposite membranes prepared using hydrothermal carbonization for proton-exchange-membrane fuel cells [J]. Advanced Functional Materials,2010,20 (24):4394-4399.
    [143]Kim E, Weck P F, Balakrishnan N, Bae C. Nanoscale building blocks for the fevelopment of novel proton exchange membrane fuel cells [J]. The Journal of Physical Chemistry B,2008,112 (11): 3283-3286.
    [144]Elbs. K, Prakt. J. [J]. Chemistry,1893,48:179.
    [145]Sethna S M. The elbs persulfate oxidation [J]. Chemical Reviews,1951,49 (1):91-101.
    [146]Feigl F. Abspaltung primarer arylamine aus sulfonsauren in waβriger Losung [J]. Angewandte Chemie,1961,73(3):113-113.
    [147]Nunez Magro A A, Eastham G R, Cole-Hamilton D J. Preparation of phenolic compounds by decarboxylation of hydroxybenzoic acids or desulfonation of hydroxybenzenesulfonic acid, catalysed by electron rich palladium complexes [J]. Dalton Transactions,2009, (24):4683-4688.
    [148]Muralikrishna C, Renganathan V. Peroxidase-catalyzed desulfonation of 3,5-dimethyl-4-hydroxy and 3,5-dimethyl-4-aminobenzenesulfonic acids [J]. Biochemical and Biophysical Research Communications,1993,197 (2):798-804.
    [149]李英玲.多胺型和多羧酸型大分子染料的合成及应用[D].大连理工大学博士学位论文,2007.
    [150]Chen C, Wang L, Huang Y. Crosslinking of the electrospun polyethylene glycol/cellulose acetate composite fibers as shape-stabilized phase change materials [J]. Materials Letters,2009,63 (5): 569-571.
    [151]Ma Y, Chu X, Tang G, Yao Y. The effect of different soft segments on the formation and properties of binary core microencapsulated phase change materials with polyurea/polyurethane double shell [J]. Journal of colloid and interface science,2013,392:407-414.
    [152]Sarier N, Onder E. Thermal characteristics of polyurethane foams incorporated with phase change materials [J]. Thermochim Acta,2007,454 (2):90-98.
    [153]Zhang J, Wang L-Q, Wang H, Tu K. Micellization phenomena of amphiphilic nlock copolymers Based on methoxy poly(ethylene glycol) and either crystalline or amorphous poly(caprolactone-b-lactide) [J]. Biomacromolecules,2006,7 (9):2492-2500.
    [154]Izquierdo M A, Navarro F J, Martinez-Boza F J, Gallegos C. Bituminous polyurethane foams for building applications:Influence of bitumen hardness [J]. Constr Build Mater,2012,30:706-713.
    [155]Schwede J W, Bargatin I, Riley D C, et al. Photon-enhanced thermionic emission for solar concentrator systems [J]. Nature Materials,2010,9 (9):762-767.
    [156]Guo J, Xiang H, Wang Q, et al. Preparation of poly(decaglycerol-co-ethylene glycol) copolymer as phase change material [J]. Energy and Buildings,2012,48:206-210.
    [157]Alkan C, Gunther E, Hiebler S, Himpel M. Complexing blends of polyacrylic acid-polyethylene glycol and poly(ethylene-co-acrylic acid)-polyethylene glycol as shape stabilized phase change materials [J]. Energy Conversion and Management,2012,64:364-370.
    [158]Kenisarin M M, Kenisarina K M. Form-stable phase change materials for thermal energy storage [J]. Renewable and Sustainable Energy Reviews,2012,16 (4):1999-2040.
    [159]Shi H, Li J, Jin Y, et al. Preparation and properties of poly(vinyl alcohol)-g-octadecanol copolymers based solid-solid phase change materials [J]. Materials Chemistry and Physics,2011,131 (1-2): 108-112.
    [160]Lu H, Wang H, Zheng A, Xiao H. Hybrid poly(ethylene terephthalate)/silica nanocomposites prepared by in-situ polymerization [J]. Polym Composite,2007,28 (1):42-46.
    [161]吴致宁,赵德丰,杨锦宗.一类崭新的聚合型色素的合成与应用[J].化工进展,1993,(02):5-13.
    [162]胡官斌.高分子染料的研究进展[J].国外丝绸,2008,(04):24-28.
    [163]Zhang L, Zhu J Q, Zhou W B, et al. Characterization of polymethyl methacrylate/polyethylene glycol/aluminum nitride composite as form-stable phase change material prepared by in situ polymerization method [J]. Thermochim Acta,2011,524 (1-2):128-134.
    [164]Thess A, Lee R, Nikolaev P, et al. Crystalline ropes of metallic carbon nanotubes [J]. Science,1996, 273 (5274):483-487.
    [165]Kim O-K, Je J, Baldwin J W, et al. Solubilization of single-wall carbon nanotubes by supramolecular encapsulation of helical amylose [J]. Journal of the American Chemical Society,2003,125 (15): 4426-4427.
    [166]Toupin M, Belanger D. Spontaneous functionalization of carbon black by reaction with 4-nitrophenyldiazonium cations [J]. Langmuir,2008,24 (5):1910-1917.
    [167]Zhou J, Meng L, Lu Q. Core@shell nanostructures for photothermal conversion:tunable noble metal nanoshells on cross-linked polymer submicrospheres [J]. Journal of Materials Chemistry,2010,20 (26):5493-5498.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700