多交联体系聚氨酯材料及聚氨酯/分子筛复合材料的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚氨酯弹性体具有许多优良特性,如高弹性,耐磨性,耐油性,耐臭氧性,耐低温性,高粘接性,有良好的机械强度以及好的电绝缘性等,因而被广泛应用于国民经济的各个领域,成为不可缺少的重要材料之一。在许多场合往往对耐撕裂强度或拉伸强度之间某一性能要求更高,为了得到交联方式、交联密度与拉伸性能或耐撕裂性能之间的关联性,本文首次设计了一种多交联体系聚氨酯材料,多交联体系是指材料中不同交联密度的微区或链束相互穿插呈高分子合金结构。在此基础上进一步考察了多交联体系聚氨酯/分子筛复合材料的性能。
     本文以聚酯多元醇(PEA)、甲苯二异氰酸酯(TDI)、3,3′-二氯-4,4′-二氨基二苯甲烷(MOCA)及4A、13X分子筛为主要原料,采用预聚法制备了多交联体系聚氨酯材料及聚氨酯/分子筛复合材料,对其力学性能、耐溶剂性能进行了测试,并利用DSC、DMA、SEM等手段对其进行了表征。
     力学性能测试结果表明:在预聚体的-NCO含量为4.5%的设计配方下,与相同配料均一体系聚氨酯材料相比,多交联体系聚氨酯材料的耐撕裂性能有显著提高,拉伸性能稍有下降,但下降幅度不大,扯断伸长率变化不大。平均扩链系数在0.9左右时,多交联体系聚氨酯材料的耐撕裂强度和拉伸强度比较均衡。
     在预聚体的-NCO含量为4.5%,分子筛含量为7%的设计配方下,与相同配料均一体系的聚氨酯/分子筛复合材料相比,多交联体系聚氨酯/分子筛复合材料的耐撕裂性能有明显地提高,拉伸性能下降不大,扯断伸长率变化不大。
     耐溶剂性能测试说明:与均一体系聚氨酯材料相比,多交联体系聚氨酯材料的耐溶剂性能明显提高;与多交联体系聚氨酯材料相比,多交联体系聚氨酯/分子筛复合材料的耐溶剂性能有显著提高。
     DMA测试结果显示:多交联体系聚氨酯材料的储能模量和耗能模量明显增加,阻尼性能下降;玻璃化转变温度降低,微相分离更好。分子筛加入到聚氨酯体系中,作为异相成核剂影响了聚氨酯软硬链段之间的微相分离,使得微相分离更好,阻尼进一步下降。
     DSC结果表明:多交联体系聚氨酯材料在210℃左右的结晶熔融峰明显大于均一体系聚氨酯材料在此温度附近的熔融峰,表明部分交联密度小的区域硬链段的结晶更规整,晶片也相应的大,结晶度增大,影响了微相分离;对于多交联体系聚氨酯/分子筛复合材料,分子筛的加入影响了微相分离。
     SEM测试结果显示:13X、4A分子筛在聚氨酯中的分散基本均匀,说明分子筛在本研究体系下具有良好的分散性。
     综合上述结果,多交联体系聚氨酯材料存在不同交联密度的微区域,部分交联密度小的区域硬链段线性好,使得材料有更好的耐撕裂性能,微相分离更好,阻尼下降;部分处于材料表层的交联密度大的链束或胶团能提高材料的致密性,使得材料具有较好的耐溶剂性能。
Polyurethane elastomer (PU) has good elasticity, wearable property, good oil resistance, the ozone(O_3) resistance, microtherm resistance, well viscidity, good mechanical property and electrical resistance and so on. So it has been widely applied in the every area of civil affairs. One of higher mechanical properties is needed for PU elastomer on some occasions, tear resistance or tensile strength. To obtain relationship between crosslink density and tensile strength or tear resistance, we design polyurethane with different crosslink density micro-domains, and the micro-domains form polymer alloy structure. On the other hand, PU/zeolite composites with different crosslink density micro-domains were studied.
     The prepolymerization method was used to prepare PU with different crosslink density micro-domains and PU/zeolite composites with different crosslink density micro-domains with PEA, TDI, MOCA and zeolite 13X or 4A. The PU materials were characterized by mechanical properties measurement, solvent resistance measurement, DSC, DMA and SEM.
     The test results of mechanical properties show that when the content of -NCO group in prepolymer is 4.5%, tear resistance strength of PU with different crosslink density micro-domains are increased, tensile strength are decreased and elongation at break are unaltered, compared with homogeneous PU materials. Moreover, tensile strength and tear resistance of PU with different crosslink density micro-domains at the average crosslink coefficient 0.9 are optimum.
     When the content of -NCO group in prepolymer is 4.5%, PU/zeolite composites with 7% zeolite contented, with different crosslink density micro-domains exhibit higher mechanical properties than homogeneous PU/zeolite composites.
     The solvent resistance property test reveals that PU with different crosslink density micro-domains has better solvent resistance property. Compared with homogeneous PU/zeolite composites, solvent resistance property of PU/zeolite composites with different crosslink density micro-domains is improved obviously.
     The DMA results indicate that the storage modulus and the loss modulus of PU with different crosslink density micro-domains both increase, the glass transition temperature(Tg) and the damp modulus both decrease, the microphase separation improve. Besides, the adding of zeolite improves the microphase separation of soft and hard segments.
     The DSC results verify that crysterization of hard segment of PU with different crosslink density micro-domains increase at 210℃. The filling of zeolite affects on the microphase separation, the crystal type of hard segment of PU/zeolite composites with different crosslink density micro-domains changes.
     The SEM photographs reveal that the particles of zeolite are dispersed homogeneously in composites.
     Consequently, PU with different crosslink density micro-domains possess higher tear resistance strength, lower glass transition temperature and damp modulus, better microphase separation. On the other hand, the materials exhibit better solvent resistance property due to the chains with high crosslink density.
引文
[1] G·厄特尔,聚氨酯手册[M],阎家宾,吕槊贤等,译,北京,中国石化出版社,1992
    [2] 山西省化工研究所,聚氨酯弹性体手册[M],北京,化学工业出版社,2001,8
    [3] 李绍雄,刘益军,聚氨酯树脂及其应用[M],北京,化学工业出版社,2002
    [4] 袁毅,郭建民,申开智,浅谈聚氨酯硬泡在建筑业上的应用[J],聚氨酯工业,2001,16(4),10-11
    [5] 沈陈炎,杨光明,张鹏等,集成材用单组分湿固化聚氨酯胶粘剂的研制[J],聚氨酯工业,2004,19(3),22-25
    [6] 马天信,姜波,聚氨酯材料在航天工业方舱中的应用[J],聚氨酯工业,2003,18(1),32-34
    [7] 容波,兰德省,李华,秦俑二号坑紫袍跪射俑的保护与修复[J],考古与文物,2005,(5),86-92
    [8] 廖宏,赵棋,李光宪,炸药用胶粘剂的研究进展[J],火工品,2003,(1),29-32
    [9] 陈道,制笔用聚氨酯胶粘剂的研制[J],杭州师范学院学报,2003,4(2),46-50
    [10] 胡春弟,姚刚,陈莉,医用胶粘剂的分类与应用[J],咸宁学院学报(医学版),2005,19(1),73-75
    [11] 翁汉元,聚氨酯胶黏剂概况和“十一五”发展规划建议[J],化学推进剂与高分子材料,2006,4(1),23-25
    [12] Chandran K B, Kim S H, Han G, Stress distribution on the cusps of a polyurethane trileaflet heart valve prosthesis in the closed position[J], Biomech, 1991, 24(6), 385-395
    [13] Min B G, Kim H C, Lee S H, etc. A moving-actuator type electromechanical total artificial heart(Ⅰ):Linear type and mock circulation experiments[J], IEEE Transactions on Biomedical Engineering, 1990, 37(12), 1186-1194
    [14] Szycher M, Poirier V, Dempsey D, Synthesis and fabrication of polyurethane elastomer for cardiacassist devices[C], Boston, American Society of Mechanical Engineers, Applied Mechanics Division, 1979, 743-747
    [15] Kaibara M, Kawamoto Y, Yanagida S, etc. Invitro evaluation of antithrombogenicity of hybrid-type vascular vesselmodels based on analysis of the mechanism of blood coagulation[J], Biomaterials, 1995, 16(16), 1229-1234
    [16] Crabtree J H, Clinical biodurability of aliphatic polyether based polyurethanes as peritoneal dialysis catheters[J], ASA IO Journal, 2003, 49(3), 290-294
    [17] Blamey J, Rajan S, Unsworth A, etc. Soft layered prostheses for arthritichip joints: a study of materials degradation[J], Biomed, Eng, 1991, 13(3), 180-184
    [18] Sawae Y, Murakami T, Higak H, etc. Frictional behavior of artificial cartilage materials lubricated with synovia constituents[J], Nippon Kikai Gakkai Ronbunshu, Part C, 1995, 61(589), 3665-3671
    [19] Murayama T, McMillin C R, Dynamic mechanical properties of elastomers for use in circulatory assist devices[J], Appl. Polym. Sci, 1983, 28(6), 1871-1877
    [20] 眭建军,陈莉,陈苏,功能聚氨酯材料在生物医学工程中的研究进展及应用[J],合成橡胶工业,2005,28(2),151-154
    [21] 吴持生,中国聚氨酯工业的发展,第一届聚氨酯中国95国际会议论文集,北京,1995,1
    [22] Pritchard G, US Foam Growth Slows, PU Share to Rise Urethanes Technology, 1999, 16(3), 45
    [23] Pryweller J, PU Business Set to Grow, Urethanes Technology, 1999, 16(3), 12
    [24] 徐如人,庞文琴,屠昆岗,沸石分子筛的结构与合成,吉林大学出版社,吉林,1987
    [25] Zhao wenwei, Hasegawa shin, Fujita Jun, etc. Effects of zeolites on the pyrolysis of polypropylene, Polymer Degradation and Stability, 1996, 53, 129-135
    [26] Cornelia Vasile, Hooshang Pakdel, Brebu Mihai, etc. Thermal and catalytic decomposition of mixed plastics, Journal of Analytical and Applied Pyrolysis, 2001, 57, 287-303
    [27] 王征,王婷,赵学明,直接缩合法合成低分子量聚乳酸的研究[J],离子交换与吸附,2000,16(4),311-317
    [28] House, Drying agents for non-foamed polyurethanes, U. S., P6, 051, 647, Apr18, 2000
    [29] Anelli, etc, Moisture-resistant cable including zeolite, U. S., P6, 205, 276, Mar20, 2001
    [30] Thompson, etc, Incorporation of zeolites into hybrid polymer matrices, U. S., P6, 248, 682, Jun19, 2001
    [31] Soria, etc, Membrane comprisings porous carrier and a layer of a molecular sieve and its preparation, U. S., P 6, 472, 016, Oct29, 2002
    [32] Birgul Tantekin-Ersolmaz S, Senorkyan Lara, Kalaonar Niso etc, n-Pentane/i-PeNtane Separation by using zeolite-PMDS mixed matrix membranes, Journal of Membrane Science, 2001, 189(1), 59-67
    [33] Kaufman, Polymer modifying agent, U. S., P 6, 080, 805, Jun27, 2000
    [34] Kataoka, U. S., Patent, 6395816, 2002
    [35] 阳范文,赵耀明,刘红阳,FS-/PP共混改性研究[J],塑料工业,2000,28(4),19-20
    [36] Abdelhamid Sayari Hamoudi, Periodic Mesoporous Silica-Based Organic-Inorganic Nanocomposite Material, Chemistry of Materials, 2001, 13 (10), 3151-3168
    [37] 袁晓芳,吕志平等,分子筛表面接枝TDI的研究[J],太原理工大学学报,2002,33(6),660-662
    [38] Corbin, etc, Composition containing liquid crystalline polymer, U. S., P 6, 126, 856, Oct3, 2000
    [39] Katoot, polymer additives for forming objects, U. S., P 6, 146, 556, Nov14, 2000
    [40] Nakazawa, U. S., Patent, 5, 133, 899, 1992
    [41] Miyake, etc, U. S., Patent, 5, 003, 638, 1991
    [42] Schuette, etc, U. S., Patent, 6, 342, 212, 2002
    [43] Sekine, etc, Environment purifying material, U. S., P 5, 997, 829, Dec7, 1999
    [44] S. Slane, M. Salomon, Composition gel electrolyte for rechargeable lithium batteries, Journal of Power Source, 1995, 55, 7-10
    [45] J. Schneider, D. Fanter, M. Bauer, etc., Preparation and optical transparency of composite materials from methacrylate ester copolymers and faujasites with an embedded azo dey, Microporous and Mesoporous Materials, 2000, 39, 257-263
    [46] Novak B M, Adv. Mater., 1993, 5(6), 422
    [47] Sanchez C, Rbot F, New J, Chem., 1994, 18, 1007-1047
    [48] Schubert U, Husing N, Loreoz A, Chem. Mater, 1995, 7, 2010-2027
    [49] 符连社等,材料科学与工程,1999,17(1),84-88
    [50] Lin J C, Wu C H, Surface characterization and platelet adhesion studies on polyurethane surface immobilized with C-60 [J], Bio-materials, 1999, 20(17), 1613-1620
    [51] 许海燕,孔桦,蔺嫦燕等,聚氨酯基纳米碳复合材料表面的血液相容性研究[J],中国医学科学院学报,2002,4(2),114-117
    [52] Park NH, Lee JW, Suh KD, Insitu polyurethane/silica composite formation via a sol-gel process[J], Journal of Applied Polymer Science, 2002, 84(12), 2327-2334
    [53] Zoran S. Petrovica, Young Jin Cho, etc, Effect of silica nanoparticles on morphology of segmented polyurethane[J], Polymer, 2004, 4:1-11
    [54] Wang Z, Pinnavaia T J. Hybrid organic-inorganic nanocomposites: Exfoliation of magadiite nanolayers in elastomeric epoxy polymer[J], Chemistry of Materials, 1998, 10(3), 3769-3771
    [55] 马继盛,漆宗能,张树范,聚氨酯弹性体/蒙脱土纳米复合材料的合成、结构与性能[J],高分子学报,2001(3),325-328
    [56] Byung K K, Jang W S, Han M J, Morphology and properties of waterbome polyurethane/clay nanocomposites[J], European Polymer Journal, 2003, 39(1), 85-91
    [57] Chen T K, Tien Y I, Wei K H, Synthesis and characterization of novel segmented polyurethane/clay nanocomposites [J], Polymer, 2000, 41 (4), 1345-1353
    [58] 李丽霞,吕志平等,聚氨酯/纳米碳酸钙弹性体的制备与力学性能研究[J],太原理工大学学报,2003,34(6),638-641
    [59] 邹德荣,纳米CaCO_3对聚烯烃聚氨酯弹性体性能影响[J],聚氨酯工业,2002,17(3),14-17
    [60] Ken Kojio, Shohei Nakashima, Mutsuhisa Furukawa, Microphase-separated structure and mechanical properties of norbornane diisocyanate-based polyurethanes, Polymer, 2007, 48:997-1004
    [61] C. P. Buckley, C. Prisacariu, A. Caraculacu, Novel triol-crosslinked polyurethanes and their thermorheological characterization as shape-memory materials, polymer, 2007, 1-9
    [62] 谢富春,朱长春等,PEG型聚氨酯预聚体的研制[J],化学与黏合,2006,28(1),54-56
    [63] 王鹏,罗建斌,杜民慧等,以PEG和PTMG为混合软段的聚氨酯的合成、表征及血液相容性研究[J],生物医学工程学杂志,2005,22(4),734-738
    [64] 洛桂娥,THF-PO共聚醚型聚氨酯弹性体性能的研究[J],聚氨酯工业,2006,21 (1),12-15
    [65] 冯月兰,殷宁,亢茂青等,新型聚醚聚氨酯微孔弹性体的研究[J],高分子材料科学与工程,2005,21(2),283-286
    [66] 山西省化工研究所(Shanxi Provincial Institute of Chemical Industry),聚氨酯弹性体手册(Polyurethane Elastomer Manual),化学工业出版(Chemical Industry Press),2001,1-9
    [67] 张志华,沈军,吴广明等,SiO_2不同的掺杂方式对聚氨酯树脂材料性能的影响[J],材料导报,2003,17,127-130
    [68] 杨茹果,吕志平,白少敏等,预聚法制备聚氨酯/分子筛复合材料及表征[J],高分子材料科学与工程,2006,22(1),178-181

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700