聚氨酯泡沫及聚丙烯纤维复合材料的吸声性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会工业、交通运输、城市建筑的不断发展,噪声污染已和大气污染、水污染、固体废物污染并列为四大污染。目前控制噪声的最基本手段是利用吸声降噪材料。聚氨酯泡沫(polyurethane foam, PU)是典型的多孔型声学材料,它综合了高分子的材料性能、柔性材料的阻尼功能、多孔材料的吸声功能,是一种很好的吸声材料。因此对PU泡沫材料在声学方面的研究就显得尤为重要。
     本文首先研究了在PU泡沫材料合成过程中,表面活性剂、催化剂的含量变化对泡孔的孔径、分布均匀度的影响,并进一步研究了其对PU泡沫声学方面的影响。研究表明,表面活性剂、催化剂含量的变化能够影响材料的孔径、分布均匀度及吸声性能。在本文的发泡体系中,当硅油的含量为2wt%、二月桂酸二丁基锡的含量0.4wt%、三乙烯二胺的含量为0.3wt%时,制备的PU泡沫平均吸声系数为0.54,具有较好的吸声效果且泡孔分布均匀。
     同时研究了PU厚度、空腔厚度、原料温度对PU泡沫的孔结构及吸声性能的影响。结果表明,PU泡沫的吸声性能随厚度、空腔厚度的增加而增强,但厚度的增加存在定的限度。原料温度对泡沫的影响较大。当原料温度为45℃时,泡沫中出现很多的半、闭孔,但吸声性能最好。
     PU泡沫虽然具有很好的高频吸声性能,但其低频吸声性能较差,因此本文研究了PU泡沫中低频的拓展。首先研究了聚丙烯纤维(polypropylene fiber, PP)的吸声性能。
     文中考察了PP纤维的长度、样品的密度及厚度对材料的吸声性能的影响。通过研究发现,PP纤维的长度对自身的吸声性能几乎没有影响,但随着纤维样品密度、厚度的增加,样品的吸声性能也随着增加,且中低频吸声性能很好。将PP纤维与PU泡沫叠加放置成双层结构,可以拓展材料的中低频吸声范围且吸声峰值较高。放置的方式对材料的吸声性能有较大影响,面对声源的层状材料起主导作用。
     研究了PP纤维作为填料加入PU发泡体系共同发泡。结果显示,PP纤维的加入会影响泡沫的泡孔结果,并影响PP-PU复合材料的吸声效果。当PP纤维添加量为0.5g时,材料的吸声性能最好。
With the development of industries, transportation and construction, noise pollution has been one of the four pollutions. The most basic means of controlling noise is the sound absorption material. Polyurethane foam (polyurethane foam, PU) is a typical porous acoustic material, which combines the material properties of the polymer and the damping function of a flexible material, is a good sound-absorbing material. So it is significant to study sound absorption property of PU foam material.
     In this article, we studied the effects of surface agent and catalyst on pore diameter and distribution in the PU foam's synthesis, and especially on sound absorption properties of PU foam. The results demonstrate that the contents of surface agent and catalyst have great influence on pore diameter, distribution and sound absorption property. In the synthesized system of PU foam in this article, when the contents of silicon, DABCO and DBTDL are2wt%,0.3wt%,0.4wt%respectively, the average sound absorption coefficient of PU foam is0.54, which showed a better sound absorption property and pore scatter uniformity.
     We also studied the effects of thickness, cavity thickness, temperature of raw material on pore structure and sound absorption property. We found that with the increase of thickness and cavity thickness, sound absorption property of PU foam is improved, the degree of increase is limited. The results also showed that the temperature of raw material has great influence on it. When the temperature is45℃, there are many closed pores and half open pores appeared, which showed the best sound absorption property.
     PU foam has good sound absorption property in high frequency, while the medium-low frequency is not so good, so we studied how to enhance the sound absorption property in medium-low frequency. Firstly, we studied the sound absorption property of polypropylene (PP) fiber.
     We investigated the effects of length, density and thickness of PP fiber on sound absorption property. The results show that the length of PP fiber has no influence on sound absorption property, while with the increase of density and thickness of samples, the sound absorption property is improved, and showed better property in medium-low frequency. We discussed the double structure composite of PP layer and PU layer, and found that this manner can enhance the sound absorption property and got a high absorption coefficient in medium-low frequency. The configuration of the PP-PU double-layer structure has a profound impact on its sound absorption property, and the layer which faced the sound source has the dominant function to sound absorption properties.
     We synthesized PU foam with PP fiber together. The results showed that both pore structure and sound absorption property were changed when the PP fibers exist. When the content of PP fiber is0.5g, the PP-PU showed the best sound absorption property.
引文
[1]曾月莲.聚氨酯硬质泡沫塑料降噪性能的研究[D].武汉保护材料研究所,2007.
    [2]丛燕.试论噪声的污染、影响及治理技术[J].新疆化工,2008,1:25-27.
    [3]Miller G T. Environmental science-working with the earth[M].6th ed. Belmont: Wadsworth publishing company,1997.
    [4]王磊.城市低频率噪声污染危害与防治思索[J].神州,2012,23:234.
    [5]周耿.慢回弹聚氨酯隔声复合材料的制备及性能研究[D].浙江理工大学,2010.
    [6]王文奇.吸声与隔声的区别与联系[J].劳动保护,1986,11:24-25.
    [7]张娟,张慧萍,晏雄.丁腈橡胶类阻尼材料声学性能的研究[J].玻璃钢/复合材料,2009.2:46-48.
    [8]练萍,徐秀峰.阻尼降噪材料的研究进展[J].化工环保,2007,27(1):41-45.
    [9]秦清明,贾一峰,贾志达.减震、吸声、隔声复合材料及其在工程中的应用[J].噪声与振动控制,1994,4:2-7.
    [10]Zhang J M, Robert J P, Catherine R W. Effects of secondary phases on the damping behavior of metal, alloys and metal matrix composites [J]. Materials science engineering, 1994,13(8):325-390.
    [11]孙广荣.吸声、隔声材料和结构浅说[J].艺术科技,2001,3:12-17.
    [12]秦佑国,王炳麟.建筑声环境[M].第二版.清华大学出版社,1999.
    [13]苑改红,王宪成.吸声材料研究现状与展望[J].机械工程师,2006,6:17-19.
    [14]苏文,李新禹,刘树森.道路声屏障用非织造布吸声材料的可行性研究[J].浙江纺织服装职业技术学院学报.2009,2:8-11.
    [15]段翠云,崔光,刘培生.多孔吸声材料的研究现状与展望[J].金属功能材料,2011,18(1):60-65.
    [16]高玲,尚福亮.吸声材料的研究与应用[J].化工时刊,2007,21(2):63-65.
    [17]王盛蕊.聚氨酯多孔材料配方设计及其吸声性能研究[D].哈尔滨工业大学,2011.
    [18]钟祥璋,祝培生,莫方朔.超轻硅酸铝棉板吸声[J].保温材料与建筑节能,1999,(6):40-42.
    [19]汤慧萍,朱纪磊,王建永,等.不锈钢纤维多孔材料的吸声性能[J].中国有色金属 学报,2007,17(12):1943-1948.
    [20]张燕,崔哲,陈花玲.金属纤维材料的吸声特性及应用研究[J].噪声与振动控制,1999,(5):32-36.
    [21]Wang C N, Torng J H. Experimental study of the absorption characteristics of some porous fibrous materials[J]. Applied acoustics,2001,62:447-459.
    [22]王晓林.金属多孔材料吸声板的优化模型[J].声学学报.2007,32(2):116-121.
    [23]李海涛,朱锡,石勇,等.多孔性吸声材料的研究进展[J].材料科学与工程学报,2004,22(6):934-938.
    [24]钟祥璋,莫方朔.铝纤维吸声板的材料特性及应用[J].新型建筑材料,2000,11:19-22.
    [25]Song Z L, Ma L Q. Wu Z J, et al. Effects of viscosity on cellular structure of foamed aluminum in foaming process[J]. Journal of materials science,2000,35(1):15-20.
    [26]Ashby M F, Lu T J. Metal foams:a survey[J]. Science in China(Series B),2003. 46(6):521-532.
    [27]朱纪磊,汤慧萍,葛渊,等.多孔吸声材料发展现状与展望[J].功能材料,2007,38:3723-3726.
    [28]程桂萍,陈宏灯,何德坪,等.多孔铝的声学性能[J].东南大学学报,1998,28(6):169-172.
    [29]Lee H J, Eom S H, Song Y K, et al. Effects of aluminum powder content and cold rolling on foaming behavior of xAlp/A15Si4Cu4Mg/0.8TiH2 composites[J]. Materials science and technology,2003,19(6):819-825.
    [30]齐共金,杨盛良,赵恂.泡沫吸声材料的研究进展[J].材料开发与应用,2002,17(5):40-44.
    [31]钟祥璋,刘明明.吸声泡沫玻璃的吸声特性[J].新型建筑材料,1998,(3):27-29.
    [32]Xu X, Park C B, Xu D L, et al. Effects of die geometry on cell nucleation of PS foams blown with CO2[J]. Polymer engineering and science,2003,43(7):1378-1390.
    [33]Smith J P, Johnson B D, Burdisso R A. A broadband passive-active sound absorption system[J]. Journal of the acoustical society of America,1999,106(5):2646-2653.
    [34]周成飞.浅谈聚氨酯声学材料及其吸声制品的应用[J].聚氨酯工业,2003,18(2):5-7.
    [35]翁汉元.聚氨酯工业发展状况和技术进展[J].化学推进剂与高分子材料,2008,6(1):1-7.
    [36]朱吕民,刘益军.聚氨酯泡沫塑料[M].第三版.化学工业出版社,2005.
    [37]朱长春,翁汉元,吕国会,等.国内外聚氨酯工业最新发展状况[J].化学推进剂与高分子材料,2012,10(5):1-20.
    [38]翁汉元.中国聚氨酯工业现状和“十二五”发展规划建议[J].化学推进剂与高分子材料,2012,10(1):1-10.
    [39]李汉堂.聚氨酯材料的发展前景[J].现代橡胶技术,2006,32(1):1-7.
    [40]姚丽.多交联体系聚氨酯材料及聚氨酯/分子筛复合材料的制备及性能研究[D].太原理工大学,2007.
    [41]黄学辉,唐辉等.高性能聚氨酯基多孔复合吸声材料的研究[J].材料导报,2007,21(6):152-154.
    [42]曾月莲,刘秀生,兰家勇等.聚氨酯开孔硬质泡沫降噪性能的研究[J].聚氨酯工业,2008,23(1):18-20.
    [43]周耿.慢回弹聚氨酯隔声复合材料的制备及性能研究[D].浙江理工大学,2010.
    [44]孙卫青,邱宗玺,张恒.慢回弹聚氨酯发泡体吸声性能研究[J].郑州大学学报(理学版).2004,36(1):58-60.
    [45]Saetung A, Rungvichaniwat A, Campistron I, et al. Preparation and physic-mechanical, thermal and acoustic properties of flexible polyurethane foams based on hydroxytelechelic natural rubber[J]. Journal of applied polymer science,2010,117:828-837.
    [46]Lee J, Kim G H, Ha C S. Sound absorption properties of polyurethane/nano-silica nanocomposite foams[J]. Journal of applied polymer science,2012,123:2384-2490.
    [47]Okudaira Y, Ando H. Satoh M, et al. Sound absorption by multi-layered constructions composed of powder layers and porous sheets[J]. Electrical engineering in Japan,1998, 122(2):1-11.
    [48]Doutres O, Atalla N, Dong K. Effect of the micro structure closed pore content on the acoustic behavior of polyurethane foams[J]. Journal of applied physics,2011, 110(6):064901-1-064901-11
    [49]Yamashita T, Suzuki K, Adachi H, et al. Effect of Microscopic Internal Structure on Sound Absorption Properties of Polyurethane Foam by X-ray Computed Tomography Observations[J]. Materials transactions,2009,50(2):373-380.
    [50]Yamashita T, Suzuki K, Nishino S, et al. Relationship between sound absorption property and microscopic structure determined by X-ray computed tomography in urethane foam used as sound absorption material for automobiles[J]. Materials transactions,2008, 49(2):345-351.
    [51]俞鹏,翟国庆,黄逸凡,等.城市居住区设备噪声频率特性分析[J].中国环境科学,2006,26(4):491-495.
    [52]姚丽.多交联体系聚氨酯材料及聚氨酯/分子筛复合材料的制备及性能研究[D].太原理工大学,2007.
    [53]钱军民,李旭祥.聚合物基复合泡沫材料的吸声机理[J].噪声与振动控制,2000,(2):41-43.
    [54]方禹声,朱吕民.聚氨酯泡沫塑料[M].北京:化学工业出版社,1984,45-49.
    [55]张娟,张慧萍,晏雄.丁腈橡胶类阻尼材料声学性能的研究[J].玻璃钢/复合材料,2009.(2):46-48.
    [56]钱进,纪贵升,吴品弘,等.聚苯乙烯挤出水发泡泡孔的均匀度[J].塑料,2011,40(4):5-8.
    [57]魏徵,王源升,文庆珍,等.聚氨酯泡沫的制备及吸油性能[J].高分子材料科学与工程,2010,26(11):118-121.
    [58]黄承,段惺,周祚万.结构因素对多孔材料吸声性能的影响[J].化工新型材料,2011,39(2):20-22.
    [59]周曦亚,凡波.吸声材料研究的进展[J].中国陶瓷,2004,40(5):26-29.
    [60]金雪莉,曾令可,税安,等.地铁吸声材料中的聚丙烯纤维[J].硅酸盐学报,2006,34(12):1475-1480.
    [61]周燕,曾月莲,刘秀生,等.聚氨酯硬质泡沫塑料降噪性能研究[J].噪声与振动控制,2007,(1):112-114.
    [62]张军,赵书兰,郭亚军,等.改性聚丙烯基阻燃泡沫材料的吸声性能的研究[J].噪声与振动控制,1997,(3):36-39.
    [63]尉海军,姚广春,王晓林,等.铝硅闭孔泡沫铝吸声性能研究[J].功能材料,2006,12(37):2014-2018.
    [64]向海帆,赵宁,徐坚.聚合物纤维类吸声材料研究进展[J].高分子通报,2011,(5):1-9.
    [65]Allard J F, Depollier C, Guignouard P, et al. Effect of a resonance of the frame on the surface impedance of glass wool of high density and stiffness[J]. Acoustical society of America,1991,89(3):999-1001.
    [66]Tarnow V. Fiber movements and sound attenuation in glass wool[J]. Acoustical society of America,1999,105(1):234-240.
    [67]钟祥璋.矿物棉的吸声特性及应用[J].保温材料与节能技术,2000,(5):4-10.
    [68]乔明.声学材料研究的进展与展望[J].山西建筑,2003,29(1):103-105.
    [69]汤慧萍,张正德.金属多孔材料的发展现状[J].稀有金属材料与工程,1997,26(1):1-6.
    [70]张晔,楚珑晟,左孔成,等.纤维对硅酸盐基多孔材料吸声性能的影响[J].材料导报,2010,24(5):372-374.
    [71]Parikh D V, Chen Y, Sun L. Reducing automotive interior noise with natural fiber nonwoven floor covering systems[J]. Textile research journal.2006.76(11):813-820.
    [72]Huda S, Yang Y Q. Chemically extracted cornhusk fibers as reinforcement in light-weight Poly(propylene) composites[J]. Macromolecular materials and engineering, 2008,293(3):235-243.
    [73]Thilagavathi G, Pradeep E, Kannaian T, et al. Development of natural fiber nonwovens for application as car interiors for noise control[J]. Journal of industrial textiles,2010,39 (3):267-278.
    [74]闫志鹏,靳向煜.聚酯纤维针刺非织造材料的吸声性能研究[J].产业用纺织品,2006,(12):13-16.
    [75]Lee Y E, Joo C W. Sound absorption properties of thermally bonded nonwovens based on composing fibers and production parameters [J]. Journal of applied polymer science,2004, 92 (4):2295-2302.
    [76]Chevillotte F. Controlling sound absorption by an upstream resistive layer[J]. Applied acoustics,2012,73(1):56-60.
    [77]Maderuelo-Sanz R, Nadal-Gisbert A V, Crespo-Amoros J E, et al. A novel sound absorber with recycled fibers coming from end of life tires (ELTs)[J]. Applied acoustics, 2012,73(4):402-408.
    [78]Verdejo R. Enhanced acoustic damping in flexible polyurehane foams filled with carbon nanotubes[J]. Composites science and technology,2009,69(10):1564-1569.
    [79]Tascan M, Vaughn E A. Effects of total surface area and fabric density on the acoustical behavior of needle punched nonwoven fabrics[J]. Textile research journal,2008, 78 (4):289-296.
    [80]Ballagh K O. Acoustical properties of wool[J]. Applied acoustics,1996,48(2):101-120.
    [81]Dahl M D, Rice E J, Groesbeck D E. Effects of fiber motion on the acoustic behavior of an anisotropic, flexible fibrous material [J]. Acoustical society of America,1990, 87(1):54-66.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700