聚酯型聚氨酯/二氧化硅复合材料及低硬度聚氨酯材料的制备与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚氨酯(PU)是一种具有氨基甲酸酯链段重复结构的聚合物,具有很好的耐撕裂和耐磨损性,良好的抗臭氧和耐油性,应用广泛。气相二氧化硅(俗称白炭黑)具有粒径小、多孔、比表面积大、表面活性高等特性,可用于改善橡胶制品的性能。聚氨酯/二氧化硅(PU/SiO_2)复合材料具有优良的机械性能和良好的耐热性能。聚氨酯材料的综合性能与其组成的多元醇、多异氰酸酯和扩链剂小分子二胺的种类有关,还与复合材料的微相结构密切相关。扩链剂3, 5-二甲硫基甲苯二胺(DMTDA)与常用扩链剂MOCA相比,有常温下为液体,操作方便的优点,但是文献中报导不多,本文基于扩链剂DMTDA制备了PU/SiO_2复合材料,含有不同交联密度微区的多交联聚氨酯材料,并考察了多交联体系PU/SiO_2复合材料的性能以及不同交联方式对性能的影响。
     本文以2, 4-甲苯二异氰酸酯(TDI-100)、聚酯多元醇(PEA)、气相SiO_2以及3, 5-二甲硫基甲苯二胺(DMTDA)为主要原料,用预聚法合成了PU/SiO_2复合材料、多交联体系PU材料以及多交联体系PU/SiO_2复合材料,利用SEM、DSC和力学测试考察了材料的性能,并分析了影响材料性能的主要因素。
     SEM分析表明:SiO_2粒子在PU基体中分散较好。多交联体系PU/SiO_2复合材料的拉伸断裂面呈明显的凹凸不平状态,具有很多纤维状物连接的丘陵状的花纹,这种断裂方式的材料具有更好的韧性和强度。
     力学性能测试表明:当预聚体中-NCO基团含量为4%左右,加入SiO_2粒子能够明显提高聚氨酯材料的硬度、拉伸强度和耐撕裂性能,但断裂伸长率降低。当SiO_2添加量为3%(相对于多元醇的质量分数)时, PU/SiO_2复合材料的综合性能最优。
     多交联聚氨酯材料具有比均一聚氨酯材料更好的耐撕裂性能和断裂伸长率,拉伸性能区别不大。多交联PU/SiO_2复合材料具有比均一PU/SiO_2复合材料有更好的耐撕裂性能和断裂伸长率,并保持了PU/SiO_2复合材料良好的拉伸性能。
     耐溶剂性能测试说明:多交联聚氨酯材料能够改变均一聚氨酯材料的微相结构,改善耐溶剂性能。
     DSC测试说明:加入SiO_2粒子和通过多交联方式都能够提高聚氨酯材料的耐热分解温度。多交联体系材料微区结构上交联密度差异程度不同影响材料的微相分离和耐热性能。
     总的来说,多交联体系PU/SiO_2复合材料具有优良的耐撕裂和耐热性能,较好的拉伸性能,还有不错的断裂伸长率和耐极性溶剂性能。
     另外,本文还考察了扩链剂和多元醇种类对低硬度聚氨酯材料性能的影响。通过力学性能和TG测试表明:在以预聚体-NCO含量为2.0左右制备的低硬度聚氨酯材料中,利用DMTDA为扩链剂制成的材料有较高的硬度,以MOCA为扩链剂制成的材料耐热性能略优。PEA-DMTDA型低硬度聚氨酯材料在扩链系数为0.9时具有最好的力学性能,耐溶剂性能则随着扩链系数的增加而变差。
The polyurethane (PU) is a polymer formed with urethane segment, as very high resistance to tear and abrasion, good resistance to ozone, oil and petrol, is widely used. Fumed silica, also called silica aerogel, have small diameters, porous inside the structure, the advantages of a large specific surface and highly activated property, enabled to improve the performance of rubber. Polyurethane/silica (PU/SiO_2) composites have great mechanical and good heat-resistance property. The microstructure, in addition to raw material types, plays a key role to the comprehensive performance of composites. Chain extender 3, 5-dimethyl mercapro toluenediamine (DMDTA) can be used in room temperature, is easier to operation than common chain extender MOCA, but there is a little literature about PU with DMDTA. In this paper, PU and composites with different crosslink density micro-domains were synthesized with chain extender DMDTA. The properties of multi-crosslink PU/SiO_2 composites were investigated and the influence of different crosslink way on these properties was discussed further.
     In this paper, the PU/SiO_2 composites , multi-crosslink PU and multi-crosslink PU/SiO_2 composites were prepared with pre- polymerization method with the main raw materials of PEA, TDI-100, fumed silica and DMDTA. Properties of these materials were investigated by SEM, DSC and mechanical tests. The main factors which affect the properties were also analyzed.
     SEM analysis showed that SiO_2 has a good dispersion in PU. The tensile sectional morphology of PU/SiO_2 composite is rough, which leads to absorbing more energy at break and good mechanical properties.
     The mechanical test results showed that when the content of–NCO group in prepolymer is about 4%, the hardness, tensile strength and the tear resistance properties of PU were greatly improved by loading SiO_2 particle, but the elongation at bresk a little decreased. PU/SiO_2 composites have best over-all performance when the SiO_2 content comes to 3% (based on the mass of polyols).
     Multi-crosslink PU materials had much better tear-resistance property and elongation at break, similar tensile strength, compared with homogeneous PU. PU/SiO_2 composites with multi-crosslinking method had better tear-resistance property and elongation, kept good drawing behavior of homogeneous PU/SiO_2 composites.
     The solvent resistance property test revealed that multi-crosslink PU changed the microstructure, improved the solvent resistance property.
     The DSC results verified that both adding SiO_2 particles and taking multi-crosslinking way can raise the thermal decomposition temperature. The thermal properties of multi-crosslink PU were much dependent on the differences between crosslink densities of micro-domains.
     Conclusively, Multi-crosslink PU/SiO_2 composites have excellent tear-resistance and heat-resistance performance, great tensile strength, good elongation at break and solvent resistance properties.
     The second part work of this paper is that the influences of different extenders and polyols on properties of low hardness PU materials were investigated. Mechanical tests and TG analysis results showed that when the content of–NCO group in pre-polymer is about 2%, PU with extender DMDTA have higher hardness, but lower thermal decomposition temperature than PU with extender MOCA. PU made from PEA and DMTDA have the best mechnical property when the crosslink coefficient is 0.9. But the solvent resistance decreased with increasing crosslink coefficient.
引文
[1]傅明源,孙酣经,编著.聚氨酯弹性体及其应用[M].北京,化学工业出版社,第三版, 2006.
    [2]山西省化工研究所.聚氨酯弹性体手册[M].北京,化学工业出版社, 2001.
    [3]李绍雄,刘益军,编著.聚氨酯树脂及其应用[M].北京,化学工业出版社, 2002.
    [4] G.霍尔登, N.R.莱格, R.夸克,等主编.傅志峰,等译.热塑性弹性体[M].北京,化学工业出版社, 2002, 22-25.
    [5]朱吕明.聚氨酯合成材料[M].江苏科学技术出版社, 2002.
    [6]翁汉元.我国聚氨酯工业现状和发展展望[J].聚氨酯工业, 2001, 16(3): 1-5.
    [7]杨春柏.硬质聚氨酯泡沫塑料研究进展[J].中国塑料, 2009, 23(3): 18-20.
    [8]俞丽珍,杨刚,张建耀,等.全水发泡聚氨酯硬质泡沫塑料在防盗门中的应用[J].新型建筑材料, 2009, 1, 47-48.
    [9]高孝良.植物多元醇聚氨酯硬泡防水隔热保温装饰板应用[J].建设科技, 2009, 5: 72-73.
    [10]王清国,曾天辉.聚氨酯胶黏剂在汽车行业中的应用[J].粘结, 2008, 29(12), 42-45.
    [11]黄茂松.我国氨纶产业的现状与发展方向[J].聚氨酯, 2008, 7: 80-83.
    [12] R.K. Mendes , S. Claro-Neto , E.T.G. Cavalheiro.Evaluation of a new rigid carbon–castor oil polyurethane composite as an electrode material[J]. Talanta, 2002, 57: 909–917.
    [13] Ivana Cesarino, Glimaldo Marino,éder Tadeu Gomes Cavalheiro.A novel graphite–polyurethane composite electrode modified with thiol-organofunctionalized silica for the determination of copper ions in ethanol fuel[J]. Fuel, article in press,Available online 10 December 2009.
    [14] Shingjiang Jessie Lue, Tsai-hsin Liaw . Separation of xylene mixtures using polyurethane–zeolite composite membranes [J].Desalination, 2006, 193: 137–143.
    [15] Gabriela Ciobanu, Gabriela Carja, Octavian Ciobanu.Use of SAPO-5 zeolite–filled polyurethane membranes in wastewater treatment[J].Desalination, 2008, 222: 197–201.
    [16]陆如林,李进军.聚氨酯复合材料正压风筒在岩巷炮掘工作面中的应用[J].煤矿安全, 2009, 4: 24-25.
    [17]王瑾,魏菊,张庆民,等.聚氨酯芳香微胶囊的自卑及其在纺织品上的应用[J].大连工业大学学报, 2009, 28(2): 151-153.
    [18]杨世玉,阎克路,胡毅.聚氨酯溶胶型羊毛防毡缩剂的研制与应用[J].毛纺科技, 2009, 37(5): 1-5.
    [19]胡应燕,郭睿,家顺田。水性聚氨酯固色剂的合成与应用[J],聚氨酯工业, 2009, 24(1): 26-29.
    [20]刘建付,谢益民.松香型聚氨酯合成施胶剂及在造纸中的应用[J].造纸化学品, 2009, 21(1), 31-34.
    [21]郑景新,舒畅,钟婷婷.气相二氧化硅的性能、发展现状及其应用[J].有机硅氟资讯, 2009(4): 20-24.
    [22]吴利民,段先健,杨本意,等.气相二氧化硅的发展及其特性[J].有机硅氟资讯, 2003, 12: 30-31.
    [23]卡博特蓝星投资最大的气相二氧化硅项目[J].有机硅氟资讯, 2005, 1: 49.
    [24]王逸田.浙江新吉公司白炭黑项目开工[J].中国橡胶, 2006, 22(7): 30-31.
    [25]孙佳音.德山化工气相二氧化硅项目在嘉兴港区建成投产[J].精细与专用化学品, 2007, 15(22): 43.
    [26]段先健,吴利民,杨本意,等.气相二氧化硅的特性及其在硅橡胶中的应用[J].有机硅氟资讯, 2004, 3: 20-22.
    [27]桑国仁,吴春蕾,杨本意,等。气相二氧化硅的生产及其在高分子工业中的应用[J].有机硅氟资讯, 2003, 2: 56-58.
    [28]白子文,吴佳林,欧朝霞,等.单组份水性纳米SiO2/PU粘接剂的制备与性能研究[J].聚氨酯工业, 2008, 23(2), 19-22.
    [29]王东波,田言,冯玉杰,等.SiO2-g-PS纳米微球的制备及其在增韧PP中的作用[J].化工学报, 2007, 58(12): 3180-3184.
    [30]王士财,张晓东,楼涛,等.聚氨酯弹性体/二氧化硅改性聚氯乙烯材料的研制[J].弹性体, 2009, 19(5): 37-40.
    [31]雷文,卢斌,顾大询,等.纳米二氧化硅改性硬质聚氨酯泡沫塑料的研究[J].聚酯工业, 2009, 22(1): 32-35.
    [32]刘莉,李仕华.气相法白炭黑在涂料中的应用[J].涂料工业, 2003, 33(8): 18-20.
    [33]杨燕青,徐亮.球形二氧化硅/环氧树脂复合材料的制备与性能表征[J].塑料科技,2010, 38(2): 74-77.
    [34]王小妹,范云玉,龙宁华,等.气相二氧化硅在胶衣树脂中的应用研究[J].玻璃钢复合材料, 2004, (7): 18-19.
    [35]于秀梅,路玉娟,郭月,等.气相法二氧化硅在胶衣树脂中的应用[J].当代化工, 2008, 37(5): 459-461.
    [36]翟海潮,李印柏,林新松,等.一种聚合物/金属修补材料及其制备方法[P].中国专利, ZL99121725, 2001, 4.
    [37]王光国.气相二氧化硅的新用途—在真空隔热板中的应用[J].有机硅氟资讯, 2004, 10: 9.
    [38]申士和,蒋利妍,段先健.气相二氧化硅的增稠触变性及其在牙齿漂白剂中的应用[J].有机硅氟资讯, 2007, 8: 41-43.
    [39]王光国,张平.气相法白炭黑在胶体电池中的应用[J].有机硅氟资讯, 2004, 10:10-11.
    [40]申士和,吴利民,段先健.气相二氧化硅在光纤光电缆冷填充膏中的应用[J].有机硅氟资讯, 2008, 1: 49-52.
    [41]冯钦邦,刘莉.气相法白炭黑在化妆品中的应用[J].有机硅氟资讯, 2008, 4: 56-58.
    [42]唐红艳,王继辉.聚氨酯/蒙脱土纳米复合材料研究进展[J].工程塑料应用, 2006, 34(4): 72-75.
    [43]吴素霞,吕志平,万兆荣,等.聚氨酯/碳纳米管复合材料的制备与表征[J].聚氨酯工业, 2007, 22(3): 9-12.
    [44]冶银平,张永胜,孙晓军,等.Ni/聚氨酯纳米复合涂层的制备及其摩擦学性能研究[J].摩擦学学报, 2003, 23(2): 104-107.
    [45] Yongchun Chen, Shuxue Zhou, Haihua Yang, et al. Preparation and characterization of nanocomposite polyurethane[J].Journal of Colloid and Interface Science, 2004, 279(2): 370–378.
    [46]王珏,陈勇军,陈娟,等.热塑性聚氨酯/纳米铜复合材料的制备与表征[J].合成材料老化与应用, 2009, 38(2): 5-9.
    [47] Basar Y?ld?z , M. Ozgur Seydibeyoglu, F. Seniha Guner.Polyurethane–zinc borate composites with high oxidative stability and flame retardancy [J].Polymer Degradation and Stability, 2009, 94(7): 1072-1075.
    [48]杨红艳,栾道成,王红研.聚氨酯/纳米碳酸钙复合材料及性能的研究[J].高分子材料科学与工程, 2006, 22(6): 106-109.
    [49]杨立红,刘福春,韩恩厚.纳米氧化锌改性聚氨酯复合涂层的防腐性能[J].材料研究学报, 2006, 20(4): 364-360.
    [50]刘桂霞,孙多先,洪广言.纳米CeO2阴离子聚氨酯复合材料[J].高分子材料科学与工程, 2003, 19(4): 192-195.
    [51] R. Zhou, D.H. Lu, Y.H. Jiang, et al. Mechanical properties and erosion wear resistance of polyurethane matrix composites [J].Wear, 2005, 259: 676–683.
    [52]马四妹,周文龙,王炳正.石墨/聚氨酯弹性体复合材料的性能研究[J].聚氨酯工业, 2008, 23(1): 21-23.
    [53]阳建军,陈建勇.滑石粉增强聚氨酯力学性能研究[J].浙江理工大学学报, 2008, 25(6): 640-643.
    [54] Huibo Zhang, W. Li, Xujie Yang, et al. Development of polyurethane elastomer composite materials by addition of milled fiberglass with coupling agent[J]. Materials Letters, 2007, 61: 1358-1362.
    [55]丰沧.功能化纳米二氧化硅溶胶与聚合物的组装研究[D].南京工业大学, 2005.
    [56]万里强.聚氨酯/纳米复合材料研究[D].浙江工业大学, 2003.
    [57]吕志平,袁晓芳,杨茹果,等.聚氨酯/沸石杂化材料的制备及性能[J].高分子材料科学与工程, 2003, 19(5): 212-215.
    [58]毕晓霞,杨茹果,张文俊,等.聚氨酯/13X分子筛复合材料的制备[J].聚氨酯工业, 2006, 21(2): 29-31.
    [59]吕志平,毕晓霞,杨茹果,等.聚氨酯/13X分子筛复合材料的制备及表征[J].高分子材料科学与工程, 2007, 23(3): 113-116.
    [60]姚丽,吕志平,窦涛.多交联体系PU/分子筛复合材料的制备及表征[J].聚氨酯工业, 2007, 22(60): 14-17.
    [61]赵永琴,毕晓霞,吕志平.筛分方式对PU/4A分子筛复合材料性能的影响[J].聚氨酯工业, 2006, 21(4): 14-17.
    [62]郑蒸蒸,吕志平,马彦龙.有机刚性微球/聚氨酯复合材料的制备和表征[J].聚氨酯工业, 2007, 22(5): 22-25.
    [63]贾建民,郭睿,季振清.无机纳米粒子改性聚氨酯的研究[J].西部皮革, 2009, 31(21): 16-20.
    [64]张长生,赵晓东,罗世凯,等.聚合物/纳米SiO2复合材料的研究进展[J].塑料科技, 2005, 165: 45-49.
    [65]张志华,吴广明,沈军,等.革用聚氨酯/SiO2纳米复合材料的制备与物性研究[J].材料科学与工程学报, 3003, 4: 498-502.
    [66]雷文,卢斌,顾大询,等.纳米二氧化硅改性硬质聚氨酯泡沫塑料的研究[J].聚酯工业, 2009, 1: 32-35.
    [67]朱岩,陈雨,甘万强.核磁共振法研究核壳型二氧化硅/聚氨酯纳米复合材料中核与壳的键合方式[J].高分子材料科学与工程, 2009, 1: 107-110.
    [68]石雅琳,韦永继,姚庆伦,等.印刷用低硬度聚氨酯弹性体的合成[J].化学推进剂与高分子材料, 2009, 7(1): 43-45.
    [69]吕志平,姚丽,毕晓霞,等.多交联体系聚氨酯材料的制备与表征[J].高分子材料科学与工程, 2008, 24(9): 147-150.
    [70]李再峰,元伟,李金艳,等.耐高温聚氨酯弹性体[J].高分子通报, 2007, 9: 45-50.
    [71]张蕾,吴晓青,吴艳光,等.提高聚氨酯材料耐热性能的研究[J].中国胶黏剂, 2008, 17(5): 49-53.
    [72]白少敏,冯振刚,杨茹果,等.预聚体法合成聚氨酯/无机粒子复合材料[J].太原理工大学学报, 2005, 36(1): 23-25.
    [73]张俐娜,薛奇,等编著.高分子物理近代研究方法[M].武汉大学出版社, 2003: 224-226
    [74] Jurgen E.K. Schawe,著.陆立明,译.Application Handbook Thermal Analysis: Elastomers[M].上海,华东大学出版社, 2009: 64-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700