用户名: 密码: 验证码:
沙漠化过程中植被受损过程及其适应对策研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙漠化是制约我国干旱、半干旱地区社会经济可持续发展的重要因素。研究地多伦县由于其独特的地理位置和地形地貌,在中国北方沙漠化研究领域尤其是草原沙漠化研究中起着十分重要的作用。本文从土壤、植物群落、种群、个体、形态、生理角度出发,通过连续三年(2001.2003年)的野外生态学观测,结合室内生理生化分析,在不同层次、不同尺度上系统地运用生态系统生态学、群落生态学、种群、个体生态学、生理生态学的科学理论和方法,整合研究沙漠化这一大尺度干扰问题,探讨自然条件下沙质草原沙漠化过程中植被的受损过程和适应对策。研究结果如下:
     1.随着草原沙漠化的加剧,土壤粘粒含量趋于减少,砂粒增多。土壤含水量下降尤其是上层(0-20cm)下降明显,且深层含水量逐渐高于表层。土壤容重呈上升趋势。土壤有机质、C、N含量极显著下降,且土壤N的衰减要快于C。土壤C/N比呈增加趋势,表明植物N素供应不足较为突出。土壤的颗粒组成状况与土壤营养元素之间显著正相关,粘粒与N的关系比粘粒与C和C、N间的关系密切,因此土地沙漠化过程中细颗粒物的减少导致土壤N素衰减十分明显。
     2.随着沙漠化的进展,群落盖度、密度、物种丰富度、生物量和相邻两个梯度间p多样性指数均呈下降趋势,地上生物量/地下生物量比值变化不大。与土壤的相关性表明土壤C/N比与群落的关系最密切。
     3.随着沙漠化的进展,共有种群株高、密度、植物比叶面积、叶面积指数、地上千物质累积、生殖分配多项指标均随之变化。
     ①株高、密度的变化总体上呈降低趋势。其中羊草梯度间差异很明显,糙隐子草和冷蒿分别在潜在、中度沙漠化和潜在、轻度沙漠化阶段的增加,既与种群所处的阶段性优势地位有关,又与其抗逆性、适应性增强有关,而扁蓿豆在中度沙漠化以前升高,生长渐趋旺盛,重度沙漠化时下降,其形态生长同其它共有种群一样受到限制,与其地上生物量变化相一致。扁蓿豆密度梯度间差异性只表现在随沙漠化梯度的增加而增大方面,而糙隐子草差异性只表现在随沙漠化梯度的增加而下降方面,冷蒿差异性则既表现在下降方面又表现在增大方面。不同种群各沙漠化梯度间差异的不同及其高度、密度变化的不同,表明植物在恶化环境的受损程度和适应性的差异,羊草受损较重,适应性差,糙隐子草和冷蒿受到一定程度的损伤,但抗性、适应性较强,扁蓿豆对沙漠化较迟钝,适度的沙漠化反而有利于其生长,但过度的沙漠化也会导致与其它种群表现一致的生长不利。
     ②多数被调查的植物比叶面积呈降低趋势,形态生长受到抑制,只有冷蒿和扁蓿豆呈上升趋势,但冷蒿的增大程度不及扁蓿豆:扁蓿豆叶面积及其高度、密度的增加,是长期适应
    
    环境的表型特征。
     ③叶面积指数总体上呈下降趋势,扁猎豆变化不大,中度沙漠化阶段前略增,而到重度
    沙漠化阶段下降。共有种群叶面积指数均受土壤的理化性质影响,其中冷篙和扁楷豆的影响
    较小。
     ④地上干物质累积的变化与叶面积指数相似。羊草和糙隐子草的地上干物质累积随土壤
    理化性质的衰减显著降低;扁稽豆的地上干物质累积随土壤粘粒、C含童的减少却显著增加,
    其与土壤含水量、全N含量和土壤C入比不相关:冷篙的地上干物质累积随土壤理化性质的
    衰减虽也降低,但未达显著水平。
     ⑤种群生殖分配降低过程中,羊草降幅最大,冷篙和扁稽豆降幅较小;均受土壤理化
    性质影响较小。种群地上部分C含量及C加比均增大,N含量均减少。羊草和糙隐子草沙漠
    化初期地上C素增加明显,而冷篙与扁楷豆在沙漠化中、后期地上C素才显著增加。因此,
    羊草和糙隐子草的敏感性可能要大于冷篙与扁稽豆,另一方面冷篙与扁楷豆的抗性可能要大
    于羊草和糙隐子草。
     4.草原沙漠化过程中伴随着共有种群叶片含水量、叶绿素含量的降低,其质膜相对透
    性、游离脯氨酸含量上升,MDA含量增加,SOD、CAT活性升高,而POD活性下降,表现
    出沙漠化过程中植物受损的生理共性。不同植物在不同阶段对沙漠化的响应不同,表现出植
    物受损程度的不同及对沙漠化抗性、适应性的差异。扁稽豆、糙隐子草和冷篙叶绿素确均
    呈上升趋势,且梯度间差异性冷高>扁楷豆>糙隐子草>羊草,所以冷篙叶绿素水平的抗性较
    强,羊草抗性较弱。结合膜透性、脯氨酸及MDA累积t看,扁箱豆受损最少。羊草脯氨酸
    及ABA的累积有伤害症状,而糙隐子草和冷篙脯氨酸及ABA的累积有适应性倾向,扁楷豆
    脯氨酸及ABA的累积表现为对沙漠化环境的不敏感。
     ①羊草的膜透性与脯氨酸、MDA、ABA含量、SOD活性呈极显著正相关,与CAT活性
    呈极显著负相关,说明SOD活性升高,CAT活性降低,脯氨酸、MDA、ABA含量的增加,
    导致了膜透性的增大,最终使膜受损。而脯氨酸与ABA含量、SOD活性呈极显著正相关,
    与POD、CAT活性呈极显著负相关,说明ABA诱导了脯氨酸累积,SOD活性的增强,POD、
    CAf活性的减低,也是导致脯氨酸累积的原因。MDA含量与SOD、POD活性极显著正相关,
    表明在沙漠化过程中,随着羊草SOD、POD活性的增高,清除ROS的能力并没有提高,因
    此引起MDA的显著积累。POD、CAT活性与ABA含量呈极显著负相关,而POD又与CAI,
    呈显?
The social and economic sustainable development in the arid and semiarid area in China has been restricted by sandy desertification heavily. The studied site (DUOLUN county) has distinct geographical position and special terrain and geomorphic, so studying in this area plays the important role in the research on the sandy desertification in northern China, especially for grassland. It was studied integratedly on sandy desertification interference according to the principle and methods of community ecology, population ecology and physiological ecology through observation outdoors and analysis indoors in 3 years. The damage and adaptation strategy of the vegetation during sandy desertification process in natural conditions were discussed through variations of community, population and individual, morphological and physiological characters under different gradients of sandy desertification. The results were as follows:
    1. With the process of the sandy desertification in grassland, the contents of clay decreased. The soil moisture decreased, especially in 20-30cm layer. The soil moisture in deeper was higher than the super. The soil bulk density increased. The contents of organic matter, carbon and nitrogen in the soil decreased very significantly, the reduction of nitrogen was more rapid than that of carbon, thus C/N in the soil increased. It shows that the provided nitrogen in the plant was scarce heavily. The positive correlation was significant between the granular composition and the nutrient element in the soil. The correlation between the clay and N was nearer than that of the clay and C, C and N. Therefore the reduction of the fine particle resulted in the reduction of N very significantly during sandy desertification.
    2. With the process of the sandy desertification, the coverage, density, number of species, biomass and diversity index of community decreased. The ratio of biomass aboveground- biomass underground did not changed significantly. C/N in the soil was the nearest to community through their correlation analysis.
    3. With the process of the sandy desertification, individual height, density, leaf area index(LAX), biomass aboveground, reproductive allocation(RA) of the common populations and the specific leaf area(SLA) of the main plant changed alternatively.
    (1)Individual height, density decreased overall. Leymus chinensis had Very significant
    
    
    differences in the different gradients of desertification. Cleislogenes squarrosa and Artemisia frifida increased in potential desertification stage (PD), light desertification stage (LD) or moderate desertification stage (MD) because of their phasic statuses of dominant species and their stronger stress resistances. Melilotoides ruthenica increased before MD, and after MD its morpha growth reduced along with the others, only that it had no significance. This change was the same as biomass aboveground of M: ruthenica. The significance of density of M. ruthenica in the different gradients of desertification was only in the increase with the development of the sandy desertification. The significance of density of C. squarrosa was only in the decrease with the development of the sandy desertification. The significance of A. frifida was both in the increase and in the decrease with the development of the sandy desertification. The variances in the different gradients of desertification and the changes of individual height, density of different populations showed the variance of the damage and adaptability of different plants in the worse environment. L. chinensis was damaged heavily, thus its adaptability was little. C. squarrosa and A. frifida were damaged to certain extent, but they had the stronger stress resistances. Responses of M. ruthenica to sandy desertification were weak, moderate sandy desertification made for its growth, but its reduce of growth resulted in exorbitant sandy desertification as the same as other populations.
    (2)The specific leaf area of majority investigated plants decreased, thus their morpha growth reduced. Then A. frigida and M.
引文
[1] 朱俊凤,朱震达,中国沙漠化防治,北京:中国林业出版社,2002,72-79
    [2] 王涛,走向世界的中国沙漠化防治的研究与实践,中国沙漠,2001,21(1):1-3
    [3] 朱震达,刘恕,关于沙漠化的概念及其发展程度的判断,中国沙漠,1984,4(3):2-8
    [4] 赵哈林,黄学文,何宗颖,科尔沁地区农田土壤沙漠化演变的研究,土壤学报,1996,33(3):242-248
    [5] Barrow C J, Land Degradation, Cambrige: Cambrige University Press, 1991
    [6] Chisholm A & R Dumsday, Land Degradation, Cambrige: Cambrige University Press, 1987
    [7] 赵其国,孙波,张桃林,土壤质量与持续环境Ⅰ.土壤质量的定义及评价方法,土壤,1997,(3):113-120
    [8] 刘千枝,宋汉国,景电灌区土地沙漠化过程中土壤养分与植被动态变化研究,甘肃林业科技,1997,(2):72-75
    [9] 赵存玉,赵文智,河北丰宁坝上土地沙漠化现状及其综合整治的研究,干旱区资源与环境,1994,8(1).80-85
    [10] 赵文智,河北坝上沙漠化地区土壤特性研究,中国沙漠,1994,14(4):53-59
    [11] 徐斌,赵哈林,刘新民等,不同放牧强度下天然沙质草场植物群落分异特征及沙漠化发生机理试验研究,兰州大学学报(自然科学版),1994,30(4):137-142
    [12] 苏永中,赵哈林,张铜会等,农田沙漠化演变中土壤质量的生物学特性变化,干旱区研究,2002,19(4):64-68
    [13] Holt J A, Grazing pressure and soil carbon, microbial and enzyme activities in semiarid Australia, Applied Soil Ecology, 1995, 5:143-149
    [14] 关松荫,土壤酶及其研究法,北京:农业出版社,1983,61-85
    [15] Mazzarino M J, Oliva L, Abril A, Factors affecting nitrogen dynamics in a semiarid woodland (Dry Chaco, Argentina ), Plant and Soil, 1991, 138:85-98
    [16] 赵雪,赵文智,宝音等,河北坝上脆弱生态环境及整治,北京:中国环境科学出版社,1997
    [17] Nickling W G, Grain size characteristics of sediment transported during dust storms, J. Sedim. Petrol., 1983,53
    [18] Zobeck F M, Fryrear D W, Management effect on wind eroded sediment and plant nutrients, J. Soil and Water Cons., 1989
    [19] 赵学勇,贺丽萍,科尔沁沙地生态系统典型土壤养分空间分布特征,中国沙漠,2002,22(4):328-332
    [20] 苏水中,赵哈林,张铜会等,不同强度放牧后自然恢复的沙质草地土壤性状特征,中国沙漠,2002,22(4):333-338
    [21] 贾树海,崔学明,李绍良等,牧压梯度上土壤理化性质的变化,见:草原生态系统研究(第五集),北京:科学出版社,1995,12-16
    [22] Hiernaux P, Bielders C L, Valentin C et al, Effects of livestock grazing on physical and chemical properties of sandy soils in Sahalian rangelands, Journal of Arid Environments, 1999, 41:231-245
    [23] Karlen D L, Mausbach M J, Doran J W et al, Soil quality: A concept, definition, and framework for evolution, Soil Sci. Soc. Am. J., 1997, 61:4-10
    [24] Reeder J D & G E Schuman, Influence of livestock grazing on Csequestration in semi-arid mixed-grass and short-grass rangelands, Environmental Pollution, 2000, 116:457-463.
    [25] 吴彦,刘庆,乔永康等,亚高山针叶林不同恢复阶段群落物种多样性变化及其对土壤理化性质的影响,植物生态学报,2001,25(6):648-655
    [26] Tilman D, Knops J, Wedin D et al, The influenced of functional diversity and composition on ecosystem processes, Science, 1997, 277:1300-1302
    [27] Dyksterhuis E J, Condition and management of rangeland based on quantitative ecology, Journal of Range
    
    Management, 1949, 2:104-115
    [28] HumphreyR R, Field comments on the range condition method of forage survey, Journal of Range Management, 1949, 2:1-10
    [29] 李永宏,内蒙古草原草场放牧退化模式研究及退化监测专家系统雏议,植物生态学报,1994,18(1):68-79
    [30] 贾灵,草地退化的生态学研究,博士论文,北京师范大学,1995
    [31] 王仁忠,李建东,放牧对松嫩平原羊草草地影响的研究,草业科学,1992,9(2):11-14
    [32] Christiansen S T, Grazing effects on shoot and root dynamics and above, below-ground non-structural carbohydrate in Caucasian bluestem[J], Grass and Forage Science, 1988, 43(2):111-119.
    [33] Reategui K, Persistency of mixed pasture with different pasture management system on a clay, Ultisol of Puerto Bermudez, Peru, 1990, 12(1):16-24
    [34] 孙儒泳,动物生态学原理,北京:北京师范大学出版社,1987,357-363
    [35] Gillespie D J, Pasture deterioration-causes and cures, Journal of Agriculture,Western Australia, 1983, 24:3-8
    [36] Ohmura K & Sekijyo T, The relationship between plant succession and soil nutrient environment in a meadow, Herbage Abstract, 1986, 56:3162
    [37] Cocks P S, Colonization of a south Australian grassland by invading Mediterranean annual and perennial pasture species, Australian Journal of Agricultural Research, 1994, 45:1063-1076
    [38] Snow C S R, R H Marrs & L Merrick, Trends in soil chemistry and floristics associated with the establishment of a low-input meadow system on an arable clay soil in Essex, Biological Conservation, 1997,79:35-41
    [39] 萧运峰,李世英,羊草草原放牧退化演替及其退化原因分析,中国草原,1980,(3)20-27
    [40] 李德新,放牧对克氏针茅草原影响的初步研究,中国草原,1980,(4):1-8
    [41] 秦代刚,亚高山草甸草原土壤景观与草原退化关系的探讨,中国草原,1981,(4):11-13
    [42] 张为政,松嫩平原羊草草地植被退化与土壤盐渍化的关系,植物生态学报,1994,18(1):50-55
    [43] 杜国祯,王刚,甘南亚高山草甸人工草地的演替和质量变化,植物学报,1995,37(4):306-313
    [44] 张宝琛,白雪芳,顾立华等,生化他感作用与高寒草甸上人工草场自然退化现象的研究,生态学报,1989,9(2):115-120
    [45] 邵立业,董光荣,陆福根,共和盆地草原沙漠化的正、逆过程与植被演替规律,中国沙漠,1988,8(1):30-40
    [46] 赵丽娅,赵哈林,我国沙漠化过程中的植被演替研究概述,2000,20(Supp.):7-14
    [47] 刘新民,赵哈林,赵爱芬,科尔沁沙地风沙环境与植被,北京:科学出版社,1996
    [48] 刘新民,赵哈林,科尔沁沙地生态环境综合整治研究,兰州:甘肃科学技术出版社,1993
    [49] 张强,王振先,伊克昭盟植被演替与土地沙漠化的关系,中国科学院兰州沙漠所研究集刊,第3号,北京:科学出版社,1986
    [50] 曲志正,王峰,杨建国等,宁夏盐池县土地沙质荒漠化的发展趋势及其防治,中国沙漠,1997,17(2):173-179
    [51] 赵兴梁,沙坡头地区植物固沙问题的探讨,流沙治理研究(二),银川:宁夏人民出版社,1988
    [52] 高科,任于幽,郑明军等,科尔沁沙地景观梯度上植被的空间分布格局研究,干旱区资源与环境,2000,14(1): 44-48
    [53] Zhang Ke Bin & Yang Xiao Hui, Desertification Assessment Indicator System in China, Forestry Studies in China, 2002, 4(1):44-48
    [54] 陈一鄂,刘康,宁夏中东部沙漠化草原的植被演替,中国沙漠,1995,15(1):54-58
    [55] 姚洪林,闩德仁,杨文斌等,内蒙古沙漠化土地与植被演替规律的研究,内蒙古林业科技,2001,(4):7-12
    
    
    [56] 关文彬,曾德慧,姜凤歧,中国东北西部地区沙质荒漠化过程与植被动态关系的生态学研究:植被的分类,应用生态学报,2000,11(6):907-911
    [57] 李进,赵雪,宝音等,河北坝上弃耕地植被的演替特征及环境因子的影响,中国沙漠,1994,14(4):15-22
    [58] 赵哈林,根本正之,大黑俊哉等,内蒙古科尔沁沙地放牧草地的沙漠化机理研究,中国草地,1997,(3):15-23
    [59] 赵哈林,张铜会,常学礼等,科尔沁沙质放牧草地植被分异规律的研究,中国沙漠,1999,19(Supp.1):40-44
    [60] 赵哈林,张铜会,赵学勇等,内蒙古半干旱地区沙地过牧草地的沙漠化过程,干旱区研究,2002,19(4):1-6
    [61] 赵哈林,赵学勇,张铜会等,北方农牧交错区沙漠化的生物过程研究,中国沙漠,2002,22(4):309-315
    [62] 李胜功,赵爱芬,常学礼,科尔沁沙地植被演替的几个问题,中国沙漠,1997,17(Supp.1):25-33
    [63] 常学礼,邬建国,科尔沁沙地沙漠化过程中的物种多样性,应用生态学报,1997,8(2):151-156
    [64] J.M.莫兰,环境科学导论,北京:海洋出版社,1987,41-43
    [65] A.W.哈尼,植物与生命,北京:科学出版社,1984,125-195
    [66] 汤章城,植物对水分胁迫的反应和适应性,Ⅱ植物对干旱的反应和适应性,植物生理学通讯,1983,(4):1-7
    [67] 陈少裕,甘蔗水分胁迫的自由基机制的研究,博士论文,福建农业大学,1990
    [68] 刘友良,植物水分逆境生理,北京:农业出版社,1992
    [69] 王霞,侯平,植物对干旱胁迫的适应机理,干旱区研究,2001,18(2):42-46
    [70] Hoffmana H P, Turner D W, Soil water deficits reduce the elongation rate of emerging banana leaves but the night/day elongation ratio remains unchanged, Scientia Horticulturae, 1993, 54:1-12
    [71] Li S H, Huguet J G.Schoch P Get al, Responses of peach tree growth and cropping to soil water deficit at various physiological stages of fruit development, J. Hort. Sci., 1989, 54:541-552
    [72] Larson K D, Dejong T M, Physiological and growth responses of mature peach trees to postharvest water stress, J. Amer. Soc. Hort. Sci., 1988,113:296-300
    [73] Irving D E, Drost J H, Effects of water deficit on vegetative growth, fruit growth and fruit quality in Cox's Orange Pippin apple, Journal of Horticultural Science, 1987, 62:427-432
    [74] Stern R A, Adato I, Goren M et al, Effects of autumnal water stress on litchi flowering and yield in Israel, Scientia Horticulturae, 1993, 54:295-302
    [75] Nagrajah S,罗国光译(1990),葡萄对水分胁迫的生理生化反应.国外农学.果树,1989.(3):16-18
    [76] Hanscom Z, Ting I P, Responses of succulents to plant water stress, Plant Phrsiol, 1978, 61:327-330
    [77] 薛松,汪沛洪,许大全等,水分胁迫对冬小麦CO_2同化作用的影响,植物生理学报,1992,18:1-7
    [78] Alexandra P M, Ultrastructure consequences of drought, In: Physiology and Biochemistry of drought resistance in plants, New York: Acadenic Press, 1981:389-404
    [79] Lakso A N, The effects of water stress on physiological process in fruit crops, Acta Horticulture, 1985, 171: 275-290
    [80] Bewley J D, Larson K M, Bapp J E T, Water stress induced changes in the pattern of protein synthesis in maize seedlings mesoxytyles: a comparison with the effects of heat shock, J. Exp. Bot., 1983,34:1126-1133
    [81] Vu J C V, Yelenosky G, Water deficit and associated changes in some photosynthetic parameters in leaves of 'Valencia' orange [Citrus sinensis(L.) Osbeck], Plant Physiol., 1988, 88:375-378
    [82] Veeranjianeyuyu K, Ranjita K B D, Proline metablism during water stress in mulberry, Journal of Fxperimental Botany, 1989, 214:581-583
    [83] Bowler C, Van Montagu M, Inze D, Superoxide dimutase and stress tolerance, Ann. Rev. Plant PhYsiol. Plant Mol. Biol., 1992, 43:83-118
    
    
    [84] 张敬贤,李俊明,崔四平等,玉米细胞保护酶活性对苗期干旱的反应,华北农学报 1990.5(Supp):19-23
    [85] 黎裕,作物抗旱鉴定方法与指标,干旱地区农业研究,1993.11:91-99
    [86] 张荣平,脂氧化酶在植物体内的生理功能,莱阳农学院学报,1993,(1):47-51
    [87] Mali P C, Metha S L, Effect of drought on proteins and isoenzymes in rice during germination, Phytochemistry, 1977, 16:643-646
    [88] 袁照年,玉米不同生长发育时期的抗旱性鉴定及遗传研究,硕士论文,西北农业大学,1993
    [89] 王洪春,植物抗性生理研究的进展,植物生理学专题讲座,北京:科学出版社,1987:320-345
    [90] Morgan J M, Osmoregulation and water stress in higher plants, Ann. Rev. Plant Physiol, 1984, 35:299-319
    [91] Zhang B, Archbold D D, Solute accumulation in leaves of a Fragaria chiloensis and Fvirginiana selection responds to water stress, J.Amer. Soc. Hort. Sci., 1993a, 118:280-285
    [92] 陈立松,刘星辉,果树渗透调节研究进展,中国农学通报,1995,11(5):35-37
    [93] Martinell P,田文忠译(1985),玉米抗旱性的检测方法和育种,国外遗传与育种,1984,(2):1-10
    [94] 王万里,植物对水分胁迫的反应,植物生理学专题讲座,北京科学出版社,1987,357-369
    [95] 黄辉白,果树的水分关系,见:曾骧主编,果树生理学,北京:北京农业大学出版社,1992,451-487
    [96] Zhang B, Archbold D D,Water relations of Fragaria chiloensis and F.virginiana selection during and after water deficit, J.Amer. Soc. Hert. Sci., 1993b, 119:274-279
    [97] Jones H G, Lakso A N, Syvertsen J P, Physiological control of water status in temperate and subtropical fruit trees, Horticultural Review, 1985, 7:301-344
    [98] Jones H G, Physiological aspects of the control of water status in horticultural crops, HortScience, 1990, 25:19-26
    [99] Ranney T G, Bassuk N L, Whitlow T H, Osmotic adjustment and solute constituents in leaves and roots of water-stressed cherry trees, J.Amer. Soc. Hort. Sci., 1991, 116:684-688
    [100] 陈少裕,膜脂过氧化对植物细胞的伤害,植物学通报,1991,27(2):84-90
    [101] Scandalios J G, Oxygen stress and superoxide dismutase, Plant Physiol., 1993, 101:7-12
    [102] 马克西莫夫(周小民译),马克西莫夫选集(上卷),北京:科学出版社,1959,418-427
    [103] 王韶唐,植物抗旱的生理机制,植物生理生化进展,1983,(2):120-133
    [104] 万善霞,李云萌,湖荣海,水分胁迫下冬小麦叶片不同发育时期的渗透调节及其对延伸生长的影响,华北农学报,1990,5(Supp.):30-37
    [105] 李德全,邹琦,程炳嵩,土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质,植物生理学报,1992,18:37-44
    [106] Li Z L, Mcclure J W, Hagerman A E, Soluble and bound apoplastic activity for peroxidase, β-D-glucosidase, nalate dehydrogenase, and nonspecific ary—lesterase, in barely (Hordeum vulgare L.) and oat (Avena sativa L.) primary leaves, Plant Physiol., 1989, 90:185-190
    [107] Zhang J, Kirkham M B, Drought-stress-induced changes in activities of superoxide, catalase,and peroxidase in wheat species, Plant Cell Physiol., 1994, 35:785-791
    [108] Bewly J D, Protein synthesis, In: Paleg LG, Aspinall D (eds), The Physiology and Biochemistry of Drought Resistance in Plants, New York: Acadenic Press, 1981,295-241
    [109] Dhindsa R S, Bewley J D, Water stress and protein synthesis, protein stability, and membrane permeability in a drought-sensitive and drought-tolerance moss, Plant Physiol., 1977, 59:295-300
    [110] Dhindsa R S, Glutathione status and protein synthesis during drought and subsequent rehydration in Tortula ruralis, Plant Physiol., 1987a, 83:816-819
    [111] Dhindsa R S, Protein synthesis during rehydration of rapidly dried Tortula ruralis: evidence for oxidation. Plant Physiol., 1987b, 85:1094-1098
    [112] Dhindsa R S, Drought stress, enzymes of glutathione metabolism, oxidation injury, and protein synthesis in
    
    Tortula ruralis, Plant Physiol., 1991, 95:648-651
    [113] 林定波,颜秋生,沈德绪,植物对水分胁迫的分子响应及其遗传改良研究进展,1996,15(2):161-166
    [114] 高尚武主编,治沙造林学,北京:中国林业出版社,1984,242-245
    [115] 刘中民,几种主要沙生植物的特性及其栽培的研究,见:治沙研究,北京:科学出版社,1965,5
    [116] 李胜功,樟子松沙地适应性的初步研究,中国沙漠,1994,14(1):60-67
    [117] 王康富,辽宁省章古台主要固沙植物的习性,见:林业集刊,北京:科学出版社,1959(3):182-197
    [118] 蒋瑾,沙坡头地区主要固沙植物、生理学特性的研究,林业科学,1983(2):113-120
    [119] 刘媖心,沙生植物的根系,见:流沙治理研究(二),银川:宁夏人民出版社,1991,185-209
    [120] Kriedemann P E, Tree water relations, Acta Hortic, 1986, 175:343-350
    [121] Levy Y, Dodd J, Kiriun J, Effects of irrigation, water salinity and rootstock on thevertical distribution of vesicular-arbuscular mycorrhiza in citrus roots, New Phytol, 1983, 95:397-403
    [122] Chandler C K, Ferree D C, Responses of'Raritan' and 'Supercrop' strawberry plants to drought stress, Fruit Varieties Journal, 1990, 44(4):183-185
    [123] Smart R E, Coombe B G, Water relations of grapevines, In:Water deficits and plant growth, New Youk, Academic Press, 1983
    [124] 李正理,旱生植物的形态和结构,生物学通报,1981a.(4):9-13
    [125] 黄振英,吴鸿,胡正海,新疆10种沙生植物旱生结构的解剖学研究,西北植物学报,1995,(6):56-61
    [126] 李正理,我国甘肃九种旱生植物同化枝的解剖观察,植物学报,1981b,23(3):11-13
    [127] 李广毅,高国雄,吕悦来等,灰毛滨藜茎解剖结构与抗逆性研究,西北林学院学报,1995,(3):16-20
    [128] 刘家琼,丘明新,我国荒漠特有的常绿植物—沙冬青的生态生理及解剖学研究,植物学报,1982a,(6):568-573
    [129] 蒋志荣,沙冬青的抗旱机理的研究,中国沙漠,2000,(1):71-74
    [130] 赵翠仙,黄子琛,腾格里沙漠主要旱生结构的初步研究,植物学报,1981,23(4):278-283
    [131] 刘家琼,我国荒漠典型超旱生植物—红沙,植物学报,1982b,24(5):485-488
    [132] 刘家琼,蒲锦春,河西地区主要固沙植物的旱生结构及干旱对它的影响,中国科学院兰州沙漠研究所集刊,北京:科学出版社,1982c,(2):75-86
    [133] 刘家琼,蒲锦春,刘新民,我国沙漠中部地区主要不同生态类型植物的水分关系和旱生结构比较研究,植物学报,1987,29(6):662-673
    [134] 杨文斌,梭梭抗旱的生理生态水分关系研究,生态学报,1991,11(4):318-323
    [135] Save R, Penuelas J Marfa O, Serrano L, Changes in leaf osmotic and elastic properties and canopy structure of strawberries under mild water stress, HortScience, 1993, 28:925-927
    [136] 王涛,赵哈林,肖洪浪,中国沙漠化研究的进展,中国沙漠,1999,19(3):221-226
    [137] 王涛,朱震达,我国沙漠化研究的若干问题,中国沙漠,2003,23(3):209-214
    [138] 黄子琛,荒漠植物的生态生理研究[A],流沙治理研究[C],银川:宁夏人民出版社,1988,222-229
    [139] 刘新民,几种固沙植物的水分关系,中国沙漠,1986,6(4):23-33
    [140] 姚承祯,几种植物原生质胶体化学特性与抗旱性关系的初步研究,兰州大学学报,1983,19(3):102-107
    [141] 魏良民,几种旱生植物水分生理特性的比较研究,新疆大学学报,1991,8(2):75-79
    [142] 蒋瑾,钱太涛,主要固沙植物胶体化学特性与抗旱性关系的研究,流沙治理研究(二),银川:宁夏人民出版社,1991,245-250
    [143] 董学军,杨宝珍,郭柯等,几种沙生植物水分生理生态特征的研究,植物生态学报,1994,18(1):86-94
    [144] 冯金朝,沙生植物水分特征曲线及水分关系的初步研究,中国沙漠,1995,15(3):222-226
    [145] 蒋瑾,戴枫年,土壤湿度对植物形态结构和生理特性的影响,流沙治理研究(二),银川:宁夏人民出版社,1991,251-263
    [146] 蒲锦春,黄子琛,荒漠植物质膜透性的初步研究,中国沙漠,1987,7(1):56-61
    
    
    [147] 蒲锦春,我国荒漠植物的水分饱和亏,中国沙漠,1989,9(3):44-53
    [148] 杨文斌,干旱区几种树木的蒸腾速率及其与环境的关系,干旱区研究,1988,5(4):47-55
    [149] 高海峰,几种旱生植物蒸腾强度的变化,干旱区研究,1984,1(2):49-53
    [150] 马文元,梭梭、杨柴与沙地水分关系的研究,林业科学,1986,22(2):11-12
    [151] 黄颜梅,张健,罗承德,树木抗旱性研究,四川农业大学学报,1997,15(1):49-54
    [152] Levitt J, Responses of Plants to Environmental Stress: Chilling freezing and high temperature stresses, 2nd, New York: Academic Press, 1980, 67-344
    [153] 汤章城,逆境条件下植物脯氨酸的累积及其可能的意义,植物生理学通讯,1984,(1):15-21
    [154] Heun A M, Gorham J, Luttge. U et al, Changes of water-relation characteristics.and levels of organic cytoplasmic solutes during salinity-induced transition of Mesembryantbemum crystallinum from C3 photosynthesis to Crassulacean acid metabolism, Oecologia, 1981, 50:66-72
    [155] Yen H E, Grmes H D, Edwards G E, The effects of high salinity, water deficit, and abscisic acid on photophoenolpyruvate carboxylase activity and proline accumulation in Mesembryantbemum crystallinum cell cultures, Plant Physiology, 1995, 145:557-564
    [156] Stewart C R, Hanson A D, Proline accumulation as a metabolic response to water stress, In: Turner N.C., Kramer P.J., eds. Adaptation of plants to water and high temperature stress, John Wiley & Sons, Inc. New York, 1980, 173-189
    [157] Singh T N, Paleg L G & Aspinall D, Stress metabolism Ⅲ.Variations in response to water deficit in the barley plant, Australian Journal of BiologicalScience, 1973, 26:64-76
    [158] 夏阳,水分逆境对果树脯氨酸和叶绿素含量变化的影响,甘肃农业大学学报,1993,28(1):26-31
    [159] 李德全,邹琦,程炳蒿,土壤干旱下不同抗旱性小麦品种的渗透调节和渗透调节物质,植物生理学报,1992,18(1):37-44
    [160] Elbersen H W & West C P, Growth and water relations of field-grown tall fescue as influenced by drought and endophyte, Grass Forage Sci, 1996, 51:333-342
    [161] Malinowski D P & Belesky D P, Adaptations of endophyte-infected cool-season grasses to environmental stresses: mechanisms of drought and mineral stress tolerance, Crop Sci, 2000, 40:923-940
    [162] Barker D J, Sullivan C Y, Moser L E, Water deficit effects on osmotic potential, Cell wall elasticity and proline in five forage grasses, Agron J, 1993, 85:270-275
    [163] 周瑞莲,孙国钧,王海鸥,沙生植物渗透调节物对干旱、高温的响应及其在逆境中的作用[J],中国沙漠,1999,19(Supp.1):18-22
    [164] Fridovich I, Superoxide dismutase, Ann. Rev. Biochem.,1975, 44:147-159
    [165] McCord J M & Fridovich I, Superoxide dismutase, An enzymic founction for erythrocuprein, J. Biol. Chem., 1969, 244:6049-6055
    [166] 陈少裕,刘杰,水分胁迫对甘蔗叶片线粒体膜流动性的影响及其与膜脂过氧化的关系,植物生理学报,1991,17(3):285-289
    [167] Byrd S, Reins D, Doetsch P W, Effects of oxidative DNA damage on transcription by RNA polymerases, Free Radic Biol Med, 1990, 9:47
    [168] Elstner F F, Oxygen activation and oxygen toxicity, Ann Rev Plant Physiol, 1982, 33:73-79
    [169] Takahama U, Nishimura M, Formation of single molecular oxygen in illuminated chloroplasts. Effects on photonactivation and lipid peroxidation, Plant Cell Physiol, 1975, 16:737-748
    [170] Salin M L, Toxic oxygen species and protective systems of the chloroplast, Physiol Plant, 1987, 72:681-689
    [171] Gunz D W & Hoffmann M R, Atmospheric chemistry of peroxides: a review, Atomos Environ, 1990,24:1601-1633
    [172] Rich P R, Bonnet W D, The sites of superoxide anion generation in higher plant Mitochondria, Arch
    
    Biochem Biophysl, 1978. 188:206-213
    [173] Tolbert N E. Metabolic pathways in peroxisomes and glyoxysomes, Ann Rev Biochem, 1985, 50:133-157
    [174] Foyer C H, Harbinson J, Oxygen metabolism and the regulation of photosynthetic electron transport, In: Foyer C H, Mullineaux P M (eds.) Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants, Boca Raton: CRC Press, 1994, 1-42
    [175] Foyer C H, Lelandais M, Kunert K J, Photooxidative stress in plant, Physiol Plant, 1994, 92:696-717
    [176] Bowler C, Van Montagu M, Inze D, Superoxide dismutase and stress tolerance, Ann Rev Plant Physiol Plant Mol Biol, 1992, 43:83-116
    [177] Smirnoff N, The role of active oxygen in the response of plants to water deficit and desiccation, New Phytol, 1993, 125:27-58
    [178] 蒋明义,荆家海,植物体内羟自由基的产生及其与膜脂过氧化作用启动的关系,植物生理学通讯,1993,29:300-305
    [179] Mehdy M C, Active oxygen species in plant defense against pathogens, Plant Physiol, 1994, 105:467-472
    [180] Fridovich I, Superoxide radical and superoxide dismutase, Ann. Rev. Biochem., 1995, 64:97-112
    [181] Krause G H, Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms, Physiol Plant, 1988, 74:566-574
    [182] Halliwell B & Aruoma O I, DNA and free radical, New York: Ellis Horwood Limited Press, 1993
    [183] Moran J F, Becana M, Iturbe-Ormaetxe I et al., Drought induces oxidative stress in pea plants, Planta, 1994,94:346-352
    [184] Quartacci M F, Navari-Izzo F, Water stress and free radical mediated changes in sunflower seedlings, 1992,139:621-625
    [185] 吕庆,郑荣梁,干旱及活性氧引起小麦膜脂过氧化与脱脂化,中国科学,C辑,1996,26(1):26-30
    [186] Cakmak I, Marschner H, Magnesium deficiency and high light intensity enhance activity of superoxide dismutase ascobate peroxidase, and glutathione reductase in bean leaves, Plant Physiol, 1992,98:1222-1227
    [187] Baisak R, Rana D, Acharga P B,et al, Alterrations in the activities of active oxygen scavenging enzymes of wheat leaves subjected to water stress, Plant and Cell Physiol, 1994, 35:489-495
    [188] Mehlhorn H, Wenzel A, Manganese deficiency enhance ozone toxicity in bush beans(Phaseolus vulgaris L. cv. Saxa), J Plant Physiol, 1996, 148:155-159
    [189] 刘宁,高玉葆,贾彩霞等,渗透胁迫下多花黑麦草叶内过氧化物酶活性和脯氨酸含量以及质膜特透性的变化,植物生理学通讯,2000,36(1):11-14
    [190] Dhindsa R S, Matowe W, Drought tolerance in two mosses: correlated with enzymatic defense against lipid peroxidation, J Exp Bot, 1981, 32:79-91
    [191] Sgherri C L M, Navariizzo F, Sunflower seedlings subjected to increasing water deficit stress: oxidative stress and defense mechanisms, Physiol Plant, 1995, 93:25-30
    [192] Jagtap V, Bhargava S, Variation in the antioxidant metabolism of drought tolorant and drought susceptible varieties of Sorghum bicolor L. moench, exposed to high light, low water and high temerature stress. J Plant Physiol, 1995.145:1-2
    [193] 周瑞莲,赵哈林.王海鸥,科尔沁沙地植被演替的抗逆性特征[J],中国沙漠,1999,19(Supp.1):1-6
    [194] 周瑞莲,王海鸥,在干旱、高温胁迫中沙生植物抗脱水性与膜脂过氧化关系的研究[J],中国沙漠,1999,19(Supp.1) 59-64
    [195] 崔素霞,王蔚,陈国仓等,两种沙生植物内源激素、叶绿体膜脂肪酸组成和膜脂抗氧化系统酶类的季节变化,植物生态学报,2000,24(1):96-101
    
    
    [196] Shen,W.B.(沈文飚), M.B.Ye(叶茂炳), L.L.Xu(徐朗莱) et al, Changes of ability of scavenging active oxygen during natural senescence of wheat flag leaves, Acta Botanica Sinica(植物学报), 1997. 39(7):634-640
    [197] 张承烈,周瑞莲,陈国仓,芦苇耐脱水能力的生理生态学分析,植物生态学与地植物学学报,1992,16(4):311-316
    [198] 周瑞莲,赵哈林,秋季牧草根系中营养含量和酶活性变化及其抗寒性研究,植物生态学报,1995,19(4):345-351
    [199] 周瑞莲,赵哈林,程国栋,高寒山区植物根抗氧化酶系统的季节变化与抗冷冻关系,生态学报,2001,21(6):865-870
    [200] 魏育民,郑有良,植物内源激素对小麦可育小花数的调控,四川农业大学学报,1998,(3):289-293
    [201] Davies W J, Zhang J, Root to shoot signals and regulation of growth and development of plants in drying siol, Annu Rev Plant Physiol Plant Mol Biol, 1991, 42:55-76
    [202] Giraudat J, Parey F, Bertauche N et al, Current advances in abscisic acid action and signaling, Plant Mol Biol, 1994, 26:1557-1577
    [203] Ingram J, Bartels D, The molecular basis of dehydration tolerance in plants, Annu Rev Plant Physiol Plant Mol Biol, 1996, 47:377-403
    [204] JIA Wen Suo, XING Yu, Lu Cong Ming et al, Signal Transduction from Water Stress Perception to ABA Accumulation, Acta Botanica Sinica, 2002, 44(10):1135-1141
    [205] Zeevaart J A, Creelman R A, Metabolism and physiology of absicsic acid, Ann Rev plant physiol, 1988, 39:439-473
    [206] Guan L Q, Scandlios J G, Effects of the plant growth regulator abscisic acid high osmoticum on the developmental expression of the maize catalase genes, Physiol Plant, 1998, 104:413-422
    [207] Grabov A, Blatt M R, Co-ordination of signaling elements in guard cell ion channel control, J Exp Bot,1998, 49:351-360
    [208] Nicol(?)s C, Deprada J M, Lorenzo O et al, Abscisic acid and stress regulate the expression of calmodulin in germinating chick-pea seeds, Physiol Plant, 1998, 104: 379-384
    [209] Merlot S & Giraud(?)t J, Genetic analysis of abscisic.acid signal transduction, Plant Physiol, 1997,114:751-757
    [210] Binns A N, Cytokinin accumulation and action: biochemical, genetic, and molecular approaches, Ann Rev Plant Physiol Plant Mol Biol, 1994, 45:173-196
    [211] Silveman F P, Assiamah A A, Douglas S B, Membrane transport and cytokinin action in root hairs of Medicago sativa, Planta, 1998, 205:23-31
    [212] 张明生,谢波,谈锋,水分胁迫下甘薯内源激素的变化与品种抗旱性的关系,中国农业科学,2002,35(5):498-501
    [213] Friedman R, Altman A, Levin N, The effect of salt stress on poiymine biosynthesis and content in mung bean plants and in haiophytes, Physiol Plant, 1989, 76:295-302
    [214] Smigocki A C, Neal J W, Mc Cannaa I et al, Cytokinin-mediated insect resistance in Nicotiana plants transformed with the ipt gene, Plant Mol Biol, 1993, 23:35
    [215] Nooden L D, Singh S, Letham D S, Correlation of xylem sap cytokin in levels with monocarpic senescence in soybean, Plant Physiol, 1990, 93:33-39
    [216] Cary A J, Liu W, Howell S H, Cytoinin action is coupled to ethylene in its effects on the inhibition of root and hypocotyls elongation in Arabidopsis thaliana seedlings, Plant Physiol, 1995, 107:1075-1082
    [217] Davies W J, Metcalfe I, Lodge T A et al, Plant growth substances and the regulation of growth under drought, Australian Journal of Plant Physiology, 1986, 13(1):105-125
    [218] 陈国仓,王洪亮,张承烈,河西走廊不同旱生植物内源激素和叶水势的比较研究,中国沙漠,1994,(1):
    
    17-21
    [219] Wang H L, Zhang C L, Seasonal changes of endogenous ABA and CTK in environmental adaptatioa of different ecotypes of reed plants, Journal of Environmental Sciences, 1995, 7(4):449-454
    [220] Ranney T G, Bassuk N L, Whitlow T H, Osmotic adjistment and solute constituents in leaves and roots of water-stressed cherry trees, J. Amer. Soc Hort. Sci., 1991, 116:684-688
    [221] Kramber P J, Water relation of plant, Academic Press, Inc., 1983
    [222] During H, Osmotic adjustment in grapevines, Acta Horticulture, 1985, 171:315-322
    [223] Vu J C V, Yelenosky G, Water deficit and associated changes in some photosynthetic parameters in leaves of Valencia' orange [Citrus sinensis(L.) Osbeck], Plant Physiol, 1988, 88:375-378
    [224] 黄子琛,干旱对固沙植物的水分平衡和氮素代谢的影响,植物学报,1979,21(4):314-319
    [225] Todd G W, In T.T.Kozlowski(ed.)Water Deficits and Plant Growth, New York-San Fransisco-London, 1972,pp.177-217
    [226] Hsiao T C, Plant responses to water stress, Ann. Rev. Plant Physiol, 1973, (24):519-570
    [227] 王万里,章秀英,林芝萍,水分胁迫对高粱等作物叶片中核糖核酸酶活力的影响,植物生理学报,1986,12:16-25
    [228] 陈立松,刘星辉,水分胁迫对荔枝叶片氮和核酸代谢的影响及其与抗旱性的关系,植物生理学报,1999,25(1):49-56
    [229] 张慧,汪沛洪,渗透胁迫下小麦叶片蛋白质合成与降解的示踪研究,植物生理学报,1991,17:259-266
    [230] 李美如,刘鸿先,王以柔等,钙对水稻幼苗抗冷性的影响,植物生理学报,1996,22:379-384
    [231] Pearcy R W, Effect of growth temperature on the fatty acid composition of the leaf lipids in Atriplex lentiformis(Torr.)Wats, Plant Physiology, 1978, 61(4):484-486
    [232] 王洪亮,张承烈,Comparative investigation on plasmolemma properties of different reed ecotypes in Hexi corridor,植物学报,1993,35(7):533-540
    [233] 朱震达,刘恕,中国北方地区的沙漠化过程及其治理区划,北京:中国林业出版社,1981
    [234] 申建友,李胜功,关于奈曼地区沙漠化过程与小气候变化特征研究,奈曼站论文集(1),兰州:甘肃科学技术出版社,1993
    [235] 何宗颖,沙漠化地区人工植被及流动沙丘上的乱流输送特征,中国沙漠,1997,17(Supp.1):11-16
    [236] Li S., Zhao H., He Z. et al, Grassland Desertification and Micro-Meteorological changes in Naiman, Journal of Desert Research, 1998, 18(4):359-365
    [237] Li S., Takehise Y. H. et al, Grassland Desertification by grazing and the resulting micrometeorological changes in Inner Mongolia, Agriculture and Forest Meteorology, 2000,102:125-137
    [238] 李胜功,赵哈林,何宗颖等,不同放牧压力下草地微气象的变化与草地荒漠化的发生,生态学报,1999,19(5):697-704
    [239] 田明中,白志达,潭征兵等,内蒙古多伦地区第四纪生态环境与资源,北京:地质出版社,2001
    [240] 多伦县志编纂委员会,多伦县志,呼和浩特:内蒙古文化出版社,2000
    [241] 刘颖茹,多伦县沙质草原沙漠化过程中土壤与植被的变化研究,硕士论文,内蒙古大学,2002
    [242] 韩颖,多伦县草原植物的DCA排序,学士论文,内蒙古大学,2003
    [243] 丁勇,多伦县草原植物的TWINSPAN数量分类,学士论文,内蒙古大学,2003
    [244] 南京农学院主编,土壤农化分析,北京:农业出版社,1985,31-52
    [245] P.F.劳[美],土壤物理化学,北京:农业出版社,1985,23-27
    [246] 李博主编,生态学,北京:高等教育出版社,2000,343-348
    [247] 陈福明,陈顺伟,混合液法测定叶绿体色素的研究,林业科技,1984,6:6-8
    [248] 李锦树,王洪春,王文英,干旱对玉米叶片细胞透性及膜脂的影响,植物生理学报,1983,9(3):223-229
    [249] 李合生主编,植物生理生化实验原理和技术,北京:高等教育出版社,2000
    
    
    [250] T.J.马歇尔,J.W.霍姆斯著,赵诚斋,徐松龄译,土壤物理学,北京:科学出版社,1986,206-246
    [251] 姚爱兴,放牧对多年生黑麦草/白三叶草地及奶牛生产性能的研究,博士论文,中国农业大学,1995
    [252] Peet R E. Measurement of species diversity, Ann. Rev. Ecol. Syst., 1974, 5:285-307
    [253] Prance G T. Biodiversity, Encyclopedia of Environmental Biology, Vol. 1. Academic Press, 1995, 183-193
    [254] 彭少麟,陈章和,广东亚热带森林植物群落物种多样性,生态科学,1983,1:98-104
    [255] 彭少麟,王伯荪,鼎湖山森林群落分析,Ⅰ.物种多样性,生态科学,1983,2:11-17
    [256] Pastor J B, Moose, microbes and the boreal forests, BioScience, 1988, 38:770-776
    [257] Pastor J B, Moose browsing and soil fertility in the boreal forests of Isle Royal National Park, Ecology,1993, 74:467-480
    [258] Hunt H W, M J Trliva, E F Redente et al, Simulation model for the effects of climate change on temperate grassland ecosystems, Ecological Modeling, 1991, 53:205-246
    [259] Sirotnak J M & Huntly N J, Direct and indirect effects of herbivores on nitrogen dynamics: voles in Riparian areas, Ecology, 2000, 81(1):78-87
    [260] Leigh E G, On the relationship between productivity, biomass, diversity, and stability of a community[J],Proc. Nat. Acad. Sci., 1965, 53:777-783
    [261] Leigh E G, The ecological role of Volterra's equations[M], In some mathematical problems in biology, Gerstenhaber, M.(ed), American Mathematics Society, Providence, R. I., 1968, 1-14
    [262] Wolda H, "Long term" stability of tropical insect populations[J], Res. Popul, Ecol. Suppl., 1983, 3:112-126
    [263] Den Boer P J, On the survival of populations in a heterogeneous and variable environment[J], Oecologia,1981, 50:39-53
    [264] 白永飞,陈佐忠,锡林河流域羊草草原植物种群和功能的长期变异及其对群落稳定性的影响,植物生态学报,2000,816-844
    [265] 郑元润,大青沟植物群落稳定性研究,生态学报,1999,19(4):65-72
    [266] 黄建辉,生物多样性和生态系统稳定性,生物多样性,1995,3(1):31-37
    [267] 何芳良,生态系统的复杂性与稳定性,生态学进展,1988,5(3):157-162
    [268] 张云飞,乌云娜,杨持,草原植物群落物种多样性与结构稳定性之间的相关性分析,内蒙古大学学报,1997,28(3):419-423
    [269] 赵哈林,赵学勇,张铜会等,放牧胁迫下草地植被的受损过程,生态学报,2003,23(8):1505-1511
    [270] Bazzaz F A, Allocation of resources in plants: state of the science and critical questions. In: BazzazF A, Grace J eds. Plant Resource Allocation, San Diego, CA:Academic Press, 1997, 1-37
    [271] Bewley J D, Black M, Seeds: Physiology of Development and Germination, New York: Plenum Press, 1994
    [272] 钟章成,植物种群生态适应机理研究,北京:科学出版社,2000
    [273] Parkhurst D F, Loucks O L, Optimal leaf size in relation to environment, Journal of Ecology, 1972, 60:505-537
    [274] Givnish T J, Leaf and canopy adaptions in tropical forests[A], In: Medina E, H A Mooney, C V(?) zques-Yanes(eds.), Physiological Ecology of Plant of the Wet Tropics, The Hague: Junk, 1984, pp51-83
    [275] 王仁忠,羊草种群能量生殖分配的研究,应用生态学报,2000,11(4):591-594
    [276] 王仁忠,放牧影响下羊草种群生殖生态学的研究,应用生态学报,2000,11(3):399-402
    [277] 董鸣,异质性生境中的植物克隆生长:风险分摊 植物生态学报 1996,20(6):543-548
    [278] 刘道宏,植物叶片的衰老,植物生理学通讯,1983(2):14-19
    [279] 安渊,放牧干扰对大针茅草原生态系统的影响及其受损机理的研究,博士论文,内蒙古大学,2000
    [280] 杜占池,杨宗贵,羊草和大针茅光合生态特性的比较研究,草原生态系统研究No.2,1988,52-66
    [281] Reeder J D, Schuman G E, Influence of livestock grazing on Csequestration in semi-arid mixed-grass and short-grass rangelands. Environmental Pollution, 2000, 116:457-463
    
    
    [282] 李明,王根轩,干旱胁迫对甘草幼苗保护酶活性及脂质过氧化作用的影响,生态学报,2002,22(4):503-507
    [283] Treichel S, Brinckman E, Vcheitler B et al, Occurrence and changes of proline content in plants in the southern Namib Desert in relations to increasing and decreasing drought, Planta, 1984, 162·236-242
    [284] Keller F & Ludlow M M, Carbohydrate metabolism in drought stressed leaves of Pigeon pea(Cajanus cajan), Journal of Experimental Botany, 1993, 44:1351-1359
    [285] Ibarra-Caballero J, Villanueva-Verduzco C, Molina-Galan J et al, Proline accumulations as a symptom of drought stress in maize: a tissue differentiation requirement, Journal of Experiment Botany, 1988, 39:889-897
    [286] Smirnoff N, Cumbes Q J, Hydroxyl radical scavenging activity of compatible solutes, Phytochemistry,1989, 28:1057-1060
    [287] Jiang M Y, Guo S C, Zhang X M, Proline accumulation in rice seedlings exposed to hydroxyl radical stress in relation to antioxidation, Chin Sci Bull, 1997, 42:855-859
    [288] 蒋明义,郭绍川,张学明,氧化胁迫下稻苗体内积累的脯氨酸的抗氧化作用,植物生理学报,1997,23(4):347-352
    [289] Jones MM, Osmotic adjustment in leaves of sorghum in response to water deficits, Plant Physiol., 1978, 61·122-126
    [290] 王宝山,生物自由基与植物膜伤害,植物生理学通讯,1988(2):12-16
    [291] Irigoyen J J, Emefich D W, Sanchez-Diaz M, Alfalfa leaf senescence induced by drought stress: photosynthesis, hydrogen peroxide metabolism, lipid peroxidation and ethylene evolution, Plant Physiol.,1992, 84:67-72
    [292] Kendall E J, Mckersie B D, Free radical and freezing injury to cell membranes of winter wheat, Physiol Plant, 1989, 76:86-94
    [293] 蒋明义,荆家海,王韶唐,水分胁迫对水稻光合色素和膜脂过氧化的影响,西北农业大学学报,1991,19(2):79-84
    [294] 王振镒,郭蔼光,罗淑平,水分胁迫对玉米SOD和POD活力及同功酶的影响,西北农业大学学报,1989,(6):72-81
    [295] 唐连顺,李广敏,商振清等,水分胁迫对玉米幼苗膜脂过氧化及保护酶的影响,河北农业大学学报,1992,15(2):35-40
    [296] 武宝轩,格林.托得,小麦幼苗中超氧化物歧化酶活性与幼苗脱水忍耐力相关性的研究,植物学报,1985,27:152-160
    [297] 王宝山,赵思齐,干旱对小麦幼苗膜脂过氧化及保护酶的影响,山东师范大学学报,(自然科学版),1987,2:29-39
    [298] 史兰波,李云荫,水分胁迫对冬小麦幼苗几种生理指标和叶绿体超微结构的影响,植物生理学通讯,1990,(2):28-31
    [299] 张木清,甘蔗耐旱生理基础及其化学调控,博士论文,福建农业大学,1994
    [300] Chowdhury S H,Choudhur M A, Hydrogen peroxide metabolism as an index of water stress tolerance in jute, Physiol. Plant., 1985, 65:503-507
    [301] 陈雄,王宗灵,任红旭等,海拔高度对大车前叶和根中抗氧化系统的影响,植物学报,1999,41(8):846-850
    [302] 梁建生,张建华,根系逆境信号ABA的产生和运输及其生理作用,植物生理学通讯,1998,34(5):329-338
    [303] 曹仪植,吕忠恕,水分胁迫下植物体内游离脯氨酸的累积及ABA在其中的作用,植物生理学报,1985,11(1):9-16
    [304] 董永华,史吉平,李广敏等,ABA和6-BA对水分胁迫下小麦幼苗CO_2同化作用的影响,作物学报,
    
    1997,23(4):501-504
    [305] Lopez-Carbonell M, Alegre L, Van Dnckelen H A, Changes in cell ultrastructure and endogenous abscisic acid and indole-3-acetic acid concentrations in Fatsia japonica leaves under polyethylene glycol-induced water stress, Plant Growth Regul, 1994, 15:165-174
    [306] Pastor A, Lopez-Carbonell M, Alegre L, Abscisic acid immunolocalization and ultrastructural changes in water-stressed lamender(Lavandula stoechas L.) plants, Physiol Plant, 1999, 105:272-279
    [307] Gayler K R, Glaziou K T, Plant enzymes synthesis: hormonal regulation of invertase and peroxidase synthesis in sugar cane, Planta, 1969, 84:185-194
    [308] Kannangata T, Durley R C, Simpson G M et al, Hormonal changes in relation to drought stress in field—grown plants, Can. J. Plant Sci., 1982, 62:317-330
    [309] 袁朝兴,丁静,水分胁迫对棉花叶片中IAA含量、IAA氧化酶和过氧化酶活性的影响,植物生理学报,1990,16:179-184
    [310] Mills V M, Todd G W, Effects of water stress on IAA oxidase activity in wheat leaves, Plant PhysioL., 1973,51:1145-1146
    [311] 潘根生,吴伯千,忱生荣等,水分胁迫过程中茶树新梢内源激素水平的消长及其与耐旱性的关系,中国农业科学,1996,29(5):9-15
    [312] Sakurai N, Roles of ABA and IAA in the stunted growth of water stressed, etiolated squash hypocotyls, Plant Cell Physiol., 198.5, 26:15-24
    [313] Cox R C, Snaith P J, Mansfield T A, The signieicance of natural and synthetic auxinsin the control of stomatal movements, Acta Horticulture, 1985, 171:247-253
    [314] Aharoni N, Blumentfeld A, Richmond, Hormonal activity in detached lettuce as affected by leaf water content, Plant Physiol., 1977, 59:1169-1173
    [315] 陈立松,刘星辉,作物抗旱鉴定的指标种类及其综合评价,福建农业大学学报,1997,26:48-55
    [316] 李宗霆,周燮,植物激素及其检测免疫技术,南京:江苏科学技术出版社,1996
    [317] 辛泽敏,茉莉酸ELISA的建立与水分胁迫条件下玉米黄化苗根和芽中茉莉酸及其它几类植物激素的水平消长,硕士论文,南京农业大学,1995
    [318] 曾昭惠,张宗玉,自由基对线粒体DNA的氧化损伤与衰老,生物化学与生物物理进展,1995,22:429-432
    [319] Mader M, Amberg-Fisher V, Role of peroxidase in lignification of tobacco cell, Ⅰ. Oxidation of nicotinam adenine dinucleotide and formation of hydrogen peroxide by cell wall peroxidases, Plant Physiol., 1982, 70:1128
    [320] Dare K S C, Oberley T D, Mouse K E et al, Expression of manganese superoxide dismatase promotes cellular differentiation, Free Rad Biol & Med, 1994,16:275-282
    [321] 崔凯荣,任红旭,邢更妹等,枸杞组织培养中抗氧化酶活性与体细胞胚发生相关性的研究,兰州大学学报(自然科学版),1998,34(3):93-99

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700