伤寒和甲型副伤寒沙门菌遗传稳定性的实验室微进化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:伤寒(Salmonella Typhi, S. Typhi)和甲型副伤寒沙门菌(Salmonella Paratyphi A, S. Paratyphi A)引起伤寒、副伤寒。近年来我国和一些东南亚国家出现了新的流行趋势,表现为伤寒菌株的多变和甲型副伤寒的出现以及迅速流行,在局部地区甲型副伤寒甚至超过伤寒成为优势菌感染,并表现为流行地区逐渐扩大。脉冲场凝胶电泳(PFGE)的分子分型资料显示,尽管两者传播机制相同,但同时期、同地区伤寒菌株菌型多变而甲副菌株相对稳定得多。是否由于二者存在基因组稳定性差异导致这种流行特征的出现成为我们关注的焦点。因此,我们从疾病监测的角度,应用基因分子分型技术检测经过实验室进化的伤寒、甲型副伤寒沙门菌遗传物质稳定性,并分析了伤寒基因组发生变异的机制。
     方法:选择伤寒沙门菌基因组测序菌株CT18和甲型副伤寒沙门菌的基因组测序菌株ATCC9150,以及本室保存的90年代中期以来引起伤寒和甲型副伤寒流行的PFGE带型优势株各两株。将上述菌株平行依次在实验室条件下连续培养传代。然后,对子代菌株分别进行了PFGE、rRNA操纵子重排以及噬菌体功能和原噬菌体相关基因的检测分析。
     结果:三株伤寒沙门菌的子代PFGE带型均发生改变,带型变化的百分比分别是:66.7%、63.5%、5.21%;三株甲型副伤寒沙门菌子代克隆的PFGE带型均未发生变化。分析伤寒基因组变异的机制,发现子代菌CT18-43的基因组发生了rRNA操纵子重排;GZ-902115的子代GZ-902115-85等的基因组发生原噬菌体prophage3区域部分染色体片段缺失。
     结论:1、在实验室连续传代过程中:三株伤寒沙门菌PFGE带型均发生改变,表明伤寒沙门菌经过不断传代基因组发生变异,不同菌株带型变化的百分比差别较大,揭示不同菌株基因组稳定性差别较大;甲型副伤寒沙门菌PFGE结果未发生变化,表明它的基因组经XbaI酶切后形成的大片段,在实验室连续传代中非常稳定。2、在一定实验室时间内,伤寒沙门菌和甲型副伤寒沙门菌基因组经过不断连续传代,在基因组水平发生了变异,伤寒沙门菌的部分子代基因组发生了rRNA操纵子重排和原噬菌体基因组的缺失,这些基因组水平发生的变异可直接或间接阐明PFGE带型的改变。
     目的:分析我国甲型副伤寒流行以来分离株的分子分型以及病原进化上的特征。
     方法:应用以Spel为限制性内切酶的脉冲场凝胶电泳方法和基于9个管家基因位点(aroC、thrA、hisD、purE、sucA、dnaN、hemD、adk和purA)的多位点序列分型方法,对我国近期甲型副伤寒流行以来的2000-2008年分离自10个省份的118株甲型副伤寒沙门菌进行分析。
     结果:PFGE将118株甲型副伤寒沙门菌分为32个型,而MLST只分出了2个ST型,显示各菌株的管家基因序列高度保守,应用MLST这种分型方法很难区分,MLST更适用于不同血清型菌株之间的分型研究。
     结论:目前中国的甲型副伤寒是由高度克隆化的菌株引起全国范围的扩散流行。随着年份的变迁,也积累了散在的变异。
Objective Typhoid fever was caused by Salmonella Typhi or Paratyphi A, B, and C. It is a public health problem worldwide. Recently, paratyphoid fever became more severe than typhoid fever in China and some Southeast Asian countries, and the performance of the endemic area gradually expanded. Although S. Typhi and S. Paratyphi A has the same host specificity, similar mechanism of transmission and clinically similar enteric fever, Paratyphi A became predominant pathogen of typhoid fever in some regions. We focused on that if the different genetic stability leading to the emergence of paratyphoid epidemic. According to the perspective of disease surveillance, we monitored the S. Typhi and S. Paratyphi A after laboratory evolution by molecular typing. We observed the genetic stability of S. Typhi and S. Paratyphi in experiment microevolution and explored the possible mechanisms of genomic mutations.
     Methods CT18, ATCC9150, two S. Typhi strains and two S. Paratyphi A strains provided by Institute of Communicable Disease Prevention and Control Center for Disease Control and Prevention, China, were selected because CT18 and ATCC9150 have been sequenced, and the other 4 strains are predominant strains which caused typhoid fever in China in the mid-1990s. The 6 strains were divided into S. Typhi and S. Paratyphi A subgroups. The isolated colony of the 6 strains was incubated at 37℃in a rotating water bath. After 12 h,100μl of a 10-4 dilution was aliquoted into 9.9 ml of LB. This 12h incubation-aliquoting into LB cycle was done for 20 times. The isolated colonies of the end point (20 times) were analyzed by pulsed field gel electrophoresis (PFGE), rRNA rearrangement and prophage detecting.
     Results The 96x6 isolated strains of the end point (20 times) have been analyzed by PFGE. The colonies of three S. Typhi strains showed different changes, the rates of CT18, GX-039 and GZ-902115 were 66.7%,63.5% and 5.21%, respectively, while no change was observed for the colonies of three S. Paratyphi A. Furthermore, we determined the rrn arrangement of CT18-43 which was a isolated colony of CT18 and its rrn was rearranged during laboratory evolution. In addition, we also found some genes in prophage3 were deleted during laboratory evolution. The positive isolated colony is from GZ-902115 (GZ-902115-85).
     Conclusion During laboratory evolution, the PFGE patterns of isolated colonies from three S. Typhi changed. The change of PFGE pattern indicated there were some mutations on the genome. Each S. Typhi strain's percentage of changed isolates varied greatly because their genome had many different variations. But the colonies of three S. Paratyphi A strains were very conserved and their PFGE patterns is unchanged. Some variations such as rRNA rearrangement and gene deletion among prophage area were detected on the colonies'genome which can be responsible for the changes of PFGE patterns partly.
     Objective To analyze molecular typing and characteristic of pathogen evolution of Salmonella paratyphi A strains.
     Methods Pulsed-field gel electrophoresis (PFGE) with SpeⅠas the restriction enzyme was used to analyze Salmonella paratyphi A strains from 10 provinces during 2000-2008. The genomic DNA in different Salmonella paratyphi A strains were also identified by multilocus sequence typing (MLST), under PCR products of housekeeping genes aroC、thrA、hisD、purE、sucA、dnaN、hemD、adk and purA.
     Results One hundred and eighteen Salmonella paratyphi A strains isolated in China in different years were quite different in PFGE fingerprints, and there were 32 kinds of PFGE fingerprints in total. However, data from MLST revealed lack of diversity among the strains of the same serotype and the number of variable nucleotide sites ranged from 1 to 20 between Salmonella paratyphi A and other serotypes of Salmonella.
     Conclusion Currently in China, high degree clonal strains caused paratyphoid fever epidemic spreading throughout the country. With the year changing, a number of sporadic mutations occurred.
引文
1 Girard MP, Steele D, Chaignat CL, et al. A review of vaccine research and development:human enteric infections. Vaccine,2006,24:2732-2750
    2 Barrett TJ, Snyder JD, Blake PA, et al. Enzyme-linked immunosorbent assay for detection of Salmonella typhi Vi antigen in urine from typhoid patients. J Clin Microbiol,1982,15:235-237
    3 el Fattah MM, Hassan EM, Shaheen H, et al. Evaluation of enzyme-linked immunosorbent assay for detection of Salmonella typhi antigen and antibodies. J Egypt Public Health Assoc,1991,66:145-157
    4 李伟,崔志刚,张政,等.中国四省甲型副伤寒分离株脉冲场凝胶电泳分析及分型数据库建立.中华流行病杂志,2006,27:871-874
    5 Ansong C, Yoon H, Norbeck AD, et al. Proteomics analysis of the causative agent of typhoid fever. J Proteome Res,2008,7:546-557
    6 闫梅英,梁未丽,李伟,等.1995-2004年全国伤寒副伤寒的流行分析.2005,20:401-403
    7 Kidgell C, Reichard U, Wain J, et al. Salmonella typhi, the causative agent of typhoid fever, is approximately 50,000 years old. Infect Genet Evol,2002,2:39-45
    8 Kothapalli S, Nair S, Alokam S, et al. Diversity of genome structure in salmonella enterica serovar typhi populations. J Bacteriol,2005,187:2638-2650
    9 Liu SL, Sanderson KE. Rearrangements in the genome of the bacterium Salmonella typhi. Proc Natl Acad Sci USA,1995,92:1018-1022
    10 Echeita MA, Usera MA. Chromosomal rearrangements in Salmonella enterica serotype typhi affecting molecular typing in outbreak investigations. J Clin Microbiol, 1998,36:2123-2126
    11 Ng I, Liu SL, Sanderson KE. Role of genomic rearrangements in producing new ribotypes of Salmonella typhi. J Bacteriol,1999,181:3536-3541
    12 Thong KL, Cheong YM, Puthucheary S, et al. Epidemiologic analysis of sporadic Salmonella typhi isolates and those from outbreaks by pulsed-field gel electrophoresis. J Clin Microbiol,1994,32:1135-1141
    13 Threlfall EJ, Torre E, Ward LR, et al. Insertion sequence IS200 fingerprinting of Salmonella typhi an assessment of epidemiological applicability. Epidemiol Infect, 1994,112:253-261
    14 Navarro F, Llovet T, Echeita MA, et al. Molecular typing of Salmonella enterica serovar typhi. J Clin Microbiol,1996,34:2831-2834
    15 Binnie RA, Zhang H, Mowbray S, et al. Functional mapping of the surface of Escherichia coli ribose-binding protein:mutations that affect chemotaxis and transport. Protein Sci,1992,1:1642-1651
    16 Nair S, Schreiber E, Thong KL,et al. Genotypic characterization of Salmonella typhi by amplified fragment length polymorphism fingerprinting provides increased discrimination as compared to pulsed-field gel electrophoresis and ribotyping. J Microbiol Methods,2000,41:35-43
    17 Helm RA, Maloy S. Rapid approach to determine rrn arrangement in Salmonella serovars. Appl Environ Microbiol,2001,67:3295-3298
    18 Bose M, Barber RD. Prophage Finder:a prophage loci prediction tool for prokaryotic genome sequences. In Silico Biol,2006,6:223-227
    19 Chan K, S Baker, Kim CC, et al. Genomic comparison of Salmonella enterica serovars and Salmonella bongori by use of an S enterica serovar typhimurium DNA microarray. J Bacteriol,2003,185:553-563
    20 Liu GR, Rahn A, Liu WQ, et al. The evolving genome of Salmonella enterica serovar pullorum. J Bacteriol,2002,184:2626-2633
    21 Parkhill J, Dougan G, James KD, et al. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar typhi CT18. Nature,2001,413:848-852
    22 McClelland M, Sanderson KE, Spieth J, et al. Complete genome sequence of Salmonella enterica serovar typhimurium LT2. Nature,2001,413:852-856
    23 Herring CD, Raghunathan A, Honisch C, et al. Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nat Genet,2006,38:1406-1412
    24 Elena SF, Lenski RE. Evolution experiments with microorganisms:the dynamics and genetic bases of adaptation. Nat Rev Genet,2003,4:457-469
    25 de Visser JA, Rozen DE. Limits to adaptation in asexual populations. J Evol Biol, 2005,18:779-788
    26 Hairston NG. Evolution under interspecific competition:field experiments on terres trial salamanders. Evolution,1980,34:409-420
    27 Pierre-Edouard Fournier, Michel Drancourt, Didier Raoult 2007 Bacterial genome sequence- ing and its use in infectious diseases. Lancet Infect Dis.7(11):711-23.
    28 Sood S, Kapil A, Dash N, et al. Paratyphoid Fever in India:An emerging problem. 1999, Emerg Infect Dis,5:483-484
    29 Goh YL, Puthucheary SD, Chaudhry R, et al. Genetic diversity of Salmonella enterica serovar paratyphi A from different geographical regions in Asia. J Appl Microbiol, 2002,92:1167
    30 陶沁,何平,谢阳,等.贵州省伤寒、副伤寒流行回顾性分析.中华流行病学杂志,2003,24:746
    31 Thong KL, Nair S, Chaudhry R, et al. Molecular analysis of Salmonella paratyphi A from an outbreak in New Delhi, India. Emerg Infect Dis,1998,4:507-508
    32 Kanungo S, Dutta S, Sur D. Epidemiology of typhoid and paratyphoid fever in India. J Infect Dev Ctries,2008,2:454-460
    33 Hunter SB, Vauterin P, Lambert-Fair MA, et al. Establishment of a universal size standard strain for use with the PulseNet standardized pulsed-field gel electrophoresis protocols:converting the national databases to the New Size Standard. J Clin Microbiol,2005,43:1045-1050
    34 Swaminathan B, Barrett TJ, Hunter SB, et al. PulseNet:the molecular subtyping network for foodborne bacterial disease surveillance, United States. Emerg Infect Dis, 2001,7:382-389
    35 Sander J, Hudson CR, Dufour-Zavala L, et al. Dynamics of Salmonella contamination in a commercial quail operation. Avian Dis,2001,45:1044-1049
    36 Liebana E, Guns D, Garcia-Migura L, et al. Molecular typing of Salmonella serotypes prevalent in animals in England:assessment of methodology. J Clin Microbiol,2001, 39:3609-3616
    37 Tenover FC, Arbeit RD, Goering RV, et al. Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis:criteria for bacterial strain typing. J Clin Microbiol,1995,33:2233-2239
    38 Hopkins KL, Maguire C, Best E, et al. Stability of multiple locus variable-number tandem repeats in Salmonella enterica Serovar typhimurium. J Clin Microbiol,2007, 45:3058-3061
    39 Liu SL, Sanderson KE. Highly plastic chromosomal organization in Salmonela typhi. Proc Natl Acad Sci USA,1996,93:10303-10308
    40 Liu SL, Sanderson KE. The chromosome of Salmonela paratyphi A is inverted by recombination between rrnH and rrnG. J Bacteriol,1995,177:6585-6592
    41 Fonstein M, Haselkorn R. Physical mapping of bacterial genomes. J Bacteriol,1995, 177:3361-3369
    42 Smith CL, Econome JG, Schutt A, et al. A physical map of the Escherichia coli K12 genome. Science,1987,236:1448-1453
    43 Deng W, Liou SR, Plunkett G 3rd, et al. Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18. J Bacteriol,2003,185:2330-2337
    44 Helm RA, Lee AG, Christman HD, et al. Genomic rearrangements at rrn operons in Salmonella. Genetics,2003,165:951-959
    45 Canchaya C, Fournous G, Chibani-Chennoufi S, et al. Phage as agents of lateral gene transfer. Curr Opin Microbiol,2003,6:417-424
    46 Brussow H, Hendrix RW. Phage genomics:small is beautiful. Cell,2002,11:10813-10816
    47 Nakagawa I, Kurokawa K, Yamashita A, et al. Genome sequence of an M3 strain of Streptococcus pyogenes reveals a large-scale genomic rearrangement in invasive strains and new insights into phage evolution. Genome Res,2003,13:1042-1055
    48 Canchaya C, Proux C, Fournous G, et al. Prophage genomics. Microbiol Mol Biol Rev,2003,67:238-276
    49 Casjens S. Prophages and bacterial genomics:what have we learned so far? Mol Microbiol,2003,49:277-300.
    [1]Gupta V, Kaur J, Chander J. An increase in enteric fever cases due to Salmonella Paratyphi A in & around Chandigarh. Indian J Med Res,2009,129:95-98.
    [2]Arjyal A, Pandit A. Treatment of enteric fever. J Infect Dev Ctries,2008,2:426-430.
    [3]Foley SL, Zhao S, Walker RD. Comparison of molecular typing methods for the differentiation of Salmonella foodborne pathogens. Foodborne Pathog Dis,2007,4: 253-276.
    [4]Foley SL, Lynne AM, Nayak R. Molecular typing methodologies for microbial source tracking and epidemiological investigations of Gram-negative bacterial foodborne pathogens. Infect Genet Evol,2009,9:430-440.
    [5]Liu SL. Physical mapping of Salmonella genomes. Methods Mol Biol,2007,394:39-58.
    [6]Hunter PR, Gaston MA. Numerical index of the discriminatory ability of typing systems:an application of Simpson's index of diversity. J Clin Microbiol,1988,26: 2465-2466.
    [7]Didelot X, Falush D. Inference of bacterial microevolution using multilocus sequence data. Genetics.2007,175:1251-1266.
    [8]Klaassen CH. MLST versus microsatellites for typing Aspergillus fumigatus isolates. Med Mycol.2009,47:S27-33.
    [9]Zhou HJ, Diao BW, Cui ZG, et al. Comparison of automated ribotyping and pulsed-field gel electrophoresis for subtyping of Vibrio cholerae. Lett Appl Microbiol.2009, 48:726-731.
    [10]Revazishvili T, Rajanna C, Bakanidze L, et al. Characterisation of Yersinia pestis isolates from natural foci of plague in the Republic of Georgia, and their relationship to Y. pestis isolates from other countries. Clin Microbiol Infect.2008,14:429-436.
    [11]Zhang X, Shao Z, Yang E, et al. Molecular characterization of serogroup C Neisseria meningitidis isolated in China. J Med Microbiol,2007,56:1224-1229.
    [12]Liu SL, Sanderson KE. The chromosome of Salmonella Paratyphi A is inverted by recombination between rrnH and rrnG. J Bacteriol,1995,177:6585-6592.
    [13]计融,李燕俊,王玉平,等.多位点序列分型和脉冲场凝胶电泳在肠炎沙门菌分子分型的比较.中华流行病学杂志,2006,27:1065-1068.
    [14]Johnson JK, Arduino SM, Stine OC, et al. Multilocus sequence typing compared to pulsed-field gelelectrophoresis for molecular typing of Pseudomonas aeruginosa. J Clin Microbiol,2007,45:3707-3712.
    [1]石佑恩,叶嗣颖.病原生物学(第1版),北京:人民卫生出版社,2004:115-120
    [2]Popoff MY, Bockemuhl J, Gheesling LL. Supplement 2002 (no.46) to the Kauffmann-White scheme. Res Microbiol,2004,155:568-570
    [3]Garaizar J, Lopez-Molina N, Laconcha I, et al. Suitability of PCR fingerprinting, infrequent- restriction-site PCR, and pulsed-field gel electrophoresis, combined with computerized gel analysis, in library typing of Salmonella enterica serovar enteritidis. Appl Eviron Microbiol,2000,66:5273-5281
    [4]Mead PS, Slutsker L, Dietz V, et al. Food-related illness and death in the United States. Emerg Infect Dis,1999,5:607-625
    [5]Olsen SJ, MacKinnon LC, Goulding JS, et al. Surveillance for foodborne-disease outbreaks-United States,1993-1997. Morb Mortal Wkly Rep CDC Surveill Summ, 2000,49:1-62
    [6]张燕,朱超.我国沙门菌病和菌型分布概况.现代预防医学,2002,29:400-401
    [7]Sanderson KE. Genetic relatedness in the family Enterobacteriaceae. Annu Rev Microbiol,1976,30:327-349
    [8]Krawiec S, Riley M. Organization of the bacterial chromosome. Microbiol Rev,1990. 54:502-539
    [9]Kolstφ AB. Dynamic bacterial genome organization. Mol Microbiol,1997,24:241-248
    [10]Fonstein M, Haselkorn R. Physical mapping of bacterial genomes. J Bacteriol,1995, 177:3361-3369
    [11]Anderson RP, Roth JR. Gene duplication in bacteria:alteration of gene dosage by sister-chromosome exchanges. Cold Spring Harb Symp Quant Biol,1979,43:1083-1087
    [12]Anderson RP, Roth JR. Tandem genetic duplications in Salmonella typhimurium: amplification of the histidine operon. J Mol Biol,1978,126:53-71
    [13]Anderson P, Roth J. Spontaneous tandem genetic duplications in Salmonella typhimurium arise by unequal recombination between rRNA (rrn) cistrons. Proc Natl Acad Sci USA,1981,78:3113-3117
    [14]Helm RA, Lee AG, Christman HD, et al. Genomic rearrangements at rrn operons in Salmonella. Genetics,2003,165:951-959
    [15]McClelland M, Sanderson KE, Spieth J, et al. Complete genome sequence of Salmonella enterica serovar Typhimurium LT2. Nature.2001,413:852-856
    [16]Parkhill J, Dougan G, James KD, et al. Complete genome sequence of a multiple drug resistant Salmonella enterica serovar Typhi CT18. Nature,2001,413:848-852
    [17]Deng W, Liou SR, Plunkett G 3rd, et al. Comparative genomics of Salmonella enterica serovar Typhi strains Ty2 and CT18. J Bacteriol,2003,185:2330-2337
    [18]刘树林,龚俊.细菌进化中的基因横向转移.中华微生物学和免疫学杂志,2004,24:498-504
    [19]Dougan G. The genome of Salmonella enterica serovar Typhi. Clin Infect Dis,2007, 45:S29-S33
    [20]Smith CL, Econome JG, Schutt A, et al. A physical map of the Escherichia coii K12 genome. Science,1987,236:1448-1453
    [21]Liu SL, Hessel A, Sanderson KE Genomic mapping with I-Ceu I, an intron-encoded endonuclease specific for genes for ribosomal RNA, in Salmonella spp., Escherichia coli, and other bacteria. P Natl Acad Sci USA,1993,90:6874-6878
    [22]Liu SL, Sanderson KE. I-CeuI reveals conservation of the genome of independent strains of Salmonella typhimurium. J Bacteriol,1995,177:3355-3357
    [23]Liu SL, Sanderson KE A physical map of the Salmonella typhimurium LT2 genome made by using XbaI analysis. J Bacteriol,1992,174:1662-1672
    [24]Wong KK, McClelland M. A BlnI restriction map of the Salmonella typhimurium LT2 genome. J Bacteriol,1992,174:1656-1661
    [25]Liu SL, Hessel A, Sanderson KE The XbaI-BlnI-CeuI genomic cleavage map of Salmonella enteritidis shows an inversion relative to Salmonella typhimurium LT2. Mol Microbiol,1993,10:655-664
    [26]Liu SL, Hessel A, Sanderson KE. The XbaI-BlnI-CeuI genomic cleavage map of Salmonella typhimurium LT2 determined by double digestion, end labelling, and pulsedfield gel electrophoresis. J Bacteriol,1993,175:4104-4120
    [27]Helm RA, Maloy S. Rapid approach to determine rrn arrangement in Salmonella serovars. Appl Environ Microbiol,2001,67:3295-3298
    [28]Sanderson KE Liu SL. Chromosomal rearrangements in enteric bacteria. Electrophoresis,1998,19:569-572
    [29]Marshall P, Lemieux C. Cleavage pattern of the homing endonuclease encoded by the fifth intron in the chloroplast large subunit rRNA-encoding gene of Chlamydomonas eugametos. Gene,1991,104:241-245
    [30]Marshall P, Davis TB, Lemieux C. The I-Ceul endonuclease:purification and potential role in the evolution of Chlamydomonas group I introns. Eur J Biochem, 1994,220:855-859
    [31]Bachmann BJ. Linkage map of Escherichia coli K-12, edition 8. Microbiol Rev, 1990,54:130-197
    [32]Liu SL, Sanderson KE. The chromosome of Salmonella paratyphi A is inverted by recombination between rrnH and rrnG. J Bacteriol,1995,177:6585-6592
    [33]Liu SL, Hessel A, Cheng HY, et al. The XbaI-BlnI-CeuI genomic cleavage map of Salmonella paratyphi B. J Bacteriol,1994,176:1014-1024
    [34]Liu SL, Sanderson KE. Genomic cleavage map of Salmonella typhi Ty2. J Bacteriol 1995,177:5099-5107
    [35]刘桂荣,刘葳峤,祁丹妮,等.鸡沙门菌基因组物理图.中华微生物学和免疫学杂志,2006,26:965-970
    [36]McClelland M, Sanderson KE, Clifton SW, et al. Comparison of genome degradation in Paratyphi A and Typhi, human-restricted serovars of Salmonella enterica that cause typhoid. Nat Genet,2004,36:1268-1274
    [37]Holt KE, Parkhill J, Mazzoni CJ, et al. High-throughput sequencing provides insights into genome variation and evolution in Salmonella Typhi. Nat Genet,2008, 40:987-993
    [38]Porwollik S, Wong RM, Helm RA, et al. DNA amplification and rearrangements in archival Salmonella enterica serovar Typhimurium LT2 cultures. J Bacteriol,2004, 186:1678-1682
    [39]Liu SL, Sanderson KE. Rearrangements in the genome of the bacterium Salmonella typhi. Proc Natl Acad Sci USA,1995,92:1018-1022
    [40]Liu SL, Sanderson KE. Highly plastic chromosomal organization in Salmonella typhi. P Natl Acad Sci USA,1996,93:10303-10308
    [41]Louarn J, Cornet F, Fran(?)ois V, et al. Hyperrecombination in the terminus region of the Escherichia coli chromosome:possible relation to nucleoid organization. J Bacteriol,1994,176:7524-7531
    [42]Cornet F, Louarn J, Patte J, et al. Restriction of the activity of the recombination site dif to a small zone of the Escherichia coli chromosome. Genes Dev,1996,10:1152-1161
    [43]Ochman H, Lawrence JG, Groisman EA. Lateral gene transfer and the nature of bacterial innovation. Nature,2000,405:299-304
    [44]Doolittle WF. Lateral genomics. Trends Cell Biol,1999,9:M5-M8
    [45]Boucher Y, Doolittle WF. The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways. Mol Microbiol,2000,37:703-716
    [46]Ochman H. Lateral and oblique gene transfer. Curr Opin Genet Dev,2001,11:616-619
    [47]Lawrence JG, Ochman H. Molecular archaeology of the Escherichia coli genome. Proc Natl Acad Sci USA,1998,95:9413-9417
    [48]Sharp PM, Li WH. The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res, 1987,15:1281-1295
    [49]Wang B. Limitations of compositional approach to identifying horizontally transferred genes. J Mol Evol,2001,53:244-250
    [50]Koski LB, Morton RA, Golding GB. Codon bias and base composition are poor indicators of horizontally transferred genes. Mol Biol Evol,2001,18:404-412
    [51]Florea L, McClelland M, Riemer C, et al. EnteriX 2003:Visualization tools for genome alignments of Enterobacteriaceae. Nucleic Acids Res,2003,31:3527-3532
    [52]Wilson JW, Ramamurthy R, Porwollik S, et al. Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon. Proc Natl Acad Sci USA,2002,99:13807-13812
    [53]Porwollik S, Wong RM, McClelland M. Evolutionary genomics of Salmonella:gene acquisitions revealed by microarray analysis. Proc Natl Acad Sci USA,2002,99: 8956-8961
    [54]Porwollik S, Frye J, Florea LD, et al. A non-redundant microarray of genes for two related bacteria. Nucleic Acids Res,2003,31:1869-1876
    [55]Porwollik S, McClelland M. Determination of the gene content of Salmonella genomes by microarray analysis. Methods Mol Biol,2007,394:89-103
    [56]Riley M. Sanderson KE. In:Drlica K, Riley M. The bacterial chromosome. American society for microbiology, Washington DC 1990,85-95
    [57]Kingsley RA, Baumler AJ. Pathogenicity islands and host adaptation of Salmonella serovars. Curr Top Microbiol Immunol,2002,264:67-87
    [58]Edwards RA, Olsen GJ, Maloy SR. Comparative genomics of closely related salmonellae. Trends Microbiol,2002,10:94-99
    [60]Alokam S, Liu SL, Said K, et al. Inversions over the terminus region in Salmonella and Escherichia coli:IS200s as the sites of homologous recombination inverting the chromosome of Salmonella enterica serovar typhi. J Bacteriol,2002,184:6190-6197
    [61]Song J, Ware A, Liu SL. Wavelet to predict bacterial ori and ter: a tendency towards a physical balance. BMC Genomics,2003,4:17
    [62]Liu GR, Edwards K, Eisenstark A, et al. Genomic diversification among archival strains of Salmonella enterica serovar typhimurium LT7. J Bacteriol,2003,185: 2131-2142

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700