单核细胞增多性李斯特菌的主要毒力基因分析及其重组菌构建与免疫原性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单核细胞增多性李斯特菌(简称单增李斯特菌,Lm)为重要的食源性病原菌,能引起人的败血症、脑炎、脑膜炎和胃肠炎,虽然发生率不高,但死亡率可达30%。不同来源Lm的致病性差异较大,有些菌株致病性很强,而另一些菌株毒力较弱甚至无致病性。将Lm减毒后作为携带外源基因的基因工程疫苗载体是近年来国外学者研究的热点之一。国内在Lm分离株的生物学特性、遗传多样性、基因结构与功能及其疫苗载体的研究方面鲜见报道。
     本研究以小鼠和鸡胚LD_(50)试验及体外培养鼠成纤维细胞的空斑形成试验比较了20株Lm食品及环境分离株的毒力。结果表明:大多数Lm分离株毒力与参考菌株10403S相当,对小鼠的LD_(50)在10~(3.86)-10~(6.74)之间,对鸡胚的LD_(50)在10~(1.23)-10~(3.35)之间,为强毒株;分离株H4对小鼠和鸡胚的LD_(50)分别为10~(8.14)和10~(6.73),为弱毒株。空斑形成试验与LD_(50)结果基本一致,大多数单增李斯特菌分离株感染孔均有清晰的空斑形成。相对于参考菌株而言,它们的大小在83.7%-108.3%之间,而弱毒株H4感染孔无可见空斑。
     选取Lm的毒力基因actA,InlA和InlB高变区域外测保守区设计引物进行PCR扩增,T-A克隆至pMD18-T载体后进行测序,对20个Lm的食品及其环境分离株进行多位点序列分型。基于actA和InlA序列的分型结果基本一致,可将21个菌株分成6个亚型,与基于InlB的序列分型略有差异。综合上述3个毒力基因的分型结果可将所有菌株分成8个序列亚型,分别为S1-S8,其中菌株0194、10403S和H4各自成一亚型。用SmaⅠ对上述菌株基因组DNA进行酶切,以脉冲场凝胶电泳(PFGE)方法将21个菌株划分为6个亚型,分辨力与序列分型结果相当,弱毒株H4自成P6亚型。此外,分离自同一加工厂的海产品分离株1056,1057及其环境分离株6属于同一序列或PFGE亚型,表明该加工企业成品中的Lm来自其加工环境。消毒奶分离株320与其环境分离株690共为同一序列或PFGE亚型,表明成品奶中污染的Lm来自加工环境,而非奶牛场。
     为探讨Lm H4株弱毒的分子基础,对其主要毒力相关基因(iap,prfA,plcA,hly,mpl,actA,plcB,InlA和InlB)进行了测序和系统分析。体外试验表明:分离株H4与参考菌株10403S相比,具有相似的溶血活性和细胞侵袭力,但具有更强的细胞黏附力、更高的细胞内增殖水平和更强的溶脂活性。而H4株对小鼠及鸡胚的LD_(50)比菌株10403S毒力分别低2.7和4.8个对数。菌株H4与10403S及EGD的prfA、plcA和mpl具有很高同源性(>98%);与10403S菌株的hly基因核苷酸同源性为96.9%,氨基酸同源性为98.7%,体外溶血活性相似;与10403S菌株的plcB基因核苷酸同源性为95.4%,包含ORF第1位碱基及其上游序列-26位的突变(A-G,C-T),有可能使ORF从-27位开始形成,这一变化可能导致H4的强溶脂活性。H4株在肌动蛋白ActA的脯氨酸富集区有35个氨基酸缺失。本研究结果表明:单增李斯特菌H4株对小鼠和鸡胚的低毒力可能与actA中脯氨酸富集区的部分缺失而引起的细胞间迁移能力下降或丧失有关。
     为探明单增李斯特菌弱毒株H4强溶脂活性的分子基础,根据前期对plcB ORF及其上游序列分析结果,首先设计引物扩增plcB同源区(包含上游序列),定向克隆至pUC18,构建pUC18-plcB。设计3对点突变引物,以pUC18-plcB为模板进行PCR扩增,分别将plcB上游第26位(-26位)及ORF第1位双突变或-26位单突变为参考菌株10403S的相应碱基,测序确认后命名为pUC18-△plcB1、pUC18-△plcB2和pUC18-△plcB3。继而亚克隆至pKSV7,构建重组穿梭质粒pKSV7-△plcB1、pKSV7-△plcB2和pKSV7-△plcB3,并将其电转入H4株的感受态细胞中,利用同源重组技术实现目的碱基的置换,构建H4的突变株H4-△plcB1、H4-△plcB2和H4-△plcB3。目的片段的PCR扩增及序列分析表明各突变株构建成功。在含5%的卵黄琼脂平板中,各突变株均无溶脂活性,表明H4菌株强溶脂活性由plcB上游第26位碱基的突变(C-T)、致其ORF从-27位开始形成有关,比参考菌株10403S多9个氨基酸。这一突变对H4株plcB基因表达的增强作用机制还有待进一步探索。另外,小鼠LD_(50)试验表明突变株H4-△plcB1毒力比其亲本菌株H4提高1个Log,初步表明H4菌株中两个膜裂解相关基因hly与plcB的高效表达及协同作用可能增强了细菌对宿主细胞的毒性,并暴露于宿主的免疫系统而被清除,从而降低了对宿主的致病性。
     单增李斯特菌为侵袭性胞内菌,可在专职和非专职吞噬细胞内存活并繁殖,是目前疫苗载体研究的热点之一。以绿色荧光蛋白基因gfp为模式外源基因,以单增李斯特菌毒力基因hly为靶基因,通过基因切割-重叠延伸PCR法及同源重组技术构建表达GFP的重组单增李斯特菌。首先构建了pKSV7质粒衍生体,此质粒含有hly的启动子和信号肽序列,gfp片段及hly的同源区,通过电穿孔法把该质粒转入野生型Lm 10403S株,经两次等位基因交换将gfp片段整合入Lm染色体基因组中。目的片段的PCR、序列测定及该重组菌在显微镜下发出的绿色荧光表明该重组子的构建成功。溶血试验表明hly基因中gfp的插入后溶血活性消失,对Hela细胞的黏附和侵袭力降低。此外,小鼠及鸡胚的LD_(50)试验表明该重组菌比其亲本菌株毒力下降了2个Log。
     以新城疫病毒(NDV)编码融合蛋白的截短片段Fa为外源基因,通过基因切割-重叠延伸PCR法将其插入到单增李斯特菌毒力基因plcB信号肽序列下游,定向克隆至穿梭质粒pKSV7,并电转入单增李斯特菌10403S,通过同源重组技术构建携带NDV Fa片段的重组单增李斯特菌。PCR扩增结果表明重组菌Lm-△plcB-Fa构建成功。RT-PCR结果表明整合的外源基因能在重组菌中转录,SDS-PAGE及Western blot分析表明融合蛋白Fa能在重组菌中表达,与NDV阳性血清具有免疫反应性。毒力试验表明重组菌对小鼠与鸡胚的毒力降低,LD_(50)比其亲本菌株下降1.7-2.3个Log。重组菌Lm-△plcB-Fa对细胞的黏附和侵袭力均低于亲本株10403S(P<0.05)。然而,重组菌口服或腹腔免疫SPF鸡后,均未能有效诱导针对NDV和融合蛋白Fa的特异性抗体,也未能保护NDV强毒的攻击。其可能原因是重组单增李斯特菌在鸡体内持续存在时间短、增殖率低,进而导致外源基因的低水平表达。
     本试验结果为深入探索单增李斯特菌的致病机理、对食品污染的控制和基因工程疫苗载体的研究奠定了良好基础。
Listeria monocytogenes is an important food-borne pathogen that can cause septicaemia, encephalitis, meningitis and gastroenteritis in humans. L. monocytogenes encompasses a diversity of strains with varying pathogenic potential. While many L. monocytogenes strains could be of high pathogenicity, others are less virulent or even avirulent and produce little harm in the host. Recombinant bacterial vaccine vectors using L. monocytogenes as the model strain is one of the heated research areas in genetically engineered vaccine development. Currently, there are few studies in China on the biodiversity of L. monocytogenes, control strategies on its contamination along the food-processing lines, its gene structure and functions as well as its utilization as vaccine vectors upon proper attenuation.
     Mouse or chicken embryo based 50% lethal dose assays (LD_(50)) and plaque forming assay in cell monolayers were used to compare the virulence of twenty L. monocytogenes food and environment isolates. Most L. monocytogenes isolates were as virulent as the reference strain 10403S with the mouse LD_(50) varying from 10~(3.86) to 10~(6.74) and the chicken embryonated egg LD_(50) from 10~(1.23) to 10~(3.35). The L monocytogenes isolate H4 was of low pathogenicity as revealed by its LD_(50) of 10~(8.14) in mice and 10~(6.73) in embryoniate chicken eggs. Most L. monocytogenes isolates formed clear plaques with plaque size varying from 83.7% to 108.3% relative to the reference strain 10403S. There was no visible plaque formed in isolate H4 infected cell monolayers, which was consistent with its low virulence as described above.
     Twenty L. monocytogenes strains isolated from food and environment sources together with the reference strain 10403S were characterized by pulsed-field gel electrophoresis (PFGE) using Sma I for genomic DNA digestion as well as by multilocus sequence typing (MLST) based on the hypervariable region of actA, InlA and InlB. All L. monocytogenes isolates could be divided into six subgroups using actA or InlA-based sequence typing, while the InlB -based sequence typing exhibited patterns slightly different from those of actA ox InlA. All L. monocytogenes isolates could be grouped into subtypes from S1 to S8 when the above three genes were considered together, with strains 0194, 10403S and H4 belonging to an individual subgroup. With PFGE, there were six subtypes of all L. monocytogenes isolates similar to MLST, with the low pathogenicity isolate H4 forming a separated subtype. Moreover, isolates 1056, 1057 and 6 exhibited the same sequence or PFGE subtype, indicating that the isolates 1056 and 1057 from the seafood products were contaminated by the environmental isolate 6. Isolates 320 and 690 shared the same sequence or PFGE subtype, illustrating that the isolate 320 from the milk product was contaminated by the environmental strain 690 other than from the dairy farm.
     A low pathogenicity isolate of Listeria monocytogenes from milk, as revealed in mouse and chicken embryonated egg models, was examined for virulence-related phenotypic traits. Its corresponding virulence genes (iap, prfA, plcA, hly, mpl, actA, plcB, InlA and InlB) were compared with the reference strains 10403S and EGD to elucidate the possible molecular mechanisms of low virulence. Although L. monocytogenes H4 exhibited similar patterns to strain 10403S in terms of hemolytic activity, in vitro growth and invasiveness and even had higher adhesiveness, faster intracellular growth and higher phospholipase activity in vitro, it was substantially less virulent than the strain 10403S with LD_(50) 10~(8.14) vs 10~(5.49) in mice and 10~(6.73) vs 10~(1.9) in chicken embryos). The genes prfA, plcA and mpl were generally homologous among L. monocytogens strains H4, 10403S and EGD (>98%). The gene hly between strain 10403S and isolate H4 had 96.9% identity at the nucleotide level, but 98.7% at the amino acid level. The nucleotide identity of plcB between strains 10403S and H4 was 95.4%, including one important mutation from A to G at position 1 of the plcB ORF and another important mutation from C to T at position -26. The act A gene of isolate H4 had deletions of 105 nucleotides corresponding to 35 amino acids deletions falling within the proline-rich region. Taken together, this study presents some clues as to reduced virulence to mice and chicken embryos of the isolate H4 probably as a result of deletion mutations of actA.
     A pair of primers was designed to amplify the plcB homologous region containing its upstream sequence according to plcB sequence from the Listeria monocytogenes milk isolate H4. The plcB fragment was then purified and cloned into pUC18 to construct the recombinant plasmid pUC18-plcB. Three pairs of primers were then designed to introduce mutations of the plcB gene at positions -26 and +1 using pUC18-plcB as the template such that G mutated to A at +1 and T to C at -26 or single mutation from T to C at -26. The mutated plasmids confirmed by sequencing were subcloned into the shuttle vector pKSV7 to construct recombinant plasmids pKSV7-ΔplcB1, pKSV7-ΔplcB2 and pKSV7-ΔplcB3. After electroporation of three recombinant shuttle vectors into competent L. monocytogenes H4 cells, homologous recombination was initiated, resulting in replacement of the target nucleotide(s). PCR amplification of the target genes and sequencing confirmed successful construction of the mutated strains H4-ΔplcBl, H4-ΔplcB2 and H4-ΔplcB3. There was no phospholipase activity of three mutants as revealed by the egg yolk agar assay, indicating that high phospholipase activity of isolate H4 might be related to the mutation at position -26 (from C to T) with its ORF starting from position -27 relative to that in strain 10403S together with 9 extra amino acids. However, mechanisms of apparent expression of plcB due to extension of amino acids at the N terminus remain further exploration. The mutant strain H4-ΔplcB1 had increased virulence to mice of about 1 log in LD_(50) as compared with the wild parent isolate H4, indicating that high expression of both membrane damaging genes plcB and hly might result in synergistic cytotoxic activity, exposing listerial cells to the host immune response with their resultant elimination and reduced pathogenicity to the host.
     L. monocytogenes is an invasive intracellular bacterium that can survive and replicate in both professional and nonprofessional phagocytic cells, and becomes an attractive vaccine vector. To construct a recombinant strain of L, monocytogenes for expression of heterologous genes, homologous recombination was utilized for insertional mutation targeting its listeriolysin O gene (hly). The gene encoding green fluorescent protein (GFP) was used as the indicator of heterologous gene expression. The gene gfp was inserted into hly downstream to its promoter and signal sequence by overlapping extension polymerase chain reaction, which was then cloned into the shuttle plasmid pKSV7 for allelic exchange with L. monocytogenes chromosome. Homologous recombination was achieved by growing the electro-transformed L. monocytogenes cells on chloramphenicol plates at non-permissive temperature. Sequencing analysis indicated correct insertion of the target gene in-frame with the signal sequence. The recombinant strain expressed GFP constitutively as revealed by fluorescence microscopy. The mutant strain L. monocytogenesΔhly-gfp lost its hemolytic activity as visualized on the blood agar or analyzed with the culture supernatant samples and also exhibited reduced adherence and invasiveness ability to HeLa cells. Such insertional mutation resulted in reduced virulence of about 2 logs less than its parent strain 10403S as shown by the 50% lethal dose assays in the mouse and chicken embryonated egg models.
     Recombinant Listeria monocyogenes mutant carrying the truncated fragment Fa of the Newcastle disease virus (NDV) fusion protein gene was constructed by homologous recombination. The fragment Fa was integrated into plcB downstream of its signal sequence. Correct orientation of the inserted fragment was verified by PCR amplification. The inserted Fa was transcribed and expressed in the recombinant Lm-ΔplcB-Fa as shown by RT-PCR, SDS-PAGE and western blot respectively. The recombinant mutant exhibited reduced virulence to embryonated eggs and mice by about 1.7-2.3 logs, as compared with the parent wild strain 10403S. It was also less adherent or invasive than strain 10403S (P<0.05). Chickens receiving the recombinant strain Lm-ΔplcB-Fa orally or intraperitoneally were partially protected from virulent NDV challenge possibly due to enhancement of non-specific immunity because the antibody titers against the homologous virus strain or the recombinant truncated fusion protein were marginal. Further research is needed in other animal models to see if the low antibody response results from insufficient expression of the heterologous genes as a result of failure of L. monocytogenes or its recombinants to persist or replicate in chickens.
     In summary, results from these studies have laid good foundation for further exploration of the pathogenesis of L. monocytogenes, control of its contamination along the food-processing lines as well as its potential as vaccine vectors for other passenger antigens.
引文
1. Lecuit M, Cossart P. Genetically-modified-animal models for human infections: the Listeria paradigm. Trends Mol Med, 2002, 8(11): 537-542.
    2. Low JC, Donachie W. A review of Listeria monocytogenes and listeriosis. Vet J, 1997, 153 (1):9-29.
    3. Gellin BG, Broome CV. Listeriosis. Jama, 1989, 261(9):1313-1320.
    4. Cossart P, Pizarro-Cerda J, Lecuit M. Invasion of mammalian cells by Listeria monocytogenes: functional mimicry to subvert cellular functions. Trends Cell Biol, 2003, 13(1):23-31.
    5. Drevets DA, Leenen PJ, Greenfield RA. Invasion of the central nervous system by intracellular bacteria. Clin Microbiol Rev, 2004, 17(2): 323-347.
    6. Alvarez-Dominguez C, Roberts R, Stahl PD. Internalized Listeria monocytogenes modulates intracellular trafficking and delays maturation of the phagosome. J Cell Sci, 110 ( Pt 6): 731-743.
    7. Marquis H, Goldfine H, Portnoy DA. Proteolytic pathways of activation and degradation of a bacterial phospholipase C during intracellular infection by Listeria monocytogenes. J Cell Biol, 1997, 137(6): 1381-1392.
    8. Dramsi S, Cossart P. Intracellular pathogens and the actin cytoskeleton. Annu Rev Cell Dev Biol, 1998,14:137-166.
    9. Cossart P. Molecular and cellular basis of the infection by Listeria monocytogenes: an overview. Int J Med Microbiol, 2002, 291(6-7): 401-409.
    10. Glaser P, Frangeul L, Buchrieser C, et al. Comparative genomics of Listeria species. Science, 2001,294(5543): 849-852.
    11. Vazquez-Boland JA, Kuhn M, Berche P, et al. Listeria pathogenesis and molecular virulence determinants.Clin Microbiol Rev, 2001, 14 (3):584-640.
    12. Kreft J, et al. Pathogenicity islands and other mobile virulence elements. American Society for Microbiology, Washington DC, 1999, pp219-232.
    13. Gaillard JL, Berche P, Frehel C, et al. Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell, 1991,65(7): 1127-1141.
    14. Kuhn M, Goebel W. Internalization of Listeria monocytogenes by nonprofessional and professional phagocytes. Subcell Biochem, 2000, 33:411-436.
    15. Cossart P, et al. The cell biology of invasion and intracellular growth by Listeria monocytogenes. In: Gram-Positive Pathogens. Fischetti VA et al, eds. ASM Press, Washington, DC, USA, 2000, pp507-515.
    16. Dramsi S, Biswas I, Maguin E, et al. Entry of Listeria monocytogenes into hepatocytes requires expression of inIB, a surface protein of the internalin multigene family. Mol Microbiol. 1995, 16(2): 251-261.
    17. Milohanic E, Glaser P, Coppee JY, et al. Transcriptome analysis ofListeria monocytogenes identifies three groups of genes differently regulated by PrfA. Mol Microbiol, 2003, 47(6): 1613-1625.
    18. Garner MR, Njaa BL, Wiedmann M, et al. Sigma B contributes to Listeria monocytogenes gastrointestinal infection but not to systemic spread in the guinea pig infection model. Infect Immun, 2006, 74(2):876-886.
    19. Lecuit M, Nelson DM, Smith SD, el al. Targeting and crossing of the human maternofetal barrier by Listeria monoeytogenes: role of internalin interaction with trophoblast E-cadherin. Proc Natl Acad Sci USA, 2004, 101 (16):6152-6157.
    20. Lecuit M, Ohayon H, Braun L, et al. lnternalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization. Infect Immun, 1997, 65(12):5309-5319.
    21. Lecuit M, Dramsi S, Gottardi C, et al. A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO J, 1999, 18(14):3956-3963.
    22. Schubert WD, Urbanke C, Ziehm T, et al. Structure of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin. Cell, 2002, 111(6):825-836.
    23. Harnon M, Bierne H, Cossart P. Listeria monocytogenes: a multifaceted model. Nat Rev Microbiol, 2006, 4(6): 423-434.
    24. Oiler M, Pierre F, Rousseaux S, et al. Expression of truncated Internalin A is involved in impaired internalization of some Listeria monocytogenes isolates carried asymptomatically by humans. Infect Immun, 2003, 7l(3):I217-1224.
    25. Rousseaux S, Oiler M, Lemaitre JP, et al. Use of PCR-restriction fragment length polymorphism of inlA for rapid screening of Listeria monocytogenes strains deficient in the ability to invade Caco-2 cells, Appl Environ Microbiol, 2004, 70(4):2180-2185.
    26. Oiler M, Garmyn D, Rousseaux S, et al. Truncated internalin A and asymptomatic Listeria monocytogenes carriage: in vivo investigation by allelic exchange. Infect Immun, 2005,73(1): 644-648.
    27. Jonquieres R, Bierne H, Fiedler F, et al. Interaction between the protein InlB of Listeria monocytogenes and lipoteichoic acid: a novel mechanism of protein association at the surface of gram-positive bacteria. Mol Microbiol, 1999, 34(5):902-914.
    28. Marino M, Braun L, Cossart P, et al. Structure of the InlB leucine-rich repeats, a domain that triggers host cell invasion by the bacterial pathogen L. monocytogenes. Mol Cell, 1999, 4(6):1063-1072.
    29. Schubert WD, Gobel G, Diepholz M, et al. Internalins from the human pathogen Listerio monocytogenes combine three distinct folds into a contiguous internalin domain, J Mol Biol, 2001, 312(4):783-794.
    30. Shen Y, Naujokas M, Park M, et al. InlB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell, 2000, 103(3):501-510.
    31. Braun L, Ghebrehiwet B, Cossart P. gClq-R/p32, a Clq-binding protein, is a receptor for the InlB invasion protein of Listeria monocytogenes, Embo J, 2000, 19(7):1458-1466,
    32. Ghebrehiwet B, Jesty J, Peerscbke El. gClq-R/p33: structure-function predictions from the crystal structure, Immunobiology, 2002, 205(4-5):421-432.
    33. Khelef N, Lecuit M, Bierne H, et al. Species specificity of the Listeria monocytogenes InlB protein. Cell Microbiol, 2006, 8(3):457-470.
    34. Braun L, Dramsi S, Dehoux P, et al. InlB: an invasion protein ofListeria monocytogenes with a novel type of surface association. Mol Microbiol, 1997, 25(2):285-294.
    35. McLaughlan AM, Foster SJ. Molecular characterization of an autolytic amidase of Listeria monocytogenes EGD. Microbiology, 1998, 144 (Pt5): 1359-1367.
    36. Milohanic E, Jonquieres R, Cossart P, et al. The autolysin Ami contributes to the adhesion of Listeria monocytogenes to eukaryotie cells via its cell wall anchor. Mol Microbiol, 2001, 39(5): 1212-1224.
    37. Dussurget O, Pizarro-Cerda J, Cossart P. Molecular determinants of Lisleria monocytogenes virulence. Annu Rev Microbiol, 2004, 58:587-610.
    38. Bubert A, Kuhn M, Goebel W, et al. Structural and functional properties of the p60 proteins from different Listeria species. J Bacteriol, 1992, 174(24):8166-8171.
    39. Wuenscher MD, Kohler S, Bubert A, et al. The lap gene of Listeria monocytogenes is essential for cell viability, and its gene product, p60, has bacteriolytic activity. J Bacteriol, 1993, 175(11):3491-3501.
    40. Kuhn M, Goebel W. Identification of an extracellular protein of Listeria monocytogenes possibly involved in intracellular uptake by mammalian cells. Infect Immun, 1989, 57 (1): 55-61.
    41. Pilgrim S, Kolb-Maurer A, Gentschev I, et al. Deletion of the gene encoding p60 in Listeria monocytogenes leads to abnormal cell division and loss of actin-based motility. Infect Immun, 2003, 71 (6): 3473-3484.
    42. Dramsi S, Bourdichon F, Cabanes D, et al. FbpA, a novel multifunctional Listeria monocytogenes virulence factor. Mol Microbiol, 2004, 53(2):639-649.
    43. Dramsi S, Cossart P. Listeriolysin O: a genuine cytolysin optimized for an intracellular parasite. J Cell Biol, 2002, 156(6):943-946.
    44. Krull M, Nost R, Hippenstiel S, et al. Listeria monocytogenes potently induces up-regulation of endothelial adhesion molecules and neutrophil adhesion to cultured human endothelial cells. J Immunol, 1997, 159(4): 1970-1976.
    45. Yoshikawa H, Kawamura l, Fujita M, et al. Membrane damage and interleukin-1 production in routine macrophages exposed to listeriolysin O. Infect Immun, 1993, 61 (4): 1334-1339.
    46. Tang P, Rosenshine I, Cossart P, et al. Listeriolysin O activates mitogen-activated protein kinase in eukaryotic cells. Infect Immun, 1996, 64(6):2359-2361.
    47. Guzman CA, Domann E, Rohde M, et al. Apoptosis of mouse dendritic cells is triggered by listeriolysin, the major virulence determinant ofListeria monocytogenes. Mol Microbiol, 1996, 20(1):119-126.
    48. Sibelius U, Schulz EC, Rose F, et al. Role ofListeria monocytogenes exotoxins listeriolysin and phosphatidylinositol-specific phospholipase C in activation of human neutrophils. Infect Immun, 1999, 67(3):1125-1130.
    49. Kohda C, Kawamura I, Baba H, et al. Dissociated linkage of cytokine-inducing activity and cytotoxicity to different domains of listeriolysin O from Listeria monocytogenes. Infect Immun, 2002, 70(3):1334-1341.
    50. Coconnier MH, Lorrot M, Barbat A, el al. Listeriolysin O-induced stimulation of mucin exocytosis in polarized intestinal mucin-secreting cells: evidence for toxin recognition of membrane-associated lipids and subsequent toxin internalization through caveolae. Cell Microbiol, 2000, 2(6):487-504.
    51. Kocks C, Gouin E, Tabouret M, et al. L. monocytogenes-induced actin assembly requires the actA gene product, a surface protein. Cell, 1992, 68(3):521-531.
    52. Suarez M, Gonzalez-Zorn B, VegaY, et al. A role for ActA in epithelial cell invasion by Listeria monocytogenes. Cell M icrobiol, 2001,3(12):853-864.
    53. Alvarez-Dominguez C, Vazquez-Boland JA, Carrasco-Marin E, et al. Host cell heparin sulfate proteoglycans mediate attachment and entry of Listeria monocytogenes, and the listeriat surface protein ActA is involved in heparan sulfate receptor recognition. Infect Immun,1997, 65(1):78-88.
    54. Cabanes D, Dussurget O, Dehoux P, et al. Auto, a surface associated autolysin of Listeria monocytogenes required for entry into eukaryotic cells and virulence. Mo] Microbiol, 2004, 51(6):1601-1614.
    55. Goldfine H, Wadsworth SJ. Macrophage intraeellular signaling induced by Listeria monocytogenes. Microbes Infect, 2002, 4(13): 1335-1343.
    56. Chico-Calero I, Suarez M, Gonzalez-Zorn B, et al. Hpt, a bacterial homolog of the microsomal glucose-6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc Natl Acad Sci USA, 2002, 99(1):431-436.
    57. Cossart P. Actin-based motility of pathogens: The Arp2/3 complex is a central player. Cell Microbiol, 2000, 2(3): 195-205.
    58. Gedde MM, Higgins DE, Tilney LG, et al. Role of listeriolysin O in celt-to-celt spread of Listeria monocytogenes. Infect Immun, 2000, 68(2):999-1003.
    59. Portnoy DA, Jacks PS, Hinrichs DJ. Role of hemolysin for the intracellular growth of Listeria monocytogenes. J Exp Med, 1988, 167(4):1459-1471.
    60. Bielecki J, Youngman P, Connelly P, et al. Bacillus subtilis expressing a haemolysin gene from Listeria monocytogenes can grow in mammalian cells. Nature, 1990, 345(6271):175-176.
    61. Shaughnessy LM, Hoppe AD, Christensen KA, et al. Membrane perforations inhibit lysosome fusion by altering pH and calcium in Listeria monocytogenes vacuoles. Cell Microbiol, 2006, 8(5):781-792.
    62. Glomski IJ, Decatur AL, Portnoy DA. Listeria monocytogenes mutants that fail to compartmentalize listerolysin O activity are cytotoxic, avirulent, and unable to evade host extracellular defenses. Infect Immun, 2003, 71(12): 6754-6765.
    63. Decatur AL, Portnoy DA. A PEST-like sequence in Listeriotysin O essential for Listeria monocytogenes pathogenicity. Science, 2000, 290 (5493): 992-995.
    64. Lety MA, Frehel C, Beretti JL, et al. Modification of the signal sequence cleavage site of listeriolysin O does not affect protein secretion but impairs the virulence of Listeria monocytogenes.Microbiology, 2003, 149(Pt 5):1249-1255.
    65. Mengaud J, Braun-Breton C, Cossart P. Identification of phosphatidylinositol-specific phospholipase C activity in Listeria monocytogenes: a novel type of virulence factor? Mol Microbiol, 1991,5(2):367-372.
    66. Vazquez-Boland JA, Kocks C, Dramsi S, et al. Nucleotide sequence of the lecithinaseoperon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infect trenton, 1992,60(1):219-230.
    67. Poyart C, Abachin E, Razafimanantsoa I, et al. The zinc metalloprotease of Listeria monocytogenes is required for maturation of phosphatidylcholine phospholipase C: direct evidence obtained by gene complementation. Infect Immun, 1993, 61 (4): 1576-1580.
    68. Grundling A, Gonzalez MD, Higgins DE. Requirement of the Listeria monocytogenes broad-range phospholipase PC-PLC during infection of human epithelial cells. J Bacteriol, 2003, 185(21): 6295-307.
    69. Wadsworth SJ, Goldfine H. Mobilization of protein kinase C in macrophages induced by Listeria monocytogenes affects its internalization and escape from the phagosome. Infect Immun, 2002, 70(8): 4650-4660.
    70. Smith CA, Marquis H, Jones S, et al. The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect Immun, 1995, 63(11):4231-4237.
    71. Mounier J, Ryter A, Coquis-Rondon M, et al. Intracellular and cell-to-cell spread of Lisleria monocytogenes involves interaction with F-actin in the enterocytelike cell line Caco-2. Infect Immun, 1990, 58(4):1048-1058.
    72. Geese M, Loureiro JJ, Bear JE, et al. Contribution of Ena/VASP proteins to intracellular motility of Listeria requires phosphorylation and proline-rich core but not F-actin binding or multimerization. Mol Biol Cell, 2002, 13 (7): 2383-2396.
    73. Lasa I, Gouin E, Goethals M, et al. Identification of two regions in the N-terminal domain of ActA involved in the actin comet tail formation by Listeria monocytogenes. Embo J, 1997, 16(7): 1531-1540.
    74. Mengaud J, Dramsi S, Gouin E, et al. Pleiotropic control ofListeria monocytogenes virulence factors by a gene that is autoregulated. Mol Microbiol, 1991,5(9):2273-2283.
    75. Leirneister-Wachter M, Domann E, Chakraborty T. The expression of virulence genes in Listeria monocytogenes is thermoregulated. J Bacteriol, 1992, 174(3):947-952.
    76. Johansson J, Mandin P, Renzoni A, et al. An RNA thermosensor controls expression of virulence genes in Listeria monocytogenes. Cell, 2002, 110(5):551-561.
    77. Mandin P, Fsihi H, Dussurget O, et al. VirR, a response regulator critical for Listeria monocytogenes virulence. Mol Microbiol,2005, 57(5): 1367-1380.
    78. Bierne H, Mazmanian SK, Trost M, et al. Inactivation of the srtA gene in Listeria monocytogenes inhibits anchoring of surface proteins and affects virulence. Mol Microbiol,2002,43(4):869-881.
    79. Bierne H, Garandeau C, Pucciarelli MG, et al. Sortase B, a new class of sortase in Listeria monocytogenes. J Bacteriol, 2004, 186(7): 1972-1982.
    80. Borezee E, Pellegrini E, Beretti JL, et al. SvpA, a novel surface virulence- associated protein required for intracellular survival of Listeria monocytogenes. Microbiology, 2001, 147(Pt 11):2913-2923.
    81. Dussurget O, Cabanes D, Dehoux P, et al. Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis.Mol Microbiol, 2002, 45(4): 1095-1096.
    82. Sue D, Boor KJ, Wiedmann M. Sigma(B)-dependent expression patterns of compatible solute transporter genes opuCA and hno1421 and the conjugated bile salt hydrolase gene bsh in Listeria monocytogenes. Microbiology, 2003, 149(Pt 11):3247-3256.
    1. Nakama A, Matsuda M, Itoh T, et al. Molecular typing of Listeria monocytogenes isolated in Japan by pulsed-field gel electrophoresis. J Vet Med Sci, 1998, 60(6): 749-752.
    2. Liu D. Identification, subtyping and virulence determination of Listeria monocytogenes, an important foodborne pathogen. J Med Microbiol, 2006, 55(Pt 6): 645-659.
    3. Liu D, Lawrence ML, Gorski L, et al. Listeria monocytogenes serotype 4b strains belonging to lineages Ⅰ and Ⅲ possess distinct molecular features. J Clin Microbiol, 2006, 44(1): 214-217.
    4. Wiedmann M. Molecular subtyping methods for Listeria monocytogenes. J AOAC Int, 2002, 85(2): 524-531.
    5.周晓辉,焦新安.单核细胞增生症李斯特菌的分子亚分型法及其应用.动物医学进展,2003,24(3):44-47.
    6. De Cesare A, Bruce JL, Dambaugh TR, et al. Automated ribotyping using different enzymes to improve discrimination of Listeria monocytogenes isolates, with a particular focus on serotype 4b strains. J Clin Microbiol, 2001, 39(8): 3002-3005.
    7. Harvey J, Gilmour A. Characterization of Listeria monocytogenes isolates by esterase electrophoresis. Appl Environ Microbiol, 1996, 62(4): 1461-1466.
    8. Capita R, Alonso-Calleja C, Mereghetti L, et al. Evaluation of the international phage typing set and some experimental phages for typing of Listeria monocytogenes from poultry in Spain. J Appl Microbiol, 2002, 92(1): 90-96.
    9. Brosch R, Chen J, Luchansky JB. Pulsed-field fingerprinting of listeriae: identification of genomic divisions for Listeria monocytogenes and their correlation with serovar. Appl Environ Microbiol, 1994, 60(7): 2584-2592.
    10. Graves LM, Swaminathan B, Reeves MW, et al. Comparison of ribotyping and multilocus enzyme electrophoresis for subtyping of Listeria monocytogenes isolates. J Clin Microbiol, 1994, 32(12): 2936-2943.
    11. Brosch R, Brett M, Catimel B, et al. Genomic fingerprinting of 80 strains from the WHO multicenter international typing study of listeria monocytogenes via pulsed-field gel electrophoresis (PFGE). Int J Food Microbiol, 1996, 32(3): 343-355.
    12. Vela AI, Fernandez-Garayzabal JF, Vazquez JA, et al. Molecular typing by pulsed-field gel electrophoresis of Spanish animal and human Listeria monocytogenes isolates. Appl Environ Microbiol, 2001, 67(12):5840-5843.
    13. Kerouanton A, Brisabois A, Denoyer E, el al, Comparison of five typing methods for the epidemiological study of Lisleria monocytogenes, Int J Food Microbiol, 1998, 43(1-2): 61-71.
    14. Graves LM, Swaminathan B. PulseNet standardized protocol for subtyping Listeria monocytogenes by macrorestriction and pulsed-field gel electrophoresis, Int J Food Microbiol, 2001, 65(1-2): 55-62.
    15. O'Donoghue K, Bowker K, McLauchlin J, et al. Typing of Listeria monocytogenes by random amplified polymorphic DNA (RAPD) analysis, Int J Food Microbiol, 1995, 27(2-3): 245-252.
    16. Ripabelli G, McLauchin J, Threlfall EJ. Amplified fragment length polymorphism (AFLP) analysis of Listeria monocytogenes. Syst Appl Microbiol, 2000, 23(1): 132-136
    17. Guerra MM, Bernardo F, McLauchlin J. Amplified fragment length polymorphism (AFLP) analysis ofListe~#a monocytogenes. Syst Appl Microbiol, 2002, 25(3): 456-461.
    18. Keto-Timonen RO, Autio TJ, Korkeala HJ. An improved amplified fragment length polymorphism (AFLP) protocol for discrimination of Listeria isolates. Syst Appl Microbiol, 2003, 26(2): 236-244.
    19. Wiedmann M, Bruce JL, Keating C, et al. Ribotypes and virulence gene polymorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. Infect Immun, 1997, 65(7):2707-2716.
    20. Jersek B, Gilot P, Gubina M, et al. Typing of Listeria monocytogenes strains by repetitive element sequence-based PCR. J Clin Microbiol, 1999, 37(1): 103-109.
    21. Van Kessel JS, Karns JS, Gorski L, et al. Subtyping Listeria monocytogenes from bulk tank milk using automated repetitive element-based PCR. J Food Prot, 2005, 68(12): 2707-2712.
    22. Chou CH, Wang C. Genetic relatedness between Listeria monocytogenes isolates from seafood and humans using PFGE and REP-PCR. Int J Food Microbiol, 2006, in press.
    23. Gasser RB. Mutation scanning methods for the analysis of parasite genes. Int J Parasitol, 1997, 27(12): 1449-1463.
    24. Hayashi K. PCR-SSCP: a simple and sensitive method for detection of mutations in the genomic DNA. PCR Methods Appl, 1991, 1(1): 34-38.
    25. Manzano M, Cocolin L, Pipan C, et al. Single-strand conformation polymorphism (SSCP) analysis of Listeria monocytogenes iap gene as tool to detect different serogroups. Mol Cell Probes, 1997, 11 (6): 459-462.
    26. Somer L, Danin-Poleg Y, Diamant E, et al. Amplified intergenic locus polymorphism as a basis for bacterial typing of Listeria spp. and Escherichia coli. Appl Environ Microbiol, 2005, 71(6): 3144-3152.
    27. Meinersmann RJ, Phillips RW, Wiedmann M, et al. Multilocus sequence typing of Listeria monocytogenes by use of hypervariable genes reveals clonal and recombination histories of three lineages. Appl Environ Microbiol, 2004, 70 (4): 2193-2203.
    28. Maiden MC, Bygraves JA, Fell E, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A, 1998, 95(6): 3140-3145.
    29. Feil EJ, Spratt BG. Recombination and the population structures of bacterial pathogens. Annu Rev Mierobiol, 2001, 55: 561-590.
    30. Wiedmann M. Subtyping of bacterial foodborne pathogens. Nutr Rev, 2002, 60(7 Pt 1): 201-208.
    31. Ward TJ, Gorski L, Borucki MK, et al. Intraspecific phylogeny and lineage group identification based on the prfA virulence gene cluster ofListeria monocytogenes. J Bacteriol, 2004, 186(15):4994-5002.
    32. Revazishvili T, Kotetishvili M, Stine OC, et al. Comparative analysis of multilocus sequence typing and pulsed-field gel electrophoresis for characterizing Listeria monocytogenes strains isolated from environmental and clinical sources. J Clin Microbiol, 2004, 42(1): 276-285.
    33. Nightingale KK, Windham K, Wiedmann M. Evolution and molecular phylogeny of Listeria monocytogenes isolated from human and animal listeriosis eases and foods. J Bacteriol, 2005, 187(16): 5537-5551.
    1.陈利玉.重组单核细胞增多性李斯特菌作为活疫苗载体的研究进展.国外医学预防、诊断、治疗用生物制品分册.1998,21(3):100-103.
    2. Sleator RD, Hill C. Patho-biotechnology: using bad bugs to do good things. Curt Opin Biotecbnol, 2006, 17(2): 211-216.
    3. Roland KL, Tinge SA, Killeen KP, et al. Recent advances in the development of live, attenuated bacterial vectors. Curt Opin Mol Ther, 2005, 7(1): 62-72.
    4. Lecuit M. Understanding how Listeria monocytogenes targets and crosses host barriers. Clin Microbiol Infect, 2005, 11(6): 430-436.
    5. Pamer EG, Harty JT, Bevan MJ, Precise prediction of a dominant class I MHC-restricted epitope of Listeria monocytogenes. Nature, 1991,353(6347): 852-855.
    6. Portnoy DA, Chakraborty T, Goebel W, et al. Molecular determinants of Listeria monocytogenes pathogenesis. Infect hnmun, 1992, 60(4): 1263-1267.
    7. Shen H, Miller JF, Fan X, et al. Compartmentalization of bacterial antigens: differential effects on priming of CD8 T cells and protective immunity. Cell, 1998, 92(4):535-545.
    8, Hussain SF, Paterson Y. What is needed for effective antitumor immunotherapy? Lessons learned using Listeria monocytogenes as a live vector for HPV-associated tumors. Cancer Immunol Immunother, 2005, 54(6): 577-586.
    9. Goossens PL, Montixi C, Saron MF, et al. Listeria monocytogenes: a live vector able to deliver heterologous protein within the cytosol and to drive a CD8 dependent T cell response. Biologicals, 1995, 23 (2): 135-143.
    10. Dietrich G, Bubert A, Gentschev I, et al. Delivery of antigen-encoding plasmid DNA into the cytosol of macrophages by attenuated suicide Listeria monocytogenes. Nat Biotechnol, 1998, 16(2):181-185.
    11. Hense M, Domann E, Krusch S, et al. Eukaryotic expression plasmid transfer from the intracellular bacterium Listeria monocytogenes to host cells. Cell Microbiol, 2001,3 (9):599-609.
    12. Stevens R, Howard KE, Nordone S, et al. Oral immunization with recombinant listeria monocytogenes controls virus load after vaginal challenge with feline immunodeficiency virus. J Virol, 2004, 78(15): 8210-8218.
    13. Lieberman J, Frankel FR. Engineered Listeria monocytogenes as an AIDS vaccine. Vaccine, 2002, 20(15): 2007-2010.
    14. Guzman CA, Rohde M, Chakrabony T, et al. Interaction of Listeria monoeytogenes with mouse dendritic cells. Infect Immun, 1995, 63 (9): 3665-3673,
    15. Kolb-Maurer A, Gentschev I, Fries HW, et al. Listeria monocytogenes-infected human dendritic cells: uptake and host cell response. Infect Immun, 2000, 68(6): 3680-3688.
    16. Paschen A, Dittmar KE, Grenningloh R, et al. Human dendritic cells infected by Listeria monocytogenes: induction of maturation, requirements for phagolysosomal escape and antigen presentation capacity. Eur J Immunol, 2000, 30(12): 3447-3456.
    17. Pron B, Boumaila C, Jaubert F, et al. Dendritic cells are early cellular targets of Listeria monocytogenes after intestinal delivery and are involved in bacterial spread in the host. Cell Microbiol, 2001, 3 (5): 331-340.
    18. Holmgren J, Czerkinsky C. Mucosal immunity and vaccines. Nat Med, 2005, 11(4 Suppl): S45-S53.
    19. Szalay G, Ladel CH, Kaufmann SH. Stimulation of protective CD8+ T lymphocytes by vaccination with nonliving bacteria. Proc Natl Acad Sci U S A, 1995, 92 (26): 12389-12392,
    20. Brockstedt DG, Gied[in MA, Leong ML, et al. Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc Natl Acad Sci U S A, 2004, 101 (38):13832-13837.
    21. Garandeau C, Reglier-Poupet H, Dubail I, et al.The sortase SrtA of Listeria monocytogenes is involved in processing of internalin and in virulence. Infect Immun, 2002, 70(3): 1382-1390.
    22. Borezee E, Pellegrini E, Beretti JL, et al. SvpA, a novel surface virulence-associated protein required for intracellular survival of Listeria monocytogenes. Microbiology, 2001, 147(Pt Ⅱ): 2913-2923.
    23. Chico-Calero I, Suarez M, Gonzalez-Zorn B, et al. Hpt, a bacterial homolog of the microsomal glucose-6-phosphate translocase, mediates rapid intracellular proliferation in Listeria. Proc Natl Acad Sci USA,2002, 99(1):431-436.
    24. Shen H, Slifka MK, Malloubian M, et al. Recombinant Listeria monocytogenes as a live vaccine vehicle for the induction of protective anti-viral cell-mediated immunity. Proc Natl Acad Sci USA, 1995, 92 (9):3987-3991.
    25. Angelakopoulos H, Loock K, Sisul DM, et al. Safety and shedding of an attenuated strain of Listeria monocytogenes with a deletion of actA/plcB in adult volunteers: a dose escalation study of oral inoculation. Infect Immun, 2002,70 (7):3592-3601.
    26. Pilgrim S, Kolb-Maurer A, Gentschev I, et al. Deletion of the gene encoding p60 in Listeria monocvtogenes leads to abnormal cell division and loss of actin-based motility. Infect Immun, 2003, 71 (6): 3473-3484.
    27. Friedman RS, Frankel FR, Xu Z, et al. Induction of human immunodeficiency virus (HIV)-specific CD8 T-cell responses by Listeria monocytogenes and a hyperattenuated Listeria strain engineered to express HIV antigens. Journal of virology, 2000, 74(21):9987-9993.
    28. Mata M, Yao ZJ, Zubair A, et al. Evaluation of a recombinant Listeria monocytogenes expressing an HIV protein that protects mice against viral challenge. Vaccine, 2001, 19:1435-1445.
    29. Stevens R, Lavoy A, Nordone S, et al. Pre-existing immunity to pathogenic Listeria monocytogenes does not prevent induction of immune responses to feline immunodeficiency virus by a novel recombinant Lisleria monocyogenes vaccine. Vaccine, 2005, 23 (12): 1479-1490.
    30. Autret N, Raynaud C, Dubail I, et al. Identification of the agr locus of Listeria monocytogenes: role in bacterial virulence. Infect Immun, 2003, 71(8): 4463-4471.
    31. Thompson RJ, Bouwer HG, Portnoy DA, et al. Pathogenicity and immunogenicity of a Listeria monocytogenes strain that requires D-alanine for growth. Infect Immun, 1998, 66 (8): 3552-3561.
    32. Li Z, Zhao X, Higgins DE, et al. Conditional lethality yields a new vaccine strain of Listeria monocytogenes for the induction of cell-mediated immunity. Infect Immun, 2005. 73 (8): 5065-5073.
    33. Zhao X, Li Z, Gu B, et al. Pathogenicity and immunogenicity of a vaccine strain of Listeria monocytogenes that relies on a suicide plasmid to supply an essential gene product. Infect Immun, 2005, 73 (9): 5789-5798.
    34. Schafer R, Portnoy DA, Brassell SA, et al. Induction of a cellular immune response to a foreign antigen by a recombinant Listeria monocytogenes vaccine. J Immunol, 1992, 149 (1):53-59.
    35. Ikonomidis G, Paterson Y, Kos FJ, et al. Delivery of a viral antigen to the class I processing and presentation pathway by Listeria monocytogenes.J Exp Med, 1994,180 (6). 2209-2218.
    36. Frankel FR, Hegde S, Lieberman J, et al. Induction of cell-mediated immune responses to human immunodeficiency virus type 1 Gag protein by using Listeria monocytogenes as a live vaccine vector. J Immunol, 1995,155 (10):4775-4782.
    37. Rayevskaya MV, Frankel FR. Systemic immunity and mucosal immunity are induced against human immunodeficiency virus Gag protein in mice by a new hyperattenuated strain of Listeria monocytogenes. J Virol, 2001, 75(6): 2786-2791.
    38. Kursar M, Bonhagen K, Kohler A, et al. Organ-specific CD4+ T cell response during Lisleria monocytogenes infection. J Immunol, 2002,168 (12):6382-6387.
    39. Darji A, Mohamed W, Domann E, et at. Induction of immune responses by attenuated isogenic mutant strains of Listeria monocytogenes. Vaccine, 2003, 21 Suppl 2, S 102-109.
    40. Dietrich G, Viret JF, Gentschev I. Haemolysin A and listeriolysin—two vaccine delivery tools for the induction of cell-mediated immunity. Int J Parasitol, 2003, 33(5-6): 495-505.
    41. Starks H, Bruhn KW, Shen H, et al. Listeria monocytogenes as a vaccine vector: virulence attenuation or existing antivector immunity does not diminish therapeutic cfficacy.J Immunol, 2004, 173(1):420-427.
    42. Soussi N, Saklani-Jusforgues H, Colle JH, et al. Effect of intragastric and intraperitoneal immunisation with attenuated and wild-type LACK-expressing Listeria monocytogenes on control of routine Leishmania major infection. Vaccine, 20(21-22):2702-2712.
    43. Schoen C, Stritzker J, Goebel W, et al. Bacteria as DNA vaccine carriers for genetic immunization, Int J Med Microbiol, 2004, 294(5):319-335.
    44. Pilgrim S, Stritzker J, Schoen C, et al. Bactofection of mammalian cells by Lisleria monocytogenes: improvement and mechanism of DNA delivery. Gene Ther 2003, 10 (24):2036-2045.
    45. Loessner H, Weiss S. Bacteria-mediated DNA transfer in gene therapy and vaccination. Expert Opin Biol Ther, 2004, 4 (2):157-168.
    46. Yoshimura K, ,lain A, Allen HE, et al. Selective targeting of antitumor immune responses with engineered live-attenuated Listeria monocytogenes. Cancer Res, 2006, 66 (2): 1096-1104.
    47. Brockstedt DG, Bahjat KS, Giedlin MA, et al. Killed but metabolically active microbes: a new vaccine paradigm for eliciting effector T-cell responses and protective immunity. Nat Med 2005, 11(8):853-860.
    48. Klade CS. Proteomics approaches towards antigen discovery and vaccine development. Curr Opin Mol Ther, 2002, 4(3):216-223.
    49. Russmann H. Inverted pathogenicity: the use of pathogen-specific molecular mechanisms for prevention or therapy of disease, Int J Med Microbiol, 2004, 293 (7-8):565-569.
    50. Guimaraes VD, Gabriel JE, Lefevre F, et al. Internalin-expressing Lactococcus lactis is able to invade small intestine of guinea pigs anddeliver DNA into mammalian epithelial cells. Microbes Infect, 2005, 7(5-6):836-844.
    51. Dietrich G, Hess J, Gentschev I, et al. From evil to good: a cytolysin in vaccine development. Trends Microbiol, 2001, 9 (1):23-28.
    52. Saito G, Amidon GL, Lee KD. Enhanced cytosolic delivery of plasmid DNA by a sulfhydryl-activatable listeriolysin O/protamine conjugate utilizing cellular reducing potential. Gene Ther, 2003, 10 (1):72-83.
    53. Stier EM, Mandal M, Lee KD. Differential cytosolic delivery and presentation of antigen by listeriolysin O-liposomes to macrophages and dendritic cells. Mol Pharm, 2005, 2 (1):74-82.
    54. Lorenzi GL, Lee KD. Enhanced plasmid DNA delivery using anionic LPDII by listeriolysin O incorporation. J Gene Med, 2005, 7 (8):1077-1085.
    55. Grode L, Seller P, Baumann S, et al. Increased vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille Cahnette-Gue' rin mutants that secrete listeriolysin. J Clin Invest 2005. doi:10.1172/.ICI24617.
    56. Schuerch DW, Wilson-Kubalek EM, Tweten RK. Molecular basis of listeriolysin O pH dependence. Proc Natl Acad Sci USA, 2005, 102(35):12537-12542.
    57. Decatur AL, Portnoy DA. A PEST-like sequence in Listeriolysin O essential for Listeria monocytogenes pathogenicity. Science, 2000, 290 (5493): 992-995.
    58. Manoj S, Babiuk LA, van Drunen Little-van den Hurks S. Approaches to enhance the efficacy of DNA vaccines. Crit Rev Clin Lab Sci, 2004, 41(1):1-39.
    59. Schoen C, Kolb-Maurer A, Geginat G, et al. Bacterial delivery of functional messenger RNA to mammalian cells. Cell Microbiol, 2005, 7 (5):709-724.
    60. Corbin GA, Harty JT. Duration of infection and antigen display have minimal influence on the kinetics of the CD4+ T cell response to Listeria monocytogenes infection. J Immunol, 2004, 173 (9):5679-5687.
    1. Robinson RK, Batt CA, Patel PD. Encyclopedia of Food Microbiology. San Diego, 2000, CA: Academic Press.
    2. Roche SM, Gracieux P, Albert I, et al. Experimental validation of low virulence in field strains of Listeria monocytogenes. Infect Immun, 2003, 71(6): 3429-3436.
    3. Mead PS, Slutsker L, Dietz V, et al. Food-related illness and death in the United States. Emerg Infect Dis, 1999, 5(5): 607-625.
    4. Vugia D, et al. Preliminary FoodNet data on the incidence of infection with pathogens transmitted commonly through food—10 sites, United States, 2004. MMWR Morb Mortal Wkty Rep, 2005, 54(14):352-356.
    5. de Valk H, et al. Surveillance of listeria infections in Europe. Eurosurveillance, 2005, 10:251-255.
    6. USDA Economic Research Service. http://www.ers.usda.gov/briefing/FoodborneDisease/features.htm.
    7. Farber JM, Peterkin PI. Listeria monocylogenes, a food-borne pathogen. Microbiol Rev, 1991, 55(3):476-511.
    8. Gellin BG, Broorne CV. Listeriosis. Jama, 1989, 261(9):1313-1320.
    9. Barbour AH, Rampling A, Horrnaeche CE. Comparison of the infectivity of isolates of Listeria monocytogenes following intragastric and intravenous inoculation in mice. Microb Pathog, 1996,20(4): 247-253.
    10. Barbour AH, Rampling A, Hormaeche CE. Variation in the infectivity of Listeria monocytogenes isolates following intragastric inoculation of mice. Infect Immun, 2001,69(7): 4657-4660.
    11. Erdenlig S, Ainsworth AJ, Austin FW. Pathogenicity and production of virulence factors by Listeria monocytogenes isolates from channel catfish. J Food Prot, 2000, 63(5):613-619.
    12. Oiler M, Pierre F, Lernaitre JP, et al. Assessment of the pathogenic potential of two Listeria monocytogenes human faecal carriage isolates. Microbiology, 2002, 148(Pt 6): 1855-1862.
    13. Liu D. Identification, subtyping and virulence determination of Listeria monocytogenes, an important foodborne pathogenldentificalion, subtyping and virulence determination of Listeria monocytogenes, an important foodborne pathogen. J Med Microbiol,2006, 55(Pt 6): 645-659.
    14. Roche SM, Velge P, Bottreau E, et al. Assessment of the virulence of Listeria monocytoogenes: agreement between a plaque-forming assay with HT-29 cells and infection of imrnunocompetent mice, Int J Food Microbiol, 2001, 68(1-2); 33-44.
    15. Liu D, Ainsworth AJ, Austin FW, et al. Characterization of virulent and avirulent Listeria monocytogenes strains by PCR amplification of putative transcriptional regulator and internalin genes. J Med Microbiol, 2003, 52(Pt 12): 1065-1070.
    16. Welkos S, O'Brien A. Determination of rnedian lethal and infectious doses in animal model systems. Methods Enzymol, 1994, 235:29-39.
    17. Roberts A, Chan Y, Wiedmann M. Definition of genetically distinct attenuation mechanisms in naturally virulence-attenuated Listeria monocytogenes by comparative cell culture and molecular characterization. Appl Environ Microbiol, 2005, 71 (7): 3900-3910.
    18. Liu D. Listeria monocytogenes: comparative interpretation of mouse virulence assay. FEMS Microbiol Lett, 2004, 233(1): 159-164.
    19. Pine L, Kathariou S, Quinn F, et al. Cytopathogenic effects in enterocytelike Caco-2 cells differentiate virulent from avirulent Listeria strains. J Clin Microbiol,1991, 29(5): 990-996.
    20. Sun AN, Camilli A, Portnoy DA. isolation of Listeria monocytogenes small-plaque mutants defective for intracellular growth and cell-to-cell spread. Infect Immun, 1990, 58(11): 3770-3778.
    21. Zhou X, Jiao X, Wiedmann M. Lisleria monocytogenes in the Chinese food system: strain characterization through partial actA sequencing and tissue-culture pathogenicity assays.J Med Microbiol, 2005, 54(Pt3): 217-224.
    22. Glaser P, Frangeul L, Buchrieser C, et al. Comparative genomics of Listeria species. Science,2001,294(5543): 849-852.
    23. Nelson KE, Fouts DE, Mongodin EF, et al. Whole genome comparisons of serotype 4b and 1/2a strains of the food-borne pathogen Listeria monocytogenes reveal new insights into the core genome components of this species. Nucleic Acids Res, 2004, 32(8): 2386-2395.
    24. Buncic S, Avery SM. Relationship between variations in pathogenicity and lag phase at 37 degrees C of Listeria monocytogenes previously stored at 4 degrees C. Lett Appl Microbiol, 1996, 23(1): 18-22.
    25. Norrung B, Andersen JK. Variations in virulence between different electrophoretic types of Listeria monocytogenes. Lett Appl Microbiol, 2000, 30(3): 228-232.
    26. Gracieux P, Roche SM, Pardon P, et al. Hypovirulent Listeria monocytogenes strains are less frequently recovered than virulent strains on PALCAM and Rapid' L. mono media. Int J Food Microbiol, 2003, 83 (2): 133-145.
    27. Gombas DE, ChenY, Clavero RS, et al. Survey of Listeria monocytogenes in ready-to-eat foods.J Food Prot, 2003, 66(4): 559-569.
    28. Wiedmann M. ADSA Foundation Scholar Award-An integrated science-based approach to dairy food safety: Listeria monocytogenes as a model system. J Dairy Sci, 2003, 86(6): 1865-1875.
    29. Gray MJ, Zadoks RN, Fortes ED, et al. Listeria monocytogenes isolates from foods and humans form distinct but overlapping populations. Appl Environ Microbiol,2004, 70(10): 5833-5841.
    30. Norton DM, Scarlett JM, Horton K, et al. Characterization and pathogenic potential of Listeria monocytogenes isolates from the smoked fish industry. Appl Environ Microbiol, 2001, 67(2): 646-653.
    1. Schuchat A, Swaminathan B, Broome CV. Epidemiology of human listeriosis. Clin Microbiol Rev, 1991, 4(2): 169-183.
    2. Nakama A, Matsuda M, Itoh T, et al. Molecular typing of Listeria monocytogenes isolated in Japan by pulsed-field gel electrophoresis. J Vet Med Sci, 1998, 60(6): 749-752.
    3. Mead PS, Slutsker L, Dietz V, et al. Food-related illness and death in the United States. Emerg Infect Dis, 1999, 5(5): 607-625.
    4. de Valk H et al. Surveillance of listeria infections in Europe. Eurosurveillance, 2005, 10:251-255.
    5.蔡建芳,王焕玲,盛瑞媛.李斯特菌脑膜炎5例临床分析.中国实用内科杂志,2003,23(3):164-166.
    6. Liu D. Identification, subtyping and virulence determination of Listeria monocytogenes, an important foodborne pathogen. J Med Microbiol, 2006, 55(Pt 6): 645-659.
    7. Wiedmann M. Molecular subtyping methods for Listeria monocytogenes. J AOAC Int, 2002, 85(2): 524-531.
    8. Capita R, Alonso-Calleja C, Mereghetti L, et al. Evaluation of the international phage typing set and some experimental phages for typing of Listeria monocytogenes from poultry in Spain. J Appl Microbiol, 2002, 92(1): 90-96.
    9. De Cesare A, Bruce JL, Dambaugh TR, et al. Automated ribotyping using different enzymes to improve discrimination of Listeria monocytogenes isolates, with a particular focus on serotype 4b strains. J Clin Microbiol, 2001, 39(8): 3002-3005.
    10. Kerouanton A, Brisabois A, Denoyer E, et al. Comparison of five typing methods for the epidemiological study ofListeria monocytogenes. Int J Food Microbiol, 1998, 43(1-2):61-71.
    11. Louie M, Jayaratne P, Luchsinger I, et al. Comparison of ribotyping, arbitrarily primed PCR, and pulsed-field gel electrophoresis for molecular typing of Listeria monocytogenes. J Clin Microbiol, 1996, 34(1):15-19.
    12. Brosch R, Chen J, Luchansky JB. Pulsed-field fingerprinting of listeriae: identification of genomic divisions for Listeria monocytogenes and their correlation with serovar. Appl Environ Microbiol, 1994, 60(7): 2584-2592.
    13. Graves LM, Swaminathan B, Reeves MW, et al. Comparison of ribotyping and multilocus enzyme electrophoresis for subtyping of Listeria monocytogenes isolates. J Clin Microbiol, 1994, 32(12): 2936-2943.
    14. Brosch R, Brett M, Catimel B, et al. Genomic fingerprinting of 80 strains from the WHO multicenter international typing study of listeria monocytogenes via pulsed-field gel electrophoresis (PFGE). Int J Food Microbiol, 1996, 32(3): 343-355.
    15. Vela Al, Fernandez-Garayzabal JF, Vazquez JA, et al. Molecular typing by pulsed-field gel electrophoresis of Spanish animal and human Listeria monocytogenes isolates. Appl Environ Microbiol, 2001,67(12):5840-5843.
    16. Maiden MC, Bygraves JA, Feil E, et al. Multilocus sequence typing: a portable approach to the identification of clones within populations of pathogenic microorganisms. Proc Natl Acad Sci U S A, 1998, 95(6): 3140-3145.
    17. Wiedmann M. Subtyping of bacterial foodborne pathogens. Nutr Rev, 2002, 60(7 Pt 1): 201-208.
    18. Ward TJ, Gorski L, Borucki MK, et al. Intraspecific phylogeny and lineage group identification based on the prfA virulence gene cluster of Listeria monocytogenes. J Bacteriol, 2004, 186(15):4994-5002.
    19. Salcedo C, Arreaza L, Alcala B, et al. Development of a multilocus sequence typing method for analysis of Listeria monocytogenes clones. J Clin Microbiol, 2003, 41(2): 757-762.
    20. Zhang W, Jayarao BM, Knabel SJ. Multi-virulence-locus sequence typing of Listeria monocytogenes. Appl Environ Microbiol, 2004, 70 (2):913-920.
    21. Revazishvili T, Kotetishvili M, Stine OC, et al. Comparative analysis of multilocus sequence typing and pulsed-field gel electrophoresis for characterizing Listeria monocytogenes strains isolated from environmental and clinical sources. J Clin Microbiol, 2004, 42 (1): 276-285.
    22. Nightingale KK, Windham K, Wiedmann M. Evolution and molecular phylogeny of Lisleria monocytogenes isolated from human and animal listeriosis cases and foods. J Bacteriol, 2005, 187(16): 5537-5551.
    23. Chen Y, Zhang W, Knabel SJ. Multi-virulence-locus sequence typing clarifies epiderniology of recent listeriosis outbreaks in the United States. J Clin M icrobiol, 2005, 43 (10):5291-5294.
    24. Winters DK, Maloney TP, Johnson MG. Rapid detection of Listeria monocytogenes by a PCR assay specific for an aminopeptidase. Mol Cell Probes, 1999,13 (2): 127-131.
    25. Abolmaaty A, Vu C, Oliver J, et al. Development of a new lysis solution for releasing genomic DNA from bacterial cells for DNA amplification by polymerase chain reaction. Microbios, 2000, 101(400): 181-189.
    26. Graves LM, Swaminathan B. PulseNet standardized protocol for subtyping Listeria monocytogenes by macrorestriction and pulsed-field gel electrophoresis. Int J Food Microbiol, 2001, 65(1-2): 55-62.
    27. Cai S, Kabuki DY, Kuaye AY, et al. Rational design of DNA sequence-based strategies for subtyping Listeria monocytogenes. J Clin Microbiol, 2002, 40 (9): 3319-3325.
    28. Wiedmann M, Bruce JL, Keating C, et al. Ribotypes and virulence gene polylnorphisms suggest three distinct Listeria monocytogenes lineages with differences in pathogenic potential. Infect Immun, 1997, 65(7):2707-2716.
    29. Nakama A, Terao M, Kokubo Y, et al. A comparison of Listeria monocytogenes serovar 4b isolates of clinical and food origin in Japan by pulsed-field gel electrophoresis, Int J Food Microbiol, 1998, 42 (3):201-206.
    30. Markkula A, Autio T, Lunden J, et al. Raw and processed fish show identical Listeria monocytogenes genotypes with pulsed-field gel electrophoresis. J Food Prot, 2005, 68(6): 1228-1231.
    31. Okwumabua O, O'Connor M, Shull E, et al. Characterization of Listeria monocytogenes isolates from food animal clinical cases: PFGE pattern similarity to strains from human listeriosis cases. FEMS Microbiol Lett, 2005, 249(2): 275-281.
    1. Farber JM, Peterkin PI. Listeria monocvtogenes, a food-borne pathogen. Microbiot Rev, 1991, 55 (3): 476-511.
    2. Liu D, Ainsworth AJ, Austin FW, et al. Characterization of virulent and avirulent Listeria monocytogenes strains by PCR amplification of putative transcriptional regulator and internalin genes. J Med Microbiol, 2003, 52 (Pt 12): 1065-1070.
    3. Olier M, Pierre F, Lemaitre JP, et al. Assessment of the pathogenic potential of two Listeria monocytogenes human faecal carriage isolates. Microbiology, 2002, 148 (Pt 6): 1855-1862.
    4. Portnoy DA, Chakraborty T, Goebe W. et al. Molecular determinants of Listeria monocytogenes pathogenesis, Infect.Immun, 1992, 60 (4): 1263-1267.
    5. Wuenscher MD, Kohler S, Bubert A, et al. The iap gene of Listeria monocytogenes is essential for cell viability, and its gene product, p60, has bacteriolytic activity. J Bacteriol, 1993, 175 (11): 3491-3501.
    6. Glomski IJ, Decatur AL, Portnoy DA. Listeria monocytogenes mutants that fail to compartmentalize Listerolysin O activity are cytotoxic, avirulent, and unable to evade host extracellular defenses. Infect hnmun, 2003, 71(12): 6754-6765.
    7. Reissbrodt R. New chromogenic plating media for detection and enumeration of pathogenic Listeria spp.- an overview, Int J Food Microbiol, 2004, 95(1): 1-9.
    8. Vazquez-Boland JA, Kocks C, Drarnsi S, et al. Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread, Infect Immun, 1992, 60 (1): 219-230.
    9. Marquis H, Doshi V, Portnoy DA. The broad-range phospholipase C and a metalloprotease mediate listeriolysin O-independent escape of Listeria monocytogenes from a primary vacuole in human epithelial cells. Infect Immun, 1995, 63 (11): 4531-4534.
    10. Schluter D, Domann E, Buck C, et al. Phosphatidylcholine-specific phospholipase C from Listeria monocytogenes is an important virulence factor in murine cerebral listeriosis. Infect Immun, 1998, 66(12): 5930-5938.
    11. Schwarzer N, Nost R, Seybold J, et al. Two distinct phospholipases C of Listeria monocytogenes induce ceramide generation, nuclear factor-kappa B activation, and E-selectin expression in human endothelial cells. J Immunol, 1998, 161(6): 3010-3018.
    12. Poyart C, Abachin E, Razafimanantsoa I, et al. The zinc metalloprotease of Listeria monocytogenes is required for maturation of phosphatidylcholine phospholipase C: direct evidence obtained by gene complementation. Infect Immun, 1993, 61(4): 1576-1580.
    13. Galliard JL, Berche P, Frehel C, et al. Entry of L. monocytogenes into cells is mediated by internalin, a repeat protein reminiscent of surface antigens from gram-positive cocci. Cell, 1991, 65(7): 1127-1141.
    14. Buncic S, Avery SM. Relationship between variations in pathogenicity and lag phase at 37 degrees C of Listeria monocytogenes previously stored at 4 degrees C. Lett Appl Microbiol, 1996, 23(1): 18-22.
    15. Norrung B, Andersen JK. Variations in virulence between different electrophoretic types of Listeria monocytogenes. Lett Appl Microbiol, 2000, 30(3): 228-232.
    16.朱杰青,吉传义,陆承平.琼脂扩散溶血试验测定嗜水气单胞菌HEC毒素的溶血价.微生物学通报,2001,28(1):53-55.
    17. Gracieux P, Roche SM, Pardon P, et al. Hypovirulent Listeria monocytogenes strains are less frequently recovered than virulent strains on PALCAM and Rapid' L. mono media. Int J Food Microbiol, 2003, 83 (2), 133-145.
    18. Sun AN, Camilli A, Portnoy DA. Isolation of Listeria monocytogenes small-plaque mutants defective for intraceltular growth and cell-to-cell spread. Infect Immun, 1990, 58 (11): 3770-3778.
    19. Jaradat ZW, Bhunia AK. Adhesion, invasion, and translocation characteristics of Listeria monocytogenes serotypes in Caco-2 cell and mouse models. Appl Environ Microbiol, 2003, 69 (6): 3640-3645.
    20. Ermolaeva S, Karpova T, Novella S, et al. A simple method for the differentiation of Listeria monocytogenes based on induction of lecithinase activity by charcoal. Int J.Food Microbiol, 2003, 82 (1): 87-94.
    21. Winters DK, Maloney TP, Johnson MG. Rapid detection ofListeria monocytogenes by a PCR assay specific for an aminopeptidase. Mol Cell Probes, 1999,13 (2): 127-131.
    22. Abolmaaty A, Vu C, Oliver J, et al. Development of a new lysis solution for releasing genomic DNA from bacteria[ cells for DNA amplification by polymerase chain reaction. Mierobios, 2000, 101 (400): 181-189.
    23. Decatur AL, Portnoy DA. A PEST-like sequence in Listeriolysin O essential for Listeria monocytogenes pathogenicity. Science, 2000, 290 (5493): 992-995.
    24. Geese M, Loureiro JJ, Bear JE, et al. Contribution of Ena/VASP proteins to intracellular motility of Listeria requires phosphorylation and proline-rich core but not F-actin binding or multimerization. Mol Biol Cell, 2002, 13 (7): 2383-2396.
    25. Lasa I, David V, Gouin E, et al. The amino-terminal part of ActA is critical for the actin-based motility of Listeria monocytogenes; the central proline-rich region acts as a stimulator. Mol Microbiol, 1995, 18 (3): 425-436.
    26. Niebuhr K, Ebel F, Frank R, et al. A novel proline-rich motif present in ActA of Listeria monocytogenes and cytoskeletal proteins is the ligand for the EVH1 domain, a protein module present in the Ena/VASP family. Embo J, 1997, 16 (17): 5433-5444.
    27. Smith GA, Theriot JA, Portnoy DA. The tandem repeat domain in the percentage of moving bacteria, and the localization of vasodilator-stimulated phosphoprotein and profilin. J Cell Biol, 1996,135 (3): 647-660.
    28. Sokolovic Z, Schuller S, Bohne J, et al. Differences in virulence and in expression of PrfA and PrfA-regulated virulence genes of Listeria monocytogenes strains belonging to serogroup 4.Infect Immun, 1996, 64(10): 4008-4019.
    29. Smith GA, Marquis H, Jones S, et al. The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect Immun, 1995, 63 (11): 4231-4237.
    30. Grundling A, Gonzalez MD, Higgins DE. Requirement of the Listeria monocytogenes broad-range phospholipase PC-PLC during infection of human epithelial cells. J Bacteriol, 2003, 185 (21): 6295-6307.
    31. Kuhn M, Goebel W, Identification of an extracellular protein of Listeria monocytogenes possibly involved in intracellular uptake by mammalian cells. Infect Immun, 1989, 57 (1): 55-61.
    32. Pilgrim S, Kolb-Maurer A, Gentschev I, et al. Deletion of the gene encoding p60 in Listeria monocytogenes leads to abnormal cell division and loss of actin-based motility. Infect Immun, 2003, 71 (6): 3473-3484.
    1. Winters DK, Maloney TP, Johnson MG. Rapid detection of Listeria monocytogenes by a PCR assay specific for an aminopeptidase. Mol Cell Probes, 1999,13 (2): 127-131.
    2. Abolmaaty A, Vu C, Oliver J, et al. Development of a new lysis solution for releasing genomic DNA from bacterial cells for DNA amplification by polymerase chain reaction. Microbios, 2000, 101 (400): 181-189.
    3. Park SF, Stewart GS. High-efficiency transformation of Listeria monocytogenes by electroporation of penicillin-treated cells. Gene, 1990, 94(1): 129-132.
    4. Camilli A, Tilney LG, Portnoy DA. Dual roles of picA in Listeria monocytogenes pathogenesis. Mol Microbiol, 1993, 8(1): 143-157.
    5. Sun AN, Camilli A, Portnoy DA. Isolation ofListeria monocytogenes small-plaque mutants defective for intracellular growth and cell-to-cell spread. Infect Immun, 1990, 58 (11): 3770-3778.
    6. Ermolaeva S, Karpova T, Novella S, et al. A simple method for the differentiation of Listeria monocytogenes based on induction of lecithinase activity by charcoal. Int J Food Microbiol, 2003, 82 (1): 87-94.
    7. Vazquez-Boland JA, Kuhn M, Berche P, et al. Listeria pathogenesis and molecular virulence determinants.Clin Microbiol Rev, 2001, 14 (3):584-640.
    8. Kreft J et al. Pathogenicity islands and other mobile virulence elements. American Society for Microbiology, Washington DC, 1999, pp219-232.
    9. Underhill DM, Ozinsky A. Phagocytosis of microbes: complexity in action. Annu Rev Immunol, 2002, 20: 825-852.
    10. Scott CC, Botelho RJ, Grinstein S. Phagosome maturation: a few bugs in the system. J Membr Biol, 2003, 193(3):137-152.
    11. Glomski IJ, Decatur AL, Portnoy DA. Listeria monocytogenes mutants that fail to compartmentalize listerolysin O activity are cytotoxic, avirulent, and unable to evade host extracellular defenses. Infect Immun, 2003, 71 (12): 6754-6765.
    12. Decatur AL, Portnoy DA. A PEST-like sequence in Listeriolysin O essential for Listeria monocytogenes pathogenicity. Science, 2000, 290 (5493): 992-995.
    13. Lety MA, Frehel C, Beretti JL, et al. Modification of the signal sequence cleavage site of listeriolysin O does not affect protein secretion but impairs the virulence of Listeria monocytogenes.Microbiology, 2003, 149(Pt 5):1249-1255.
    14. Smith GA, Marquis H, Jones S, et al. The two distinct phospho[ipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect Immun, 1995, 63(11):4231-4237.
    15. Grtindling A, Gonzalez MD, Higgins DE. Requirement of the Listeria monocytogenes broad-range phospholipase PC-PLC during infection of human epithelial cells. J Bacteriol, 2003, 185 (21): 6295-6307.
    16. Vazquez-Boland JA, Kocks C, Dramsi S, et al. Nucleotide sequence of the lecithinase operon of Listeria monocytogenes and possible role of lecithinase in cell-to-cell spread. Infect immun, 1992, 60 (1):219-230.
    1.陈利玉.重组单核细胞增多性李斯特菌作为活疫苗载体的研究进展.国外医学预防、诊断、治疗用生物制品分册.1998,21(3):100-103.
    2. Lieberman J, Frankel FR. Engineered Listeria monocytogenes as an AIDS vaccine. Vaccine, 2002, 20(15): 2007-2010.
    3. Peters C, Peng X, Douven D, et al. The induction of HIV Gag-specific CD8+ T cells in the spleen and gut-associated lymphoid tissue by parenteral or mucosal immunization with recombinant Listeria monocytogenes HIV Gag. J Immunol, 2003, 170(10): 5176-5187.
    4. Sewell DA, Douven D, Pan ZK, et al. Regression of HPV-positive tumors treated with a new Listeria monocytogenes vaccine. Arch Otolaryngol Head Neck Surg, 2004, 130(1): 92-97.
    5. Simon BE, Cornell KA, Clark TR, et al. DNA vaccination protects mice against challenge with Listeria monocytogenes expressing the hepatitis C virus NS3 protein. Infect Immun, 2003, 71(11): 6372-6380.
    6. Kolb-Maurer A, Kammerer U, Maurer M, et al. Production of IL-12 and IL-18 in human dendritic cells upon infection by Listeria monocytogenes. FEMS Immunol Med Microbiol, 2003, 35(3): 255-262.
    7. Soussi N, Milon G , Collc JH, et al. Listeria monocytogenes as a short-lived delivery system for the induction of type 1 cell-mediated immunity against the p36/LACK antigen of Leishmania major. Infect Immun, 2000, 68(3): 1498-1506.
    8. Vazquez-Boland JA, Kuhn M, Berche P, et al. Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev, 2001, 14(3): 584-640.
    9. Cabanes D, Dehoux P, Dussurget O, et al. Surface proteins and the pathogenic potential ofListeria monocytogenes. Trends Microbiol, 2002, 10(5): 238-245.
    10. Smith GA, Marquis H, Jones S, et al. The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect Immun, 1995, 63(11): 4231-4237.
    11. Mata M, Yao Z J, Zubair A, et al. Evaluation of a recombinant Listeria monocytogenes expressing an HIV protein that protects mice against viral challenge. Vaccine, 2001,19:1435-1445.
    12. Friedman RS, Frankel FR, Xu Z, et al. Induction of human immunodeficiency virus (HIV)-specific CD8 T-cell responses by Listeria monocytogenes and a hyperattenuated Listeria strain engineered to express HIV antigens. Journal of virology, 2000, 74(21):9987-9993.
    13. Freitag NE, Jacobs KE. Examination of Listeria monocytogenes intracellular gene expression by using the green fluorescent protein of Aequorea Victoria. Infect Immun, 1999, 67(4):1844-1852.
    14. Wilson RL, Tvinnereim AR, Jones BD, et al. Identification of Listeria monocytogenes in vivo-induced genes by fluorescence-activated cell sorting. Infect Immun, 2001, 69(8): 5016-5024.
    15. Winters DK, Maloney TP, Johnson MG. Rapid detection of Listeria monocytogenes by a PCR assay specific for an aminopeptidase. Mol Cell Probes, 1999,13 (2): 127-131.
    16. Abolmaaty A, Vu C, Oliver J, et al. Development of a new lysis solution for releasing genomic DNA from bacterial cells for DNA amplification by polymerase chain reaction. Microbios, 2000, 101 (400): 181-189.
    17. Ho SN, Hunt HD, Horton RM, et al. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene, 1989, 77(1): 51-59.
    18. Park SF, Stewart GS. High-efficiency transformation of Listeria monocytogenes by electroporation of penicillin-treated cells. Gene, 1990, 94(1): 129-132.
    19. Camilli A, Tilney LG, Portnoy DA. Dual roles of plcA in Listeria monocytogenes pathogenesis. Mol Microbiol, 1993, 8(1): 143-157.
    20. Jaradat ZW, Bhunia AK. Adhesion, invasion, and translocation characterislics of Listeria monocytogenes serotypes in Caco-2 cell and mouse models. Appl Environ Microbiol, 2003, 69(6): 3640-3645.
    21. Buncic S, Avery SM. Relationship between variations in pathogenicity and lag phase at 37 degrees C of Listeria monocytogenes previously stored at 4 degrees C. Lett Appl Microbiol, 1996, 23(1): 18-22.
    22. Norrung B, Andersen JK. Variations in virulence between different electrophoretic types of Listeria monocytogenes. Lett Appl Microbiol, 2000, 30(3): 228-232.
    23.朱杰青,吉传义,陆承平.琼脂扩散溶血试验测定嗜水气单胞菌HEC毒素的溶血价.微生物学通报,2001,28(1):53-55.
    24. Portnoy DA, Chakraborty T, Goebel W, et al. Molecular determinants of Listeria monocytogenes pathogenesis. Infect Immun, 1992, 60(4): 1263-1267.
    25. Kursar M, Bonhagen K, Kohler A, et al. Organ-specific CD4+ T cell response during Listeria monocytogenes infection. J Immunol, 2002,168 (12):6382-6387.
    26. Darji A, Mohamed W, Domann E, et al. Induction of immune responses by attenuated isogenic mutant strains of Listeria monocytogenes. Vaccine, 2003, 21 Suppl 2, S 102-109.
    27. Rayevskaya MV, Frankel FR. Systemic immunity and mucosal immunity are indicted against human immunodeficiency virus Gag protein in mice by a new hyperattenuated strain of Listeria monocytogenes. J Virol, 2001, 75(6): 2786-2791.
    28. Dietrich G, Viret JF, Gentschev I. Haemolysin A and listeriolysin—two vaccine delivery tools for the induction of cell-mediated immunity. Int J Parasitol, 2003, 33(5-6): 495-505.
    29. Starks H, Bruhn KW, Shen H, et al. Listeria monocytogenes as a vaccine vector: virulence attenuation or existing antivector immunity does not diminish therapeutic efficacy. J Immunol, 2004, 173(1):420-427.
    30. Oiler M, Pierre F, Rousseaux S, et al. Expression of Truncated lnternalin A Is Involved in Impaired Internalization of Some Listeria monocytogenes Isolates Carried Asymptomatically by Humans. Infection and Immunity, 2003, 71 (3):1217-1224.
    31. Glomski IJ, Decatur AL, Portnoy DA. Listeria monocytogenes mutants that fail to compartmentalize listerolysin O activity are cytotoxic, avirulent, and unable to evade host extracellular defenses. Infect Immun, 2003, 71 (12): 6754-6765.
    32. Shetron-Rama LM, Marquis H, Bouwer HG, et al. Intracellutar Induction of Listeria monocytogenes actA Expression. Infection and immunity, 2002, 70(3): 1087-1096.
    33. Abachin E, Poyart C, Pellegrini E, et al. Formation of D-alanyl-lipoteichoic acid is required for adhesion and virulence of Listeria monocytogenes. Mol Microbiol, 2002, 43(1): 1-14.
    34. Jones S, Portnoy DA. Characterization of Listeria monocytogenes pathogenesis in a strain expressing perfringolysin O in place of iisteriolysin O. Infect Immun, 1994, 62 (12): 5608-5613.
    35. Misulovin Z, Yang XW, Yu W, et al. A rapid method for targeted modification and screening of recombinant bacterial artificial chromosome. J Immunol Methods, 2001, 257(1-2):99-105.
    1 Stevens R, Lavoy A, Nordone S, et al. Pre-existing immunity to pathogenic Listeria monocytogenes does not prevent induction of immune responses to feline immunodeficiency virus by a novel recombinant Listeria monocytogenes vaccine. Vaccine, 2005, 23(12): 1479-1490.
    2 Lieberman J, Frankel FR. Engineered Listeria monocytogenes as an AIDS vaccine. Vaccine, 2002, 20(15): 2007-2010.
    3 Peters C, Peng X, Douven D, et al. The induction of HIV Gag-specific CD8+ T cells in the spleen and gut-associated lymphoid tissue by parenteral or mucosal immunization with recombinant Listeria monocytogenes HIV Gag. J Immunol, 2003, 170(10): 5176-5187.
    4 Simon BE, Cornell KA, Clark TR, et al. DNA vaccination protects mice against challenge with Listeria monocytogenes expressing the hepatitis C virus NS3 protein. Infect Immun, 2003, 71(11): 6372-6380.
    5 Sewell DA, Douven D, Pan ZK, et al. Regression of HPV-positive tumors treated with a new Listeria monocytogenes vaccine. Arch Otolaryngol Head Neck Surg, 2004, 130(1): 92-97.
    6 Stevens R, Howard KE, Nordone S, et al. Oral immunization with recombinant listeria monocytogenes controls virus load after vaginal challenge with feline immunodeficiency virus. J Virol, 2004, 78(15): 8210-8218.
    7 Yoshimura K, Jain A, Allen HE, et al. Selective targeting of antitumor immune responses with engineered live-attenuated Listeria monocytogenes. Cancer Res, 2006, 66(2): 1096-1104.
    8 Portnoy DA, Auerbuch V, Glomski IJ. The cell biology of Listeria monocytogenes infection: the intersection of bacterial pathogenesis and cell-mediated immunity. J Cell Biol, 2002, 158(3): 409-414.
    9 Cabanes D, Dehoux P, Dussurget O, et al. Surface proteins and the pathogenic potential of Listeria monocytogenes. Trends Microbiol, 2002, 10(5): 238-245.
    10 Marquis H, Doshi V, Portnoy DA. The broad-range phospholipase C and a metalloprotease mediate listeriolysin O-independent escape of Listeria monocytogenes from a primary vacuole in human epithelial cells. Infect Immun, 1995, 63(11): 4531-4534.
    11 Starks H, Bruhn KW, Shen H, et al. Listeria monocytogenes as a vaccine vector: virulence attenuation or existing antivector immunity does not diminish therapeutic efficacy. J Immunol, 2004, 173(1): 420-427.
    12 Kattenbeit JA, Stevens MP, Gould AR. Sequence variation in the Newcastle disease virus genome. Virus Res, 2006, 116(1-2): 168-184.
    13 Romer-Oberdorfer A, Werner O, Veits J, et al. Contribution of the length of the HN protein and the sequence of the F protein cleavage site to Newcastle disease virus pathogenicity. J Gen Virol, 2003, 84(Pt 11): 3121-3129.
    14 Winters DK, Maloney TP, Johnson MG. Rapid detection of Listeria monocytogenes by a PCR assay specific for an aminopeptidase. Mol Cell Probes, 1999,13 (2): 127-131.
    15 Abolmaaty A, Vu C, Oliver J, et al. Development of a new lysis solution for releasing genomic DNA from bacterial cells for DNA amplification by polymerase chain reaction. Microbios, 2000, 101 (400): 181-189.
    16 Ho SN, Hunt HD, Horton RM, et al. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene, 1989, 77(1): 51-59.
    17 Wiedmann M, Arvik TJ, Hurley RJ, et al. General stress transcription factor sigmaB and its role in acid tolerance and virulence of Listeria monocytogens. J Bacteriol, 1998, 180(14): 3650-3656.
    18 Camilli A, Tilney LG, Portnoy DA. Dual roles of plcA in Listeria monocytogenes pathogenesis. MolMicrobiol, 1993, 8 (1): 143-157.
    19 Jaradat ZW, Bhunia AK. Adhesion, invasion, and translocation characteristics of Listeria monocytogenes serotypes in Caco-2 cell and mouse models. Appl Environ Microbiol, 2003, 69(6): 3640-3645.
    20 Norrung B, Andersen JK. Variations in virulence between different electrophoretic types of Listeria monocytogenes. Lett Appl Microbiol, 2000, 30(3): 228-232.
    21 徐晶靓,江玲丽,陈宁,帅江冰,方维焕.携带外源基因的重组减毒单核细胞增多性李斯特菌构建与鉴定,微生物学报,2006,46(3):445-450.
    22 Portnoy DA, Chakraborty T, Goebel W, et al. Molecular determinants of Listeria monocytogenes pathogenesis. Infect Immun, 1992, 60(4): 1263-1267.
    23 Goossens PL, Milon G. Induction of protective CD8+ T lymphocytes by an attenuated Listeria monocytogenes actA mutant. Int Immunol, 1992, 4(12): 1413-1418.
    24 Paglia P, Arioli I, Frahm N, et al. The defined attenuated Listeria monocytogenes delta mpl2 mutant is an effective oral vaccine carrier to trigger a long-lasting immune response against a mouse fibrosarcoma. Eur J Immunol, 1997, 27(6):1570-1575.
    25 Dietrich G, Bubert A, Gentschev I, et al. Delivery of antigen-encoding plasmid DNA into the cytosol of macrophages by attenuated suicide Listeria monocytogenes. Nat Biotechnol, 1998,16(2): 181-185.
    26 Brunt LM, Portnoy DA, Unanue ER. Presentation ofListeria monocytogenes to CD8+ T cells requires secretion of haemolysin and intracellular bacterial growth. J lmmunol, 1990, 145(11): 3540-3546.
    27 Schoen C, Stritzker J, Goebel W, et al. Bacteria as DNA vaccine carriers for genetic immunization. Int J Med Microbiol, 2004, 294(5): 319-335.
    28 Rφrvik LM, Aase B, Alvestad T, et al. Molecular epidemiological survey of Listeria monocytogenes in broilers and poultry products. J Appl Microbiol, 2003, 94(4): 633-640.
    29 Vecino WH, Quanquin NM, Martinez-Sobrido L, et al. Mucosal immunization with attenuated Shigella flexneri harboring ban influenza hemagglutinin DNA vaccine protects mice against a lethal influenza challenge. Virol, 2004, 325(2): 192-199.
    30 Husu JR, Beery JT, Nurmi E, et al. Fate ofListeria monocytogenes in orally dosed chicks, Int J Food Microbiol, 1990, 11 (3-4):259-269.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700