煤与瓦斯突出微观机理的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来人们从宏观角度对矿井的煤与瓦斯突出机理及其发生条件做了大量研究,但由于突出的复杂性,对于突出的原因、过程及一些细节还不十分明确。本论文结合国家自然科学基金资助项目“高瓦斯与突出矿井瓦斯异常涌出发生规律的研究”(项目编号:50574047),针对突出的诱发源、突出过程中释放的超量瓦斯来源等问题,应用理论和实验相结合的研究方法在煤与瓦斯突出综合作用假说的基础上开展了煤与瓦斯突出微观机理的基础研究工作。主要研究内容和研究成果概括如下:
     应用量子化学理论中的密度泛函理论和量子化学Gaussian03软件程序包,采用量子化学的计算方法研究了煤与瓦斯吸附微观机理。在B3LYP/6-311G计算水平上构建了煤表面分子片段与甲烷分子的吸附模型;计算得到了分子构型参数和吸附能;证明了煤分子片段与甲烷分子的吸附为物理吸附,吸附能为1.34KJ/mol。
     在前人研究的基础上,应用量子力学理论和电磁波技术研究了煤与瓦斯脱附微观机理。研究表明:矿震和采掘放炮活动等因素引起煤岩体破裂变形,煤岩体破裂产生的电磁波在一定频率范围内能够被煤与CH4吸附伴生分子体系以量子化形式吸收,导致该伴生分子体系由稳定的基态变为激发态,使吸附瓦斯由吸附态脱附为游离态瓦斯。创新性地提出煤与瓦斯脱附的临界频率v 0,通过量子力学计算得出煤与瓦斯脱附的临界频率v 0数值在红外线的极远红外频段范围内,吸附伴生分子体系只有吸收的电磁波频率v超过临界频率v 0,才会发生煤与瓦斯脱附。
     应用TENSOR27型傅里叶变换红外光谱仪,通过对突出煤样中超细粉煤与块煤分子结构的红外光谱实验研究,分析了突出煤样中超细粉煤与块煤的红外光谱图,提出超细粉煤在基团数量上与块煤相比远少于块煤的根本原因,就在于超细粉煤的有机大分子侧链基团被拉断和低分子化合物释放的结果,从而导致产生超量的瓦斯。该实验首次从微观上揭示了煤与瓦斯突出过程中超量瓦斯释放的来源。
     综上所述,提出煤与瓦斯吸附、脱附等方面的煤与瓦斯突出微观机理:在矿井生产中,由矿震、采掘放炮等因素引起采掘工作面围岩应力变化导致煤岩体破裂,煤岩体破裂产生频率范围宽广的电磁波。煤与CH4吸附形成的伴生分子体系以量子化形式吸收超过脱附临界频率的电磁波,导致该体系由基态变为激发态,使得瓦斯由吸附态脱附变为游离态,形成大量的游离瓦斯。如果具备较高的地应力和构造煤的条件,则在弱面极易发生煤与瓦斯突出的动力现象。
Mechanism of coal and gas outburst and its occurrence condition have been studied macroscopically for a long time. Due to the complexity, causes, processes and certain details of coal and gas outburst are not very definite. Combined National Natural Science Foundation Project“Study on Occurrence Law of Abnormal Discharge of High Gas and Outburst Gas”(No. 50574047), according to induced source, excess gas source in the process of outburst, and based on hypothesis of coal and gas outburst comprehensive effect, the basic research on microscopic mechanism of coal and gas outburst is launched using the method of integration of theory with practice. Main research contents and achievements are as follows:
     Applying quantum chemistry theory of density functional theory and quantum chemistry Gaussian03, adsorption microscopic mechanism of coal and gas is studied with calculation method of quantum chemistry. On the level of B3LYP/6-311G adsorption model of molecular fragments on coal surface and methane molecule is built; molecular configuration parameters are calculated; physical adsorption of molecular fragments of coal and methane molecule is proved, the adsorption energy is 1.34KJ/mol.
     Based on the previous research, desorption microscopic mechanism of coal and gas is studied with quantum mechanics theory and electromagnetic wave technique. It is shown that mine earthquake, mining and explosion activities cause coal and rock mass broke and deformed, which produced electromagnetic wave that is absorbed by associated molecule system of coal and CH4 in form of energy within certain frequency scope, and therefore this system is changed to excited state from ground state. Critical frequency v 0 of desorption of coal and gas have been put forward constructively. Through the calculation of quantum mechanics, the value of frequency v 0 is obtained within extreme infrared frequency scope. Only when the wave frequency v exceeds critical frequency, desorption of coal and gas will happen.
     Using Fourier transform infrared spectrometer TENSOR27, superfine pulverized coal in outburst coal and lump coal molecular structure is studied with infrared spectrum experiment. The infrared spectrum of superfine pulverized coal in outburst coal and lump coal is analyzed. Put forward the basic reasons that superfine pulverized coal in the number of groups is far less than the lump coal, lie in the organic macro-molecule side chain groups pulled off and the result of the release of low molecular compounds, thus result in producing excess gas. This experiment firstly reveals the source of the release of excess gas in coal and gas outburst process from the microscopic view.
     To sum up, the coal and gas adsorption, desorption and other aspects of the coal and gas outburst microscopic mechanism are put forward. In coal mine production, due to mine earthquake, mining and explosion activities, the stress change of surrounding rock on extraction face causes coal and rock mass broke, which produces electromagnetic wave with broad frequency scope. Associated molecule system formed from adsorption of coal and CH4 absorbs electromagnetic wave exceeding desorption critical frequency in form of quantum, which result in this system turns to excited state from ground state, and the gas turns to free state from adsorption state through desorption, forms a large number of free gas. If have high ground stress and condition of forming coal, therefore the dynamic phenomenon of coal and gas outburst is very easy to happen in weak plane.
引文
[1]王省身.矿井灾害防治理论与技术[M].徐州:中国矿业大学出版社,1997.
    [2]付建华,程远平.中国煤矿煤与瓦斯突出现状及防治对策[J].采矿与安全工程学报,2007,24(3):253-259.
    [3]何祖荣.介绍几种煤与瓦斯突出的预防方法[J].合肥矿业学院学报,1958(3):63-64.
    [4]А.Т.艾鲁尼等著,柴兆喜译.各国煤和瓦斯突出概况[J].世界煤炭技术,1984(4).
    [5]张子敏,张玉贵.瓦斯地质规律与瓦斯预测[M].北京:煤炭工业出版社,2005.
    [6]俞启香.矿井瓦斯防治[M].徐州:中国矿业大学出版社,1992.
    [7]王大曾.瓦斯地质[M].北京:煤炭工业出版社,1992.
    [8]华福明,王玉树.防治煤与瓦斯突出培训教材[M].徐州:中国矿业大学出版社,2005.
    [9]于不凡.煤矿瓦斯灾害防治及利用技术手册(修订版)[M].北京:煤炭工业出版社,2005.
    [10]付建华.煤矿瓦斯灾害防治理论研究与工程实践[M].徐州:中国矿业大学出版社,2005.
    [11]王佑安.“四位一体”综合防突措施[J].煤矿安全,2003,34(增刊):61-63.
    [12]梁冰.煤和瓦斯突出固流耦合失稳理论[M].北京:地质出版社,2000.
    [13]周世宁,林柏泉.煤矿瓦斯动力灾害防治理论及控制技术[M].北京:科学出版社,2007.
    [14]四川矿业学院.国外煤和瓦斯突出机理综述[J].川煤科技,1976(3):1-19.
    [15]于不凡.谈煤和瓦斯突出机理[J].川煤科技,1976(3):34-41.
    [16]于不凡.煤和瓦斯突出机理[M].北京:煤炭工业出版社,1985.
    [17]李中锋.煤与瓦斯突出机理及其发生条件评述[J].煤炭科学技术,1997,25(11):44-47.
    [18]何继善,吕绍林.瓦斯突出地球物理研究[M].北京:煤炭工业出版社,1999.
    [19]许江,尹志光,鲜学福等.煤与瓦斯突出潜在危险区预测的研究[M].重庆:重庆大学出版社,2004:27-58.
    [20]郑哲敏.从数量级和量纲分析看煤与瓦斯突出的机理[C]//钱伟长等编,力学与生产建设:中国力学学会第二届理事会扩大会议论文汇编(1982.05).北京:北京大学出版社,1983.09.
    [21]俞善炳.恒稳推进的煤与瓦斯突出[J].力学学报,1988(2).
    [22]丁晓良,丁雁生,俞善炳.煤在瓦斯一维渗流作用下的初次破坏[J].力学学报,1990(2).
    [23]章梦涛,徐曾和,潘一山等.冲击地压和突出的统一失稳理论[J].煤炭学报,1991(4).
    [24]李萍丰.浅谈煤与瓦斯突出机理的假说-二相流体假说[J].煤矿安全,1989(11).
    [25]周世宁,何学秋.煤和瓦斯突出机理的流变假说[J].中国矿业大学学报,1990(2).
    [26]何学秋,周世宁.煤和瓦斯突出机理的流变假说[J].煤矿安全,1991(10).
    [27]梁冰.煤和瓦斯突出固流耦合失稳理论的研究[D].沈阳:东北大学博士论文,1994.03.
    [28]梁冰,章梦涛,潘一山等.煤和瓦斯突出的固流耦合失稳理论[J].煤炭学报,1995,20(5):492-496.
    [29]蒋承林,俞启香.煤与瓦斯突出机理的球壳失稳假说[J].煤矿安全,1995(2):17-25.
    [30]吕绍林,何继善.关键层-应力墙瓦斯突出机理[J].重庆大学学报,1999,22(6):80-84.
    [31]郭德勇,韩德馨.煤与瓦斯突出粘滑机理研究[J].煤炭学报,2003,28(6):588-602.
    [32]高雷阜.煤与瓦斯突出的混沌动力系统演化规律研究[D].阜新:辽宁工程技术大学博士论文,2006.04.
    [33]马中飞,俞启香.煤与瓦斯承压散体失控突出机理的初步研究[J].煤炭学报,2006,31(3):329-333.
    [34]王继仁,邓存宝,邓汉忠.煤与瓦斯突出微观机理研究[J].煤炭学报,2008,33(2):131-135.
    [35]张小平.胶体界面与吸附教程[M].广州:华南理工大学出版社,2008.
    [36]近藤精一,石川达雄,安部郁夫著,李国希译.吸附科学[M].北京:化学工业出版社,2006.
    [37]顾惕人等.表面化学[M].北京:科学出版社,1994.
    [38]赵振国.吸附作用应用原理[M].北京:化学工业出版社,2005.
    [39]虞继舜.煤化学[M].北京:冶金工业出版社,2000.
    [40] Anderson R B,Bayer J,Hofer L J E.Equilibrum sorption studies of methane on Pittsburgh Seam and Pocahontas No.3Seam Coal[J].Coal Science,1966:326.
    [41] Daines M E.Apparatus for the determination of methane sorption on coal high pressures by a weighing method[J].Journal of Rock Mechanics and Mining Science,1968,5:27.
    [42] Ruppel T C,Grein C T,bienstock D.adsorption of methane/ethane mixture on dry coal at elevate pressure[J].Fuel,1972,51:297.
    [43]Ruppel T C,Grein C T,bienstock D.adsorption of methane/ethane mixture on dry coal at elevate pressure[J].Fuel,1974,53:152.
    [44] Joubert J I,Grein C T,Bienstock D.Sorption of methane in moist coal[J].Fuel,52(3):181.
    [45] Joubert J I,Grein C T,Bienstock D.Effect of moisture on the methane capacity of American coal[J].Fuel,1974,53(3):186.
    [46] Kim A G.Estimating methane content of bituminous coal beds from adsorption data[C].US Bureau of Mines Report of Investigations,No.8247,1977.
    [47] Lee Y H.Methane recovery from coalbeds:Effects of monolayer capacity and pore struture on gas content[D].NM:Univ of NM Albuquerque,May 1982.
    [48] Ralph T Yang,John T Saunders.Adsorption of gases on coals and heattreated coals at elevated temperature and pressure[J].Fuel,1985,64:616-625.
    [49] Grebory J Bell,Karen C Rakop.Hysteredis of methane/coal sorption isotherms[C].SPE15454,1986.
    [50] Mavor M J,Owen L B,Pratt T J.Measure ment and ealuuation of coal sorption isotherm data[C].SPE 20728,1990.
    [51] Anbarci K,Ertekin T.Asiplified for in-situ characterization of desorption properties of coal seams[C].SPE 21808,1991.
    [52] Hawkins J M,Schraufnagel R A,Qlszewski A J.Estimating coalbed gas content and sorption isotherm using well log data[C].SPE 24909,1992.
    [53] H.F.雅纳斯.煤样的瓦斯解吸过程[J].煤炭工程师,1992(2):11-12.
    [54] Beamish B B,O′Donnell G.Microbalance applications to sorption testing of coal[C].Proceedings of Symposium on Coalbed Methane and Development in Australia,Townsvill,Queensland,1992.
    [55] Stevenson M D.Adsorption/desorption of multi-component gas mixtures at in seam conditions[C].SPE 23026,1991.
    [56] Greaves K H,Owen L B.Multi-component gas adsorption/desorption behavior of coal[C].No 9353,the Inter-nationa Coalbed Methane Symposium,The University of Alabama/Tuscloosa,1993.
    [57] Arri L E,Dan Yee.Modeling coalbed methane production with binary gassorption[C].SPE 24363,1992.
    [58] Harpdani S,Pariti U M.Study of coal sorption isotherms using a multicomponent gas mixture[C].No 9356,the 1993 Internationa Coalbed Methane Symposinm,The University of Alabama/Tuscloosa,1993.
    [59] Hall F E,Chun-he Zhou,Gasen K A M,etal.Adsorption of pure methane,nitrogen,and carbon dioxide and their binary mixtures on wet fuitland coal[C].SPE 29194,1994.
    [60] Chaback J J,Morgan D,Yee D.Sorption irreversibilities and mixture compositional behavior during enhanced coalbed methane recovery processes[C].SPE 35622,1996.
    [61]吴俊.表面能的吸附法计算及研究意义[J].煤田地质与勘探,1994,22(4):18-23.
    [62]何学秋,刘明举.含瓦斯煤岩破坏电磁动力学[M].徐州:中国矿业大学出版社,1995.
    [63]王恩元,何学秋,林海燕.瓦斯气体在煤中的赋存形态[J].煤炭工程师,1996(5):12-15.
    [64]王恩元,何学秋.瓦斯气体在煤体中的吸附过程及其动力学机理[J].江苏煤炭,1996(3):17-19.
    [65]钱凯,赵庆波,汪泽成等.煤层甲烷气勘探开发理论与实验测试技术[M].北京:石油工业出版社,1997.
    [66]聂百胜,段三明.煤吸附瓦斯的本质[J].太原理工大学学报,1998.29(4):417-421.
    [67]周胜国,郭淑敏.煤储层吸附/解吸等温线测试技术[J].石油实验地质,1999,21(1):76-80.
    [68]崔永君.煤等温吸附特性测试中体积校正方法探讨[J].煤田地质与勘探,1999,27(5):29-32.
    [69]张力,邢平伟.煤体瓦斯吸附和解吸特性的研究[J].江苏煤炭,2000(4):18-20.
    [70]辜敏,陈昌国,鲜学福.混合气体的吸附特征[J].天然气工业,2001,21(4):91-94.
    [71]蔺金太,郭勇义,吴世跃.煤层气注气开采中煤对不同气体的吸附作用[J].太原理工大学学报,2001,32(1):18-20.
    [72]刘明举,何学秋,许考.孔隙气体对断裂电磁辐射的影响及其机理[J].煤炭学报,2002,27(5):483-487.
    [73]陈昌国,张代钧,鲜晓红等.煤的微晶结构与煤化度[J].煤炭转化,1997,19(1):45-47.
    [74]陈昌国,魏锡文,鲜学福.用从头计算研究煤表面与甲烷分子的相互作用[J].重庆大学学报(自然科学版),2000,23(3):77-80
    [75]陈昌国,辜敏,鲜学福.煤的原子分子结构及吸附甲烷机理研究进展[J].煤炭转化,2003,26(4):5-9.
    [76]何学秋.交变电磁场对煤吸附瓦斯特性的影响[J].煤炭学报,1996,21(1):63-67.
    [77]何学秋,张力.外加电磁场对瓦斯吸附解吸的影响规律及作用机理的研究[J].煤炭学报,2000,25(6):614-618.
    [78]何学秋,张力.正弦波电磁场对瓦斯吸附常数的影响规律[J].中国矿业大学学报,2003,32(5):476-478.
    [79]王恩元,张力,何学秋等.煤体瓦斯渗透性的电场响应研究[J].中国矿业大学学报,2004,33(1):62-65.
    [80]谢建林,郭勇义,吴世跃.常温下煤吸附甲烷的研究[J].太原理工大学学报,2004,35(5):562-564.
    [81]聂百胜,何学秋,王恩元等.电磁场影响煤层甲烷吸附的机理研究[J].天然气工业,2004,24(10):32-34.
    [82]唐巨鹏.煤层气赋存运移的核磁共振成像理论和实验研究[D].阜新:辽宁工程技术大学博士论文,2006.03.
    [83]唐巨鹏,潘一山,李成全等.三维应力作用下煤层气吸附解吸特性实验[J].天然气工业,2007,27(7):35-38.
    [84]马占存,马丕梁.水分对不同煤种瓦斯吸附特性影响的实验研究[J].煤炭学报,2008,33(2):144-147.
    [85]马东民,韦波,蔡忠勇.煤层气解吸特征的实验研究[J].地质学报,2008,82(10):1432-1436.
    [1]林梦海.量子化学计算方法与应用[M].北京:科学技术出版社,2004.
    [2]Reed,A. E., Larry A. Curtiss and Frank Weinhold, Chem.Rev.,1988,88,899.
    [3]F. Jensen, Introduction to Computational Chemistry, JOHN WILEY & SONS, 1999,161.
    [4]Alml?f, J. and Taylor, P.R. Adv. Quantum Chem.,1991,22,301.
    [5]Jensen, F. Introduction to Computational Chemistry, JOHN WILEY & SONS, 1999,229.
    [6]Reed, A. E. & Weinhold, F. J.Chem.Phys.,1983,78(6),4061.
    [7]Reed, A. E., Weinstock, R. B., Weinhold, F. J.Chem.Phys. 1985, 83(2), 735.
    [8]Carpenter, J.E., Weinhold, F. J.Mol.Struct.(Theochem), 1988, 169, 41.
    [9]Bader, R. F. W.. Atoms in Molecules A Quantum Theory. Oxford University Press,Oxford, 1990.
    [10]Bader, R.F.W.. Chem. Rev. 1991. 91. 893-928
    [11]Pople, J. A.; Head-Gordon, M.; Raghavachari,K.; J. Chem. Phys. 1987, 87, 5968.
    [12]Cutiss,L.A.; Raghavachari, K.; Redfern, P. C.; Rassolov, V.; Pople, J. A.J. Chem. Phys. 1998, 109, 7764.
    [13]王宝俊,张玉贵,秦育红等.量子化学计算方法在煤反应性研究中的应用[J].煤炭转化,2003,1(26):1-7.
    [14]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法[M].北京:科学出版社,1985.
    [15]刘靖疆.基础量子化学与应用[M].北京:高等教育出版社,2004.
    [16]P. O. Lowdin, Adv. Chem. Phys.,1959, 2, 207.
    [17]J. A. Pople, R. Seeger and R. Krishnan, Int. J. Quant. Chem. Symp., 1977,11, 149.
    [18]J. B. Foresman, M. Head-Gordon, J. A. Pople and M. J. Frisch, J. Phys. Chem. 1992, 96, 135.
    [19]R. Krishnan, H. B. Schlegel and J. A. Pople, J. Chem. Phys., 1980, 72,4654.8. B.R. Brooks, W.D. Laidig, P. Saxe, J. D. Goddard, Y. Yamaguchi, H.F.Schaefer, J. Chem. Phys., 1980, 72, 4652.
    [20]E. A. Salter, G. W. Trucks and R. J. Bartlett, J. Chem. Phys., 1989, 90,1752.
    [21]K. Raghavachari and J. A. Pople, Int. J. Quant. Chem., 1981, 20, 167.
    [22]J. A. Pople, M. Head-Gordon, K. Raghavachari, J. Chem. Phys. 1987, 87,5968.
    [23]P. Hohenberg, W. Kohn, Inhomogeneous Electron Gas, Phys. Rev. 1964,136, B864.
    [24]W. Kohn, L. J. Sham, Phys. Rev., 1965, 140, A1133.
    [25]J.C. Slater, Quantum Theory of Molecular and Solids. Vol. 4: TheSelf-ConsistentField for Molecular and Solids McGraw-Hill: New York,1974.
    [26]D. R. Salahub and M. C. Zerner, eds., The Challenge of d and f Electrons ACS: Washington, D.C. 1989.
    [27]R. G. Parr and W. Yang, Density-functional theory of atoms and molecules Oxford Univ. Press: Oxford, 1989.
    [28]J. A. Pople, P. M. W. Gill and B. G. Johnson, Chem. Phys. Lett., 1992, 199,557.
    [29]B. G. Johnson and M. J. Frisch, J. Chem. Phys., 1994, 100, 7429.
    [30]J. K. Labanowski, J. W. Andzelm, eds., Density Functional Methods in Chemistry, Springer-Verlag: New York, 1991
    [31]王正行.量子力学原理[M].北京:北京大学出版社,2003.
    [1]梁冰.煤和瓦斯突出固流耦合失稳理论的研究[D].沈阳:东北大学博士论文,1994.03.
    [2]王省身.矿井灾害防治理论与技术[M].徐州:中国矿业大学出版社,1997.
    [3]张国枢.通风安全学[M].徐州:中国矿业大学出版社,2007.
    [4]张辉,刘士阳,张国英.化学吸附的量子力学绘景[M].北京:科学出版社,2004.
    [5]冯增朝.低渗透煤层瓦斯强化抽采理论及应用[M].北京:科学出版社,2008.
    [6]马东民.煤层气吸附解吸机理研究[D].西安:西安科技大学博士论文,2008.04.
    [7]吴世跃.煤层中的耦合运动理论及其应用-具有吸附作用的气固耦合运动理论[M].北京:科学出版社,2009.
    [8]唐巨鹏.煤层气赋存运移的核磁共振成像理论和实验研究[D].阜新:辽宁工程技术大学博士论文,2006.03.
    [9]冯明,宫辉力,陈力.煤层瓦斯形成的构造地质条件及瓦斯灾害预防[J].自然灾害学报,2006,15(2):115-120.
    [10]虞继舜.煤化学[M].北京:冶金工业出版社,2000.
    [11]曾凡桂,谢克昌.煤结构化学的理论体系与方法论[J].煤炭学报,2006,4(29):443-447.
    [12]陈昌国,鲜学福.煤结构的研究及其发展[J].煤炭转化,1998,21(2):7-12.
    [13] Given PH Fuel.1960.39:147.
    [14] Wiser W H NATO ASIC.1983.124:325.
    [15] John H Shinn Fuel.1984.63:1187.
    [16]王继仁,金智新,邓存宝.煤自燃量子化学理论[M].北京:科学出版社,2007.
    [1]龚强,胡祥云等.岩石破裂电磁辐射频率与弹性参数的关系[J].地球物理学报,2006,49(5):1523-1528.
    [2]王继军,赵国泽.中国地震电磁现象的岩石实验研究[J].大地测量与地球动力学,2005,25(2):22-27.
    [3]王恩元,何学秋等.电磁辐射法预测煤与瓦斯突出原理[J].中国矿业大学学报,2000,29(3):225-229.
    [4]董玉芬,王来贵等.岩石变形过程中红外辐射的实验研究[J].岩土力学,2001,22(2):134-137.
    [5]钱书清,郝锦绮等.岩石受压破裂的ULF和LF电磁前兆信号[J].中国地震,2003,19(23):109-115.
    [6]Воларович.М.П,Пархоменко.Э.И.Пьезоэлектрическийэффектгорныхпород[J].ДАНСССР,1954,99(2):239.
    [7]Воларович.М.П,Пархоменко.Э.И.Пьезоэлектрическийэффектгорныхпород[J].АНСССР,сергеофиз,1955(22):215-222.
    [8]钱书清,张以勤,曹惠馨.花岗岩洞爆破时伴随岩石破裂的电磁辐射[J].地球物理学报,1983,26(增刊):1-7.
    [9]钱书清,张以勤,曹惠馨等.岩石破裂时产生电磁脉冲的观测和研究[J].地震学报,1986,8(3):301-308.
    [10]李均之,曹明,毛浦森等.岩石压缩实验与震前电磁辐射的研究[J].北京工业大学学报,1982(4).
    [11]徐为民,董芜生,吴培稚.岩石破裂过程中电磁辐射的实验研究[J].地球物理学报,1985(2).
    [12]徐为民,董芜生,王自成.单轴压缩下岩样破坏过程中的发光现象[J].地震,1984(1):8-10.
    [13]孙正江,王丽华,高宏.岩石破裂时的电磁辐射和光发射[J].地球物理学报,1986,29(5):491-495.
    [14]郭自强,周大庄,施行觉等.岩石破裂中的电子发射[J].地球物理学报,1988,31(5):566-571.
    [15]郭自强,郭子祺,钱书清等.岩石破裂中的电声效应[J].地球物理学报,1999,42(1):74-83.
    [16]郭自强,尤峻汉,李高等.破裂岩石的电子发射与原子压缩模型[J].地球物理学报,1989,32(2):173-177.
    [17]朱元清,罗祥麟,郭自强等.岩石破裂时电磁辐射的机理研究[J].地球物理学报,1991,34(5):595-601.
    [18]何学秋,刘明举.含瓦斯煤岩破坏电磁动力学[M].徐州:中国矿业大学出版社,1995.
    [19]王恩元,何学秋,窦林民等.煤矿采掘过程中煤岩体电磁辐射特征及其应用[J].地球物理学报,2005,48(1):216-221.
    [20]王恩元,何学秋,刘贞堂等.煤岩动力灾害电磁辐射监测仪及其应用[J].煤炭学报,2003,28(4):366-369.
    [21]王恩元.含瓦斯煤破裂的电磁辐射和声发射效应及其应用研究[D].徐州:中国矿业大学博士论文,1997.
    [22]王恩元,何学秋.煤岩变形破裂电磁辐射的实验研究[J].地球物理学报,2000,43(1):131-137.
    [23]王恩元,何学秋,刘贞堂等.受载岩石电磁辐射特性及其应用研究[J].岩石力学与工程学报,2002,21(10):1473-1477.
    [24]王恩元,何学秋,刘贞堂等.受载煤体电磁辐射的频谱特征[J].中国矿业大学学报,2003,32(5):487-490.
    [25]王恩元,贾慧霖,李忠辉等.用电磁法监测预报矿山采空区顶板稳定型[J].煤炭学报,2006,31(1):1619.
    [26]王恩元,何学秋,刘贞堂等.煤岩变形及破裂电磁辐射信号的R/S统计规律[J].中国矿业大学学报,1998,27(4):349-351.
    [27]曹惠馨,钱书清,吕智.岩石破裂过程中超长波段的电、磁信号和声发射的实验研究[J].地震学报,1994,16(2):235-241.
    [28]钱书清,任克新,吕智.伴随岩石破裂的VLF,MF,HF和VHF电磁辐射特性的实验研究[J].地震学报,1996,18(3):173-177.
    [29]郭自强,刘斌.岩石破裂电磁辐射的频率特性[J].地球物理学报,1995,38(2):221-225.
    [30]钱建生,刘富强,陈治国等.煤岩破裂过程电磁波传播特性的分析[J].煤炭学报,1999,24(4):392-394.
    [31]王恩元,何学秋,李忠辉等.煤岩电磁辐射技术及其应用[M].北京:科学出版社,2009.
    [32]何学秋,张力.外加电磁场对瓦斯吸附解吸的影响规律及作用机理的研究[J].煤炭学报,2000,25(6):614-618.
    [33]王继仁,邓存宝,邓汉忠.煤与瓦斯突出微观机理研究[J].煤炭学报,2008,33(2):131-135.
    [34]曾谨言.量子力学导论(第二版)[M].北京:北京大学出版社,2006.
    [35]吴立新,王金庄.煤岩受压屈服的热红外辐射温度前兆研究[J].中国矿业,1997,34(6):42-47.
    [1]虞继舜.煤化学[M].北京:冶金工业出版社,2000.
    [2]陈昌国,鲜学福.煤结构的研究及其发展[J].煤炭转化,1998,21(2):7-13.
    [3]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002.
    [4]王继仁,金智新,邓存宝.煤自燃量子化学理论[M].北京:科学出版社,2007.
    [5]钟蕴英,关梦嫔,崔开仁.煤化学[M].徐州:中国矿业大学出版社,1992.
    [6]杨焕祥,廖玉枝.煤化学及煤质评价[M].武汉:中国地质大学出版社,1990.
    [7]陈文敏,张自劭.煤化学基础[M].北京:煤炭工业出版社,1993.
    [8]陈宏刚,李凡,谢克昌.煤结构的计算机辅助分子设计研究[J].煤炭转化,1996,19(4):2-5.
    [9]Shinn J H. From Coal to Single-stage and Two-stage Products: A Reactive Model of Coal Structure.Fuel.1984,63-1187.
    [10]Hatcher P G,Lerch H E,Verleyen T V. Organic Geochemical Studies of the Transformation of Gyrnnospermous Sylem Puring Peatification and Coalification to Subbituminous Int J Coal Geol.1989,13-65.
    [11]常建华,董绮功.波谱原理及解析[M].北京:科学出版社,2001.
    [12]FROLKOV G D,SVEKOLKIN N V,SHERSTYUKOVA N O,et al.Structural-chemical features of the organic matter of coal from zones hazardous with vespect to sudden outbursts of coal and gas[J].Solid Fuel Chem,1988,22(1):6.
    
    [13]徐龙君,鲜学福,刘成伦等.用X射线衍射和FTIR光谱研究突出区煤的结构[J].重庆大学学报(自然科学版),1999,22(4):23-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700