基于磁共振成像的无先兆偏头痛患者大脑静息状态异常模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
偏头痛是临床上较为常见的一种原发性头痛类型。当前,随着社会的发展、生活节奏的加快,偏头痛的患病率呈现日益上升的趋势,给病患带来极大的身心痛苦,并给社会公共卫生服务系统造成沉重负担。然而,尽管偏头痛已成为国际上公认的热点研究问题之一,其病因及发病机理尚未完全明确。如何更好地认识了解偏头痛已成为制约其治疗及预防的重要因素。随着影像学技术手段的发展应用,人们对于偏头痛的认识取得了许多突破性进展,发现偏头痛患者大脑中参与痛觉信息加工的区域存在结构和功能异常。现有基于功能核磁共振的偏头痛影像学研究大多采用的是基于任务设计的研究方法,通过比较偏头痛患者和正常人某些脑区在任务中表现出来的不同激活水平揭示偏头痛患者的异常脑区,却很少有人关注偏头痛患者大脑静息状态模式的异常。
     本文的主要工作和创新点如下:
     首先,虽然有影像学研究证实偏头痛患者静息状态大脑存在局部功能异常和全脑功能连接异常,但目前还没有人将这两者结合起来分析。本研究首先采用低频振荡振幅算法(amplitude of low frequency fluctuation,ALFF)检测偏头痛患者出现功能异常的脑区,然后借助种子点相关方法考察上述脑区在静息状态下与全脑的功能连接异常;与此同时,进一步考察了局部功能异常和网络连接异常与偏头痛病程之间的相关关系。与正常对照组相比:偏头痛患者左侧前喙扣带回皮质(rostral anterior cingulate cortex, rACC)、双侧前额叶皮质(prefrontal cortex, PFC)的活动强度降低,而右侧丘脑(thalamus, TH)的活动强度增高;且左侧前喙扣带回皮质功能异常与偏头痛病程呈现显著的负相关关系。静息状态下出现异常的脑区与全脑的功能连接模式亦出现异常,主要表现为功能连接强度的增加。该研究从局部和整体两个角度考察偏头痛患者大脑静息状态的异常模式,可以帮助我们更好地理解偏头痛对大脑造成的影响。
     其次,采用基于数据驱动的独立成分分析方法(independent component analysis,ICA)检测偏头痛患者静息状态固有功能网络连接模式异常。静息状态下,大脑的自发神经活动是由多个具有特定功能的神经网络协调耦合形成,这些网络称为静息状态的固有网络。独立成分分析方法不需要先验模型,只依赖于数据本身,是一种有效提取静息状态功能网络的研究手段。本研究将独立成分分析方法应用于比较偏头痛患者和正常被试的三个静息状态网络连接差异,发现与正常被试相比:无先兆偏头痛患者的执行网络(central executive network, CEN)和凸显网络(salience network, SN)的内部功能连接强度出现异常,表现为执行网络额下回皮质(inferior frontal gyurs, IFG)连接强度增加、凸显网络右侧辅助运动区(rightsupplementary motor area, rSMA)连接强度降低;网络之间的连接模式亦发生改变,表现为默认网络(default mode network, DMN)及右侧执行网络与凸显网络内部右侧前脑岛(right anterior insula, rAI)区域连接强度的增加,进一步的相关分析表明网络间连接强度的增加与偏头痛病程之间存在显著正相关关系。该研究考察了病理条件下无先兆偏头痛患者固有功能网络协同加工模式异常,这些结果可能成为该病临床前期诊断的重要生物学指标。
     再次,采用因果分析方法考察静息状态无先兆偏头痛患者大脑核团间有效连接模式。以往大量神经影像学研究表明,大脑复杂活动的完成需要中枢神经多个核团之间协同加工,以脑网络的组织模式进行运作,内外信息的交换主要通过大脑网络的动态交互作用得以实现。本研究采用多变量Granger因果模型,对无先兆偏头痛患者的网络内部核团之间及脑网络之间的信息交互模式进行了分析。发现静息状态下无先兆偏头痛患者和正常被试的右侧额叶脑岛区域(right fronto-insulacortex, rFIC)对默认网络及执行网络起着支配、调控的作用。与正常被试相比,无先兆偏头痛组由凸显网络流向执行网络的因果连接降低,可能为偏头痛伴随的认知、执行能力下降提供神经生理解释。该研究构建了无先兆偏头痛静息状态因果传导通路模型,可以帮助我们加深对无先兆偏头痛神经机制的理解。
     最后,探讨了针刺治疗偏头痛的有效性。偏头痛的发病机制比较复杂,临床对该病的治疗也有多种方法。虽然西药对于缓解偏头痛的急性发作具有较好疗效,但存在着一定的毒副作用。中医中药尤其是针刺疗法在预防、治疗偏头痛方面,具有效果显著,毒副作用小,少复发等优点,其疗效得到肯定,在偏头痛的临床应用也较为广泛。功能核磁共振成像(functional magnetic resonance imaging, fMRI)作为一种非侵入、可实时观测大脑功能活动的技术,为探究针刺效应神经调控途径及作用疗效评价提供了全新的研究途径。本部分研究内容采用基于数据驱动的多体素模式分析方法,用以探究大脑对针刺信号的处理与加工。研究结果揭示了针刺不同穴位引起的神经响应大脑空间分布模式显著不同。该研究不仅有助于进一步挖掘穴位相对功能特异性的神经表象,而且有助于为针刺治疗偏头痛的有效性提供理论依据。
     总体来说,本文考察了无先兆偏头痛患者静息状态脑功能活动,着重探讨了静息状态下的功能异常,固有功能网络连接模式的改变,网络核团间信息交互模式,最后探讨了针刺治疗偏头痛的可行性。本文的主要发现可以提高我们对偏头痛的认识,为偏头痛的临床诊断和治疗提供帮助。
Migraine is a common, chronic disorder typically characterized by recurrentattacks of disabling headache. Given the heavy burden that migraine disability places onthe individual and society, it is imperative to develop a better understanding of migrainepathophysiology. Neuroimaging has helped to increase our knowledge about neuralmechanisms underlying migraine. Converging evidences of structural and functionalcerebral abnormalities in patients with migraine have been accumulated. All of thesefindings demonstrated that migraine is associated with altered central processing of painstimulus, and recurrent migraine attacks may result in selective damage of brain areasinvolved in pain processing. Despite such progress, migraine remains underdiagnosedand the available therapies underused. By focusing on the neural responses under taskconditions, resting-state analysis has been utilized to investigate the integration level ofneural systems when no explicit task is engaged. Until recently, few studies haveevaluated the abnormalities of the resting state in subjects with migraine.
     The details of researches and the main innovations were listed as follows:
     Firstly, although previous resting-state studies have reported abnormal functionalcerebral changes in patients with migraine without aura (MwoA), few have focused onthe alterations of regional spontaneous neuronal activity and the corresponding braincircuits’ changes collectively. In the present study, we first investigated alterations ofregional spontaneous neuronal activity during the resting-state in MwoA patients byapplying the amplitude of low-frequency fluctuation (ALFF) approach. Then weextracted the regions with significant ALFF differences between MwoA patients andhealthy controls (HC) as regions of interest (ROIs) for resting-state functionalconnectivity (FC) analysis, which was used to assess the corresponding brain circuits’changes in MwoA. We found that MwoA patients have altered resting-state spontaneousneuronal activity in pain-processing areas, including the left rostral anterior cingulatecortex (rACC), bilateral prefrontal cortex (PFC), and right thalamus (TH), as well asaltered FCs associated with these areas. ROI-based FC analysis also revealed increasedFCs associated with these areas. In addition, the ALFF values of the left rACC werecorrelated with duration of disease in MwoA. Our findings may lead to a betterunderstanding of intrinsic functional architecture of the baseline brain activity in MwoA,providing both regional and the corresponding brain circuits’ spontaneous neuronalactivity properties.
     Secondly, numerous neuroimaging studies have defined low-frequency, spatially consistent intrinsic connectivity networks (ICN) in resting-state functional magneticresonance imaging (fMRI) data which reflect functional interactions among distinctbrain areas, in the current study, we applied independent component analysis (ICA) toidentify the group differences of three important networks, i.e., the default modenetwork (DMN), bilateral central executive network (CEN) and salience network (SN)between the MwoA patients and HC. One of the key features of ICA is its ability toperform a spatial-temporal decomposition of the signal without any a priori anatomical(spatial) or neural (temporal) information. Compared with the HC, MwoA patientsshowed greater intra-network connectivity within the right middle frontal gyrus (rMFG)for the right CEN (rCEN) and left inferior frontal gyrus (lIFG) for the left CEN (lCEN),and decreased intra-network connectivity within the right supplementary motor area(rSMA) for the SN. Moreover, MwoA patients demonstrated greater intrinsic DMN andrCEN connectivity to brain regions outside of the classical boundaries of these networks,namely the right anterior insula (rAI). Greater connectivity between both the DMN andrCEN and the insula correlated with duration of migraine. Our findings may haveimplications for understanding brain mechanisms of MwoA, potentially pointingtowards “markers” for disease progression. More broadly, these findings haveimplications for how such complex interplay amongst multiple brain networks can beinfluenced by frequent ongoing migraine attacks.
     Thirdly, we applied multivariate Granger causality analysis (mGCA) to directlyassess the causal interactions of specific nodes within and among the intrinsic networks.One distinguishing feature of the human brain is the amount of cognitive controlavailable for selecting, switching, and attending to salient events in the environments.Recent researches have suggested that the human brain is intrinsically organized intodistinct functional networks that support these processes. We used mGCA to examinethe interaction between the DMN, CEN, and SN. Our findings emphaszied a key rolefor the rFIC in the hierarchical initiation of control signals, specifically with respect toactivation and deactivation in the CEN and DMN, and the dynamics of switchingbetween these two networks. Compared with the HC, the SN did have a weaker causalinfluence on the CEN in MwoA patients. This might be related to cognitive impairmentin migraine patients.
     Finally, we discussed potential acupuncture effectiveness for treatment of migraine.The pathogenesis of migraine is complex, and there are various clinical treatments ofthe disease. In terms of acute treatment, migraine can be managed effectively withwestern medicine. However, the western medicine oftern have side effects that limit their utility. The Traditional Chinese Medicine (TCM), especially acupuncture therapy,has proven to be effective in treatment of migraine; and it has been widely used in theclinical treatment of the disease. The fMRI technique, with its non-invasive and higherresolution characterstics, has been widely applied in the detection of the brainactivations evoked by acupunture stimuli. In the current study, we introduced adata-driven based multivariate approach namely support vector machine (SVM) toexplore the spatial neural response patterns evoked by acupuncture at two differentacupoints. The results showed that acupuncture at the acupoints can evoke distinctneural response patterns. Our findings may suggest potentially selective efficacy-relatedneural actions in response to acupuncture at different acupoints, which might provide atheoretical basis for clinical application of acupuncture in treatment of migraine.
     In summary, these resting-state functional abnormalities in MwoA patientsprovided additional evidence for abnormal brain function in MwoA patients. Thesefindings may be beneficial for understanding migraine, as well as providing potentialdiagnostic information and treatment strategies.
引文
[1]. RA Wilson FK (2000) MIT认知百科全书.英文版.上海:上海外语教育出版社.
    [2]. Chugani DC, HT (2000) New directions in PET neuroimaging for neocorticalepilepsy. Neocortical Epilepsies84:447-456.
    [3]. Raichle ME, Mintun MA (2006) Brain work and brain imaging. Annual Review ofNeuroscience29:449-476.
    [4]. Phelps ME, Mazziotta JC (1985) Positron emission tomography: human brainfunction and biochemistry. Science228:799-809.
    [5]. Watson JD (1997) Images of the working brain: understanding human brainfunction with positron emission tomography. Journal of Neuroscience Methods74:245-256.
    [6]. Warwick JM (2004) Imaging of brain function using SPECT. Metabolic BrainDisease19:113-123.
    [7]. Darvas F, Pantazis D, Kucukaltun-Yildirim E, Leahy RM (2004) Mapping humanbrain function with MEG and EEG: methods and validation. Neuroimage23:289-299.
    [8]. Shulman RG, Blamire AM, Rothman DL, McCarthy G (1993) Nuclear magneticresonance imaging and spectroscopy of human brain function. Proceedings of theNational Academy of Sciences of the United States of America90:3127-3133.
    [9]. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, et al.(1992)Dynamic magnetic resonance imaging of human brain activity during primary sensorystimulation. Proceedings of the National Academy of Sciences of the United States ofAmerica89:5675-5679.
    [10]. Villringer A, Planck J, Hock C, Schleinkofer L, Dirnagl U (1993) Near infraredspectroscopy (NIRS): a new tool to study hemodynamic changes during activation ofbrain function in human adults. Neuroscience letters154:101-104.
    [11]. Agostoni E, Aliprandi A (2006) The complications of migraine with aura.Neurological Sciences27:91-95.
    [12]. Wang SJ (2003) Epidemiology of migraine and other types of headache in Asia.Current Neurology and Neuroscience Reports3:104-108.
    [13]. Manzoni GC, Stovner LJ (2010) Epidemiology of headache. Handbook of ClinicalNeurology97:3-22.
    [14]. Calandre EP, Bembibre J, Arnedo ML, Becerra D (2002) Cognitive disturbancesand regional cerebral blood flow abnormalities in migraine patients: their relationshipwith the clinical manifestations of the illness. Cephalalgia22:291-302.
    [15]. Meyer JS, Thornby J, Crawford K, Rauch GM (2000) Reversible cognitive declineaccompanies migraine and cluster headaches. Annals of Neurology48:430-430.
    [16]. Le Pira F, Zappala G, Giuffrida S, Lo Bartolo ML, Reggio E, et al.(2000) Memorydisturbances in migraine with and without aura: a strategy problem? Cephalalgia20:475-478.
    [17]. Merikangas KR, Stevens DE (1997) Comorbidity of migraine and psychiatricdisorders. Neurologic Clinics15:115-123.
    [18]. Carolei A, Marini C, De Matteis G (1996) History of migraine and risk of cerebralischaemia in young adults. The Italian National Research Council Study Group onStroke in the Young. Lancet347:1503-1506.
    [19]. Kurth T, Slomke MA, Kase CS, Cook NR, Lee IM, et al.(2005) Migraine,headache, and the risk of stroke in women: a prospective study. Neurology64:1020-1026.
    [20]. Scher AI, Terwindt GM, Picavet HS, Verschuren WM, Ferrari MD, et al.(2005)Cardiovascular risk factors and migraine: the GEM population-based study. Neurology64:614-620.
    [21]. Swartz RH, Kern RZ (2004) Migraine is associated with magnetic resonanceimaging white matter abnormalities-A meta-analysis. Archives of Neurology61:1366-1368.
    [22]. Ottman R, Lipton R (1994) Comorbidity of migraine and epilepsy. Neurology44:2105-2110.
    [23]. Guo W-b, Liu F, Xue Z-m, Xu X-j, Wu R-r, et al.(2012) Alterations of theamplitude of low-frequency fluctuations in treatment-resistant and treatment-responsedepression: A resting-state fMRI study. Progress in Neuro-Psychopharmacology andBiological Psychiatry37:153-160.
    [24]. Society HCCotIH (1988) Classification and diagnostic criteria for headachedisorders, cranial neuralgias and facial pain. Cephalalgia8.
    [25]. Rasmussen BK, Olesen J.(1992) Migraine with aura and migraine without aura:and epidemiological study. Cephalalgia12:221-228.
    [26]. Russell M RB, Fenger K, Olesen J (1996) Migraine without aura and migrainewith aura are distinct clinical entities: a study of four hundred and eighty. Cephalalgia1996:239-245.
    [27]. Wolff HG (1963) Headache and Other Head Pain. New York: Oxford UniversityPress.
    [28]. Kruuse C, Thomsen LL, Birk S, Olesen J (2003) Migraine can be induced bysildenafil without changes in middle cerebral artery diameter. Brain126:241-247.
    [29]. De Benedittis G, Ferrari Da Passano C, Granata G, Lorenzetti A (1999) CBFchanges during headache-free periods and spontaneous/induced attacks in migraine withand without aura: a TCD and SPECT comparison study. Journal of NeurosurgicalSciences43:141-147.
    [30]. Welch KMA (2003) Contemporary concepts of migraine pathogenesis. Neurology61:2-8.
    [31]. Leao AAP (1944) Spreading depression of activity in cerebral cortex. Journal ofNeurophysiology7:359-390.
    [32]. Olesen J, Larsen B, Lauritzen M (1981) Focal hyperemia followed by spreadingoligemia and impaired activation of rCBF in classic migraine. Annals of Neurology9:344-352.
    [33]. Lauritzen M (1994) Pathophysiology of the migraine aura. The spreadingdepression theory. Brain: a journal of neurology117:199-210.
    [34]. Pietrobon D, Striessnig J (2003) Neurobiology of migraine. Nature ReviewsNeuroscience4:386-398.
    [35]. Buzzi MG, Moskowitz, M.A.(1990) The antimigraine drug, sumatriptan(GR43175), selectively blocks neurogenic plasma extravasation from blood vessels indura mater. British Journal of Pharmacology90:202-206.
    [36]. Welch KM, Cutrer FM, Goadsby PJ (2003) Migraine pathogenesis: Neural andvascular mechanisms. Neurology60:9-14.
    [37]. Schwedt TJ, Dodick DW (2009) Advanced neuroimaging of migraine. LancetNeurology8:560-568.
    [38]. Valfre W, Rainero I, Bergui M, Pinessi L (2008) Voxel-based morphometry revealsgray matter abnormalities in migraine. Headache48:109-117.
    [39]. Kim J, Suh SI, Seol H, Oh K, Seo WK, et al.(2008) Regional grey matter changesin patients with migraine: a voxel-based morphometry study. Cephalalgia28:598-604.
    [40]. Schmidt-Wilcke T, G n bauer S, Neuner T, Bogdahn U, May A (2008) Subtle greymatter changes between migraine patients and healthy controls. Cephalalgia28:1-4.
    [41]. Schmitz N, Admiraal-Behloul F, Arkink EB, Kruit MC, Schoonman GG, et al.(2008) Attack frequency and disease duration as indicators for brain damage in migraine.Headache48:1044-1055.
    [42]. Holtmannsp tter M, Inglese M, Rovaris M, Rocca MA, Codella M, et al.(2003) Adiffusion tensor MRI study of basal ganglia from patients with ADEM. Journal of theneurological sciences206:27-30.
    [43]. Cao Y, Aurora SK, Nagesh V, Patel SC, Welch KMA (2002) FunctionalMRI-BOLD of brainstem structures during visually triggered migraine. Neurology59:72-78.
    [44]. Afridi SK, Giffin NJ, Kaube H, Friston KJ, Ward NS, et al.(2005) A positronemission tomographic study in spontaneous migraine. Archives of Neurology62:1270-1275.
    [45]. Afridi SK, Matharu MS, Lee L, Kaube H, Friston KJ, et al.(2005) A PET studyexploring the laterality of brainstem activation in migraine using glyceryl trinitrate.Brain128:932-939.
    [46]. Bahra A, Matharu M, Buchel C, Frackowiak R, Goadsby P (2001) Brainstemactivation specific to migraine headache. The lancet357:1016-1017.
    [47]. Weiller C, May A, Limmroth V, Juptner M, Kaube H, et al.(1995) Brain stemactivation in spontaneous human migraine attacks. Nature Medicine1:658-660.
    [48]. Peyron R, Laurent B, Garcia-Larrea L (2000) Functional imaging of brainresponses to pain. A review and meta-analysis (2000). NeurophysiologieClinique-Clinical Neurophysiology30:263-288.
    [49]. Tracey I (2007) Neuroimaging of pain mechanisms. Current opinion in supportiveand palliative care1:109-116.
    [50]. Peyron R, Garcia-Larrea L, Gregoire MC, Costes N, Convers P, et al.(1999)Haemodynamic brain responses to acute pain in humans-Sensory and attentionalnetworks. Brain122:1765-1779.
    [51]. Eck J, Richter M, Straube T, Miltner WHR, Weiss T (2011) Affective brain regionsare activated during the processing of pain-related words in migraine patients. Pain152:1104-1113.
    [52]. Russo A, Tessitore A, Esposito F, Marcuccio L, Giordano A, et al.(2012) Painprocessing in patients with migraine: an event-related fMRI study during trigeminalnociceptive stimulation. Journal of Neurology259:1903-1912.
    [53]. Gusnard DA, Raichle ME (2001) Searching for a baseline: Functional imaging andthe resting human brain. Nature Reviews Neuroscience2:685-694.
    [54]. Rombouts SARB, Barkhof F, Goekoop R, Stam CJ, Scheltens P (2005) Alteredresting state networks in mild cognitive impairment and mild Alzheimer's disease: anfMRI study. Human brain mapping26:231-239.
    [55]. Wang K, Liang M, Wang L, Tian L, Zhang X, et al.(2006) Altered functionalconnectivity in early Alzheimer's disease: A resting-state fMRI study. Human brainmapping28:967-978.
    [56]. Greicius MD, Flores BH, Menon V, Glover GH, Solvason HB, et al.(2007)Resting-state functional connectivity in major depression: abnormally increasedcontributions from subgenual cingulate cortex and thalamus. Biological psychiatry62:429-437.
    [57]. Yao Z, Wang L, Lu Q, Liu H, Teng G (2009) Regional homogeneity in depressionand its relationship with separate depressive symptom clusters: a resting-state fMRIstudy. Journal of affective disorders115:430-438.
    [58]. Zhou Y, Liang M, Tian L, Wang K, Hao Y, et al.(2007) Functional disintegrationin paranoid schizophrenia using resting-state fMRI. Schizophrenia research97:194-205.
    [59]. Hoptman MJ, Zuo XN, Butler PD, Javitt DC, D'Angelo D, et al.(2010) Amplitudeof low-frequency oscillations in schizophrenia: a resting state fMRI study.Schizophrenia research117:13-20.
    [60]. Kennedy DP, Redcay E, Courchesne E (2006) Failing to deactivate: restingfunctional abnormalities in autism. Proceedings of the National Academy of Sciences ofthe United States of America103:8275-8280.
    [61]. Cherkassky VL, Kana RK, Keller TA, Just MA (2006) Functional connectivity in abaseline resting-state network in autism. Neuroreport17:1687-1690.
    [62]. Tian L, Jiang T, Liang M, Zang Y, He Y, et al.(2008) Enhanced resting-state brainactivities in ADHD patients: a fMRI study. Brain and Development30:342-348.
    [63]. Cao Q, Zang Y, Sun L, Sui M, Long X, et al.(2006) Abnormal neural activity inchildren with attention deficit hyperactivity disorder: a resting-state functional magneticresonance imaging study. Neuroreport17:1033-1036.
    [64]. Northoff G, Qin PM, Nakao T (2010) Rest-stimulus interaction in the brain: areview. Trends in Neurosciences33:277-284.
    [65]. Fox MD, Snyder AZ, Vincent JL, Raichle ME (2007) Intrinsic fluctuations withincortical systems account for intertrial variability in human behavior. Neuron56:171-184.
    [66]. Hesselmann G, Kell CA, Eger E, Kleinschmidt A (2008) Spontaneous localvariations in ongoing neural activity bias perceptual decisions. Proceedings of theNational Academy of Sciences of the United States of America105:10984-10989.
    [67]. Bloch F (1946) Nuclear Induction. Physical Review Online Archive (Prola)70:460-474.
    [68]. Purcell EM, Torrey H, Pound RV (1946) Resonance absorption by nuclearmagnetic moments in a solid. Physical review69:37-38.
    [69]. Arnold J, Dharmatti S, Packard M (1951) Chemical effects on nuclear inductionsignals from organic compounds. The Journal of Chemical Physics19:507-507.
    [70]. Damadian R (1971) Tumor detection by nuclear magnetic resonance. Science171:1151-1153.
    [71]. Lauterbur PC (1973) Image formation by induced local interactions: examplesemploying nuclear magnetic resonance. Nature242:190-191.
    [72]. Aue W, Bartholdi E, Ernst RR (1976) Two-dimensional spectroscopy. Applicationto nuclear magnetic resonance. The Journal of Chemical Physics64:2229-2246.
    [73]. Kramer D, Schneider J, Rudin A, Lauterbur P (1981) True three-dimensionalnuclear magnetic resonance zeugmatographic images of a human brain. Neuroradiology21:239-244.
    [74].袁凯(2011)基于磁共振成像的海洛因依赖患者大脑静息状态异常模式研究.西安:西安电子科技大学.
    [75]. Henning J NA, Friedburg H (1986) RARE imaging: a fast imaging method forclinical MR. Magnetic Resonance in Medicine3:823-833.
    [76]. Dumoulin CL (1987) Methods of, and pulse sequences for, the supression ofundesired resonances by generation of quantum coherence in NMR imaging andspectroscopy. Google Patents.
    [77]. Inglese M, Bester M (2010) Diffusion imaging in multiple sclerosis: research andclinical implications. NMR in Biomedicine23:865-872.
    [78]. Afaq A, Andreou A, Koh D (2010) Diffusion-weighted magnetic resonanceimaging for tumour response assessment: why, when and how? Cancer imaging: theofficial publication of the International Cancer Imaging Society10:179-188.
    [79]. Jezzard P MP, Smith S (2001) Functional MRI: an introduction to methods.Oxford University: Press Oxford.
    [80]. Wager TD, Nichols TE (2003) Optimization of experimental design in fMRI: ageneral framework using a genetic algorithm. Neuroimage18:293-309.
    [81]. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imagingwith contrast dependent on blood oxygenation. Proceedings of the National Academy ofSciences of the United States of America87:9868-9872.
    [82]. Heeger DJ, Ress D (2002) What does fMRI tell us about neuronal activity? NatureReviews Neuroscience3:142-151.
    [83]. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, et al.(2005) Thehuman brain is intrinsically organized into dynamic, anticorrelated functional networks.Proceedings of the National Academy of Sciences of the United States of America102:9673-9678.
    [84]. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain:Thieme New York:.
    [85]. Collins DL, Zijdenbos AP, Kollokian V, Sled JG, Kabani NJ, et al.(1998) Designand construction of a realistic digital brain phantom. IEEE Transactions on MedicalImaging17:463-468.
    [86]. Holmes A, Friston K (1998) Generalisability, Random Effects and PopulationInference. Neuroimage7:754.
    [87]. Raichle ME (2010) The brain's dark energy. Scientific American302:44-49.
    [88]. Binder JR, Frost JA, Hammeke TA, Bellgowan PSF, Rao SM, et al.(1999)Conceptual processing during the conscious resting state: A functional MRI study.Journal of Cognitive Neuroscience11:80-93.
    [89]. Weisskoff R, Baker J, Belliveau J, Davis T, Kwong K, et al. Power spectrumanalysis of functionally-weighted MR data: What’s in the noise;1993.
    [90]. Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS (1995) Functional connectivityin the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonancein Medicine34:537-541.
    [91]. Xiong J, Parsons LM, Gao JH, Fox PT (1999) Interregional connectivity toprimary motor cortex revealed using MRI resting state images. Human brain mapping8:151-156.
    [92]. Lowe MJ, Mock BJ, Sorenson JA (1998) Functional connectivity in single andmultislice echoplanar imaging using resting-state fluctuations. Neuroimage7:119-132.
    [93]. Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, et al.(2001)Frequencies contributing to functional connectivity in the cerebral cortex in"resting-state" data. American Journal of Neuroradiology22:1326-1333.
    [94]. Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, et al.(2006)Consistent resting-state networks across healthy subjects. Proceedings of the NationalAcademy of Sciences of the United States of America103:13848-13853.
    [95]. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, et al.(2001) Adefault mode of brain function. Proceedings of the National Academy of Sciences of theUnited States of America98:676-682.
    [96]. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity inthe resting brain: A network analysis of the default mode hypothesis. Proceedings of theNational Academy of Sciences of the United States of America100:253-258.
    [97]. Fransson P (2005) Spontaneous low-frequency BOLD signal fluctuations: AnfMRI investigation of the resting-state default mode of brain function hypothesis.Human brain mapping26:15-29.
    [98]. Beckmann CF, DeLuca M, Devlin JT, Smith SM (2005) Investigations intoresting-state connectivity using independent component analysis. PhilosophicalTransactions of the Royal Society B: Biological Sciences360:1001-1013.
    [99]. Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode networkactivity distinguishes Alzheimer's disease from healthy aging: evidence from functionalMRI. Proceedings of the National Academy of Sciences of the United States of America101:4637-4642.
    [100]. Wang L, Zang YF, He Y, Liang M, Zhang XQ, et al.(2006) Changes inhippocampal connectivity in the early stages of Alzheimer's disease: Evidence fromresting state fMRI. Neuroimage31:496-504.
    [101]. Paakki JJ, Rahko J, Long XY, Moilanen I, Tervonen O, et al.(2010) Alterationsin regional homogeneity of resting-state brain activity in autism spectrum disorders.Brain Research1321:169-179.
    [102]. Baudrexel S, Witte T, Seifried C, von Wegner F, Beissner F, et al.(2011) Restingstate fMRI reveals increased subthalamic nucleus-motor cortex connectivity inParkinson's disease. Neuroimage55:1728-1738.
    [103]. Liu HH, Liu ZN, Liang M, Hao YH, Tan LH, et al.(2006) Decreased regionalhomogeneity in schizophrenia: a resting state functional magnetic resonance imagingstudy. Neuroreport17:19-22.
    [104]. Xiong JH, Parsons LM, Gao JH, Fox PT (1999) Interregional connectivity toprimary motor cortex revealed using MRI resting state images. Human brain mapping8:151-156.
    [105]. McCormick DA (1999) Developmental neuroscience-Spontaneous activity:Signal or noise? Science285:541-543.
    [106]. Golanov EV, Yamamoto S, Reis DJ (1994) Spontaneous waves of cerebral bloodflow associated with a pattern of electrocortical activity. American Journal ofPhysiology266:204-214.
    [107]. Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, et al.(2003)Electroencephalographic signatures of attentional and cognitive default modes inspontaneous brain activity fluctuations at rest. Proceedings of the National Academy ofSciences of the United States of America100:11053-11058.
    [108]. Buchel C, Friston KJ (1997) Modulation of connectivity in visual pathways byattention: Cortical interactions evaluated with structural equation modelling and fMRI.Cerebral Cortex7:768-778.
    [109]. Zang YF, He Y, Zhu CZ, Cao QJ, Sui MQ, et al.(2007) Altered baseline brainactivity in children with ADHD revealed by resting-state functional MRI. Brain andDevelopment29:83-91.
    [110]. Han Y, Wang J, Zhao Z, Min B, Lu J, et al.(2011) Frequency-dependent changesin the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: aresting-state fMRI study. Neuroimage55:287-295.
    [111]. Zhang Z, Lu G, Zhong Y, Tan Q, Chen H, et al.(2010) fMRI study of mesialtemporal lobe epilepsy using amplitude of low-frequency fluctuation analysis. Humanbrain mapping31:1851-1861.
    [112]. Sporns O, Chialvo DR, Kaiser M, Hilgetag CC (2004) Organization,development and function of complex brain networks. Trends in Cognitive Sciences8:418-425.
    [113]. Wink AM, Bernard F, Salvador R, Bullmore E, Suckling J (2006) Age andcholinergic effects on hemodynamics and functional coherence of human hippocampus.Neurobiology of Aging27:1395-1404.
    [114]. Achard S, Salvador R, Whitcher B, Suckling J, Bullmore E (2006) A resilient,low-frequency, small-world human brain functional network with highly connectedassociation cortical hubs. Journal of Neuroscience26:63-72.
    [115]. Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, et al.(2005)Neurophysiological architecture of functional magnetic resonance images of humanbrain. Cerebral Cortex15:1332-1342.
    [116].杨福生(2006)独立分量分析的原理与应用:清华大学出版社有限公司.
    [117]. Beckmann CF, Smith SA (2004) Probabilistic independent component analysisfor functional magnetic resonance imaging. IEEE Transactions on Medical Imaging23:137-152.
    [118]. Beckmann CF, Mackay CE, Filippini N, Smith SM (2009) Group comparison ofresting-state FMRI data using multi-subject ICA and dual regression. Neuroimage47:148.
    [119]. Goebel R, Roebroeck A, Kim DS, Formisano E (2003) Investigating directedcortical interactions in time-resolved fMRI data using vector autoregressive modelingand Granger causality mapping. Magnetic resonance imaging21:1251-1261.
    [120]. Friston KJ, Harrison L, Penny W (2003) Dynamic causal modelling. Neuroimage19:1273-1302.
    [121]. Buchel C, Friston KJ (1998) Dynamic changes in effective connectivitycharacterized by variable parameter regression and Kalman filtering. Human brainmapping6:403-408.
    [122]. Friston KJ, Buchel C (2000) Attentional modulation of effective connectivityfrom V2to V5/MT in humans. Proceedings of the National Academy of Sciences of theUnited States of America97:7591-7596.
    [123]. Granger CWJ (1969) Investigating causal relations by econometric models andcross-spectral methods. Econometrica: Journal of the Econometric Society:424-438.
    [124]. Seth AK (2010) A MATLAB toolbox for Granger causal connectivity analysis.Journal of Neuroscience Methods186:262-273.
    [125]. Deshpande G, LaConte S, Peltier S, Hu X. Directed transfer function analysis offMRI data to investigate network dynamics;2006. IEEE. pp.671-674.
    [126]. Akaike H (1974) A new look at the statistical model identification. IEEETransactions on Automatic Control19:716-723.
    [127]. Deshpande G, LaConte S, James GA, Peltier S, Hu X (2008) MultivariateGranger causality analysis of fMRI data. Human brain mapping30:1361-1373.
    [128]. Jiao Q, Lu G, Zhang Z, Zhong Y, Wang Z, et al.(2010) Granger causal influencepredicts BOLD activity levels in the default mode network. Human brain mapping32:154-161.
    [129]. Liao W, Mantini D, Zhang Z, Pan Z, Ding J, et al.(2010) Evaluating the effectiveconnectivity of resting state networks using conditional Granger causality. Biologicalcybernetics102:57-69.
    [130]. Kus R, Kaminski M, Blinowska KJ (2004) Determination of EEG activitypropagation: pairwise versus multichannel estimate. IEEE Transactions on AutomaticControl51:1501-1510.
    [131]. Theiler J, Eubank S, Longtin A, Galdrikian B, Doyne Farmer J (1992) Testing fornonlinearity in time series: the method of surrogate data. Physica D: NonlinearPhenomena58:77-94.
    [132]. Rocca MA, Pagani E, Colombo B, Tortorella P, Falini A, et al.(2008) Selectivediffusion changes of the visual pathways in patients with migraine: a3-T tractographystudy. Cephalalgia28:1061-1068.
    [133]. Szabo N, Kincses ZT, Pardutz A, Tajti J, Szok D, et al.(2012) White mattermicrostructural alterations in migraine: A diffusion-weighted MRI study. Pain153:651-656.
    [134]. DaSilva AFM, Granziera C, Tuch DS, Snyder J, Vincent M, et al.(2007)Interictal alterations of the trigeminal somatosensory pathway and periaqueductal graymatter in migraine. Neuroreport18:301-305.
    [135]. Aderjan D, Stankewitz A, May A (2010) Neuronal mechanisms during repetitivetrigemino-nociceptive stimulation in migraine patients. Pain151:97-103.
    [136]. Launer LJ, Terwindt GM, Ferrari MD (1999) The prevalence and characteristicsof migraine in a population-based cohort-The GEM Study. Neurology53:537-542.
    [137]. Rasmussen BK, Olesen J (2002) Migraine with aura and migraine without aura:an epidemiological study. Cephalalgia12:221-228.
    [138]. Russell M, Rasmussen B, Fenger K, Olesen J (1996) Migraine without aura andmigraine with aura are distinct clinical entities: a study of four hundred and eighty-fourmale and female migraineurs from the general population. Cephalalgia16:239-245.
    [139]. Moulton EA, Becerra L, Maleki N, Pendse G, Tully S, et al.(2011) Painful HeatReveals Hyperexcitability of the Temporal Pole in Interictal and Ictal Migraine States.Cerebral Cortex21:435-448.
    [140]. Lipton RB, Pan J (2004) Is migraine a progressive brain disease? Journal of theAmerican Medical Association291:493-494.
    [141]. Garrity A, Pearlson G, McKiernan K, Lloyd D, Kiehl K, et al.(2007) Aberrant"default mode" functional connectivity in schizophrenia. American Journal of Psychiatry164:450-457.
    [142]. Greicius M, Srivastava G, Reiss A, Menon V (2004) Default-mode networkactivity distinguishes Alzheimer's disease from healthy aging: evidence from functionalMRI. Proceedings of the National Academy of Sciences101:4637-4642.
    [143]. Tian L, Jiang T, Wang Y, Zang Y, He Y, et al.(2006) Altered resting-statefunctional connectivity patterns of anterior cingulate cortex in adolescents with attentiondeficit hyperactivity disorder. Neuroscience letters400:39-43.
    [144]. Yu D, Yuan K, Zhao L, Zhao L, Dong M, et al.(2012) Regional homogeneityabnormalities in patients with interictal migraine without aura: a resting-state study.NMR in Biomedicine25:806-812.
    [145]. Mainero C, Boshyan J, Hadjikhani N (2011) Altered functional magneticresonance imaging resting-state connectivity in periaqueductal gray networks inmigraine. Annals of Neurology70:838-845.
    [146]. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburghinventory. Neuropsychologia9:97-113.
    [147]. Olesen J, Steiner T (2004) The International classification of headache disorders,2nd edn (ICDH-II). Journal of Neurology, Neurosurgery&Psychiatry75:808-811.
    [148]. Moulton E, Becerra L, Maleki N, Pendse G, Tully S, et al.(2011) Painful heatreveals hyperexcitability of the temporal pole in interictal and ictal migraine states.Cerebral Cortex21:435-448.
    [149]. Salimpoor VN, Benovoy M, Larcher K, Dagher A, Zatorre RJ (2011)Anatomically distinct dopamine release during anticipation and experience of peakemotion to music. Nature neuroscience14:257-262.
    [150]. Zar JH (1999) Biostatistical analysis: Prentice hall Upper Saddle River, NJ.
    [151]. Jiang G, Qiu Y, Zhang X, Han LJ, Lv XF, et al.(2011) Amplitude low-frequencyoscillation abnormalities in the heroin users: A resting state fMRI study. Neuroimage57:149-154.
    [152]. Matharu MS, Bartsch T, Ward N, Frackowiak RSJ, Weiner R, et al.(2004)Central neuromodulation in chronic migraine patients with suboccipital stimulators: aPET study. Brain127:220-230.
    [153]. Xue T, Yuan K, Cheng P, Zhao L, Zhao L, et al.(2013) Alterations of regionalspontaneous neuronal activity and corresponding brain circuit changes during restingstate in migraine without aura. NMR in Biomedicine: n/a-n/a.
    [154]. Zou Q, Wu CW, Stein EA, Zang Y, Yang Y (2009) Static and dynamiccharacteristics of cerebral blood flow during the resting state. Neuroimage48:515-524.
    [155]. Chen H-J, Zhu X-Q, Jiao Y, Li P-C, Wang Y, et al.(2012) Abnormal baselinebrain activity in low-grade hepatic encephalopathy: A resting-state fMRI study. Journalof the neurological sciences318:140-145.
    [156]. Yang H, Long XY, Yang Y, Yan H, Zhu CZ, et al.(2007) Amplitude of lowfrequency fluctuation within visual areas revealed by resting-state functional MRI.Neuroimage36:144-152.
    [157]. Yan C, Liu D, He Y, Zou Q, Zhu C, et al.(2009) Spontaneous brain activity in thedefault mode network is sensitive to different resting-state conditions with limitedcognitive load. PLoS One4: e5743.
    [158]. Fransson P (2006) How default is the default mode of brain function?: Furtherevidence from intrinsic BOLD signal fluctuations. Neuropsychologia44:2836-2845.
    [159]. May A (2007) Neuroimaging: visualising the brain in pain. Neurological Sciences28:101-107.
    [160]. Zhuo M (2008) Cortical excitation and chronic pain. Trends in Neurosciences31:199-207.
    [161]. Apkarian AV, Bushnell MC, Treede RD, Zubieta JK (2005) Human brainmechanisms of pain perception and regulation in health and disease. European Journalof Pain9:463-463.
    [162]. Vogt BA, Gabriel M (1993) Neurobiology of cingulate cortex and limbicthalamus: A comprehensive handbook: Birkh user.
    [163]. Albe-Fessard D, Berkley K, Kruger L, Ralston3rd H, Willis Jr W (1985)Diencephalic mechanisms of pain sensation. Brain research356:217-296.
    [164]. Craig A (1996) Functional neuroimaging of an illusion of pain. Nature384:258-260.
    [165]. Rainville P, Duncan GH, Price DD, Carrier B, Bushnell MC (1997) Pain affectencoded in human anterior cingulate but not somatosensory cortex. Science277:968-971.
    [166]. Wager TD, Rilling JK, Smith EE, Sokolik A, Casey KL, et al.(2004)Placebo-induced changes in FMRI in the anticipation and experience of pain. Science303:1162-1167.
    [167]. Casey KL (1999) Forebrain mechanisms of nociception and pain: analysisthrough imaging. Proceedings of the National Academy of Sciences of the United Statesof America96:7668-7674.
    [168]. Lorenz J, Minoshima S, Casey K (2003) Keeping pain out of mind: the role ofthe dorsolateral prefrontal cortex in pain modulation. Brain126:1079-1091.
    [169]. Petrovic P, Kalso E, Petersson KM, Ingvar M (2002) Placebo and opioidanalgesia-imaging a shared neuronal network. Science295:1737-1740.
    [170]. Villemure C, Bushnell MC (2002) Cognitive modulation of pain: how doattention and emotion influence pain processing? Pain95:195-199.
    [171]. Kupers R, Kehlet H (2006) Brain imaging of clinical pain states: a critical reviewand strategies for future studies. The Lancet Neurology5:1033-1044.
    [172]. Kobari M, Meyer JS, Ichijo M, Imai A, Oravez WT (1989) Hyperperfusion ofcerebral cortex, thalamus and basal ganglia during spontaneously occurring migraineheadaches. Headache: The Journal of Head and Face Pain29:282-289.
    [173]. Shields KG, Goadsby PJ (2006) Serotonin receptors modulate trigeminovascularresponses in ventroposteromedial nucleus of thalamus: a migraine target? Neurobiologyof disease23:491-501.
    [174]. Friston KJ (1994) Functional and effective connectivity in neuroimaging: Asynthesis. Human brain mapping2:56-78.
    [175]. Van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain network: areview on resting-state fMRI functional connectivity. EuropeanNeuropsychopharmacology20:519-534.
    [176]. De Luca M, Beckmann C, De Stefano N, Matthews P, Smith SM (2006) fMRIresting state networks define distinct modes of long-distance interactions in the humanbrain. Neuroimage29:1359-1367.
    [177]. Waites AB, Briellmann RS, Saling MM, Abbott DF, Jackson GD (2006)Functional connectivity networks are disrupted in left temporal lobe epilepsy. Annals ofNeurology59:335-343.
    [178]. Lowe MJ, Phillips MD, Lurito JT, Mattson D, Dzemidzic M, et al.(2002)Multiple Sclerosis: Low-Frequency Temporal Blood Oxygen Level-DependentFluctuations Indicate Reduced Functional Connectivity-Initial Results1. Radiology224:184-192.
    [179]. Boly M, Balteau E, Schnakers C, Degueldre C, Moonen G, et al.(2007) Baselinebrain activity fluctuations predict somatosensory perception in humans. Proceedings ofthe National Academy of Sciences of the United States of America104:12187-12192.
    [180]. Ploner M, Lee MC, Wiech K, Bingel U, Tracey I (2010) Prestimulus functionalconnectivity determines pain perception in humans. Proceedings of the NationalAcademy of Sciences of the United States of America107:355-360.
    [181]. Gusnard DA, Akbudak E, Shulman GL, Raichle ME (2001) Medial prefrontalcortex and self-referential mental activity: relation to a default mode of brain function.Proceedings of the National Academy of Sciences of the United States of America98:4259-4264.
    [182]. Bressler SL, Menon V (2010) Large-scale brain networks in cognition: emergingmethods and principles. Trends in Cognitive Sciences14:277-290.
    [183]. Cauda F, Torta DME, Sacco K, Geda E, D’Agata F, et al.(2012) Shared “Core”Areas between the Pain and Other Task-Related Networks. PLoS One7: e41929.
    [184]. Iannetti G, Mouraux A (2010) From the neuromatrix to the pain matrix (and back).Experimental brain research205:1-12.
    [185]. Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, et al.(2010) Towarddiscovery science of human brain function. Proceedings of the National Academy ofSciences of the United States of America107:4734-4739.
    [186]. Filippini N, MacIntosh BJ, Hough MG, Goodwin GM, Frisoni GB, et al.(2009)Distinct patterns of brain activity in young carriers of the APOE-ε4allele. Proceedingsof the National Academy of Sciences of the United States of America106:7209-7214.
    [187]. Napadow V, LaCount L, Park K, As‐Sanie S, Clauw DJ, et al.(2010) Intrinsicbrain connectivity in fibromyalgia is associated with chronic pain intensity. Arthritis&Rheumatism62:2545-2555.
    [188]. Ma N, Liu Y, Fu XM, Li N, Wang CX, et al.(2011) Abnormal brain default-modenetwork functional connectivity in drug addicts. PLoS One6: e16560.
    [189]. Uddin LQ, Supekar KS, Ryali S, Menon V (2011) Dynamic reconfiguration ofstructural and functional connectivity across core neurocognitive brain networks withdevelopment. The Journal of neuroscience31:18578-18589.
    [190]. Xue T, Yuan K, Zhao L, Yu D, Zhao L, et al.(2012) Intrinsic Brain NetworkAbnormalities in Migraines without Aura Revealed in Resting-State fMRI. PLoS One7:e52927.
    [191]. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, et al.(2007)Dissociable intrinsic connectivity networks for salience processing and executivecontrol. The Journal of neuroscience27:2349-2356.
    [192]. Palaniyappan L, Liddle PF (2012) Does the salience network play a cardinal rolein psychosis? An emerging hypothesis of insular dysfunction. Journal of psychiatry&neuroscience37:17-27.
    [193]. Sridharan D, Levitin DJ, Menon V (2008) A critical role for the rightfronto-insular cortex in switching between central-executive and default-mode networks.Proceedings of the National Academy of Sciences of the United States of America105:12569-12574.
    [194]. Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a networkmodel of insula function. Brain Structure and Function214:655-667.
    [195]. Treede RD, Kenshalo DR, Gracely RH, Jones AKP (1999) The corticalrepresentation of pain. Pain79:105-111.
    [196]. Craig A (2009) How do you feel--now? The anterior insula and human awareness.Nature reviews Neuroscience10:59-70.
    [197]. Critchley HD (2004) The human cortex responds to an interoceptive challenge.Proceedings of the National Academy of Sciences of the United States of America101:6333-6334.
    [198]. Critchley HD, Wiens S, Rotshtein P, hman A, Dolan RJ (2004) Neural systemssupporting interoceptive awareness. Nature neuroscience7:189-195.
    [199]. Legrain V, Iannetti GD, Plaghki L, Mouraux A (2011) The pain matrix reloaded:a salience detection system for the body. Progress in neurobiology93:111-124.
    [200]. Mufson EJ, Mesulam M (1982) Insula of the old world monkey. II: Afferentcortical input and comments on the claustrum. The Journal of comparative neurology212:23-37.
    [201]. Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB (2010) A link between thesystems: functional differentiation and integration within the human insula revealed bymeta-analysis. Brain Structure and Function214:519-534.
    [202]. Calandre EP BJ, Arnedo ML, Becerra D (2002) Cognitive disturbances andregional cerebral blood flow abnormalities in migraine patients: their relationship withthe clinical manifestations of the illness. Cephalalgia22:291-302.
    [203]. Eccleston C, Crombez G (1999) Pain demands attention: A cognitive-affectivemodel of the interruptive function of pain. Psychological bulletin125:356-366.
    [204]. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-drivenattention in the brain. Nature Reviews Neuroscience3:215-229.
    [205]. Seifert F, Schuberth N, De Col R, Peltz E, Nickel FT, et al.(2012) Brain activityduring sympathetic response in anticipation and experience of pain. Human brainmapping: n/a-n/a.
    [206]. Seminowicz DA, Davis KD (2007) Pain enhances functional connectivity of abrain network evoked by performance of a cognitive task. Journal of neurophysiology97:3651-3659.
    [207]. Dick B, Eccleston C, Crombez G (2002) Attentional functioning in fibromyalgia,rheumatoid arthritis, and musculoskeletal pain patients. Arthritis Care&Research47:639-644.
    [208]. Veldhuijzen D, Kenemans J, van Wijck A, Olivier B, Kalkman C, et al.(2006)Processing capacity in chronic pain patients: a visual event-related potentials study. Pain121:60-68.
    [209]. Lorenz J, Beck H, Bromm B (1997) Cognitive performance, mood andexperimental pain before and during morphine-induced analgesia in patients withchronic non-malignant pain. Pain73:369-375.
    [210].钟元,王慧楠,焦青,张志强,郑罡,于海燕,卢光明(2010)基于Granger因果检验和PCA的脑网络效应连接方法.华南理工大学学报(自然科学版)38:78-80.
    [211]. Friston KJ, Mechelli A, Turner R, Price C (2000) Nonlinear responses in fMRI:the Balloon model, Volterra kernels, and other hemodynamics. Neuroimage12:466-477.
    [212]. Marreiros A KS, Friston K (2008) Dynamic causal modelling for fMRI: atwo-state model. Neuroimage39:269-278.
    [213].(2008) Top-down control of human visual cortex by frontal and parietal cortex inan ticipatory visual spatial attention Journal of Neuroscience28:10056-10061.
    [214]. Yamashita O, Sadato N, Okada T, Ozaki T (2005) Evaluating frequency-wisedirected connectivity of BOLD signals applying relative power contribution with thelinear multivariate time-series models. Neuroimage25:478-490.
    [215]. Guo S, Seth A, Kendrick K, Zhou C, Feng J (2008) Partial Grangercausality-eliminating exogenous inputs and latent variables. Journal of NeuroscienceMethods172:79-93.
    [216]. Bertschinger N, Olbrich E, Ay N, Jost J (2008) Autonomy: An informationtheoretic perspective. Biosystems91:331-345.
    [217]. Stilla R, Deshpande G, LaConte S, Hu X, Sathian K (2007) Posteromedialparietal cortical activity and inputs predict tactile spatial acuity. The Journal ofneuroscience27:11091-11102.
    [218]. Zhong C, Bai L, Dai R, Xue T, Wang H, et al.(2012) Modulatory effects ofacupuncture on resting-state networks: A functional MRI study combining independentcomponent analysis and multivariate granger causality analysis. Journal of MagneticResonance Imaging35:572-581.
    [219]. Feng Y, Bai L, Zhang W, Xue T, Ren Y, et al.(2011) Investigation of acupointspecificity by multivariate granger causality analysis from functional MRI data. Journalof Magnetic Resonance Imaging34:31-42.
    [220]. Craig AD (2002) How do you feel? Interoception: the sense of the physiologicalcondition of the body. Nature Reviews Neuroscience3:655-666.
    [221]. Watson KK, Jones TK, Allman JM (2006) Dendritic architecture of the vonEconomo neurons. Neuroscience141:1107-1112.
    [222]. Allman JM, Watson KK, Tetreault NA, Hakeem AY (2005) Intuition and autism:a possible role for Von Economo neurons. Trends in Cognitive Sciences9:367-373.
    [223]. Raichle ME, Fiez JA, Videen TO, MacLeod AMK, Pardo JV, et al.(1994)Practice-related changes in human brain functional anatomy during nonmotor learning.Cerebral Cortex4:8-26.
    [224]. Carter CS, Macdonald AM, Botvinick M, Ross LL, Stenger VA, et al.(2000)Parsing executive processes: strategic vs. evaluative functions of the anterior cingulatecortex. Proceedings of the National Academy of Sciences of the United States ofAmerica97:1944-1948.
    [225]. Shidara M, Richmond BJ (2002) Anterior cingulate: single neuronal signalsrelated to degree of reward expectancy. Science296:1709-1711.
    [226]. Ito S, Stuphorn V, Brown JW, Schall JD (2003) Performance monitoring by theanterior cingulate cortex during saccade countermanding. Science302:120-122.
    [227]. Gehring WJ, Willoughby AR (2002) The medial frontal cortex and the rapidprocessing of monetary gains and losses. Science295:2279-2282.
    [228].陈少玫,章亭,吴耀南(2005)偏头痛中医方药治疗近况.中华中医药杂志20:181-182.
    [229].伦道夫W,埃文斯,尼南T,马修(1995)头痛诊疗手册:北京:科学出版社.
    [230]. Burke A, Upchurch DM, Dye C, Chyu L (2006) Acupuncture use in the UnitedStates: Findings from the national health interview survey. Journal of Alternative&Complementary Medicine12:639-648.
    [231].林昭庚,鄢良(1995)针灸医学史:中国中医药出版社.
    [232].(1997) National Institute of Health Consensus Development Panel. NIHConsensus Statement1997:1-34.
    [233]. BM. Berman CB (2000) Clinical Acupuncture: Springer.
    [234]. Bai L, Qin W, Tian J, Liu P, Li LL, et al.(2009) Time-varied characteristics ofacupuncture effects in fMRI studies. Human brain mapping30:3445-3460.
    [235]. Vapnik V (2000) The nature of statistical learning theory. New York: SpringerVerlag.
    [236]. Wang Z (2009) A hybrid SVM-GLM approach for fMRI data analysis.Neuroimage46:608-615.
    [237]. MacPherson H, Thorpe L, Thomas K, Campbell M (2004) Acupuncture for lowback pain: traditional diagnosis and treatment of148patients in a clinical trial.Complementary Therapies in Medicine12:38-44.
    [238]. Wei-bin Z (2006) Clinical observation on the treatment of38cases of vascularheadache by acupuncture. Journal of Acupuncture and Tuina Science4:33-34.
    [239].贾春生,马小顺,石晶,王耀民,李永方, et al.(2007)电针丘墟穴治疗偏头痛的多中心随机对照临床研究.中医杂志48:814-817.
    [240].高建英(2007)电针丘墟穴治疗偏头痛的疗效观察:河北医科大学.
    [241]. Lee M, Shin BC, Ernst E (2009) Acupuncture for Alzheimer’s disease: asystematic review. International journal of clinical practice63:874-879.
    [242].张香桐,季钟朴,黄家驷(1986)针灸针麻研究:科学出版社.
    [243]. Xue T, Bai L, Chen S, Zhong C, Feng Y, et al.(2011) Neural specificity ofacupuncture stimulation from support vector machine classification analysis. Magneticresonance imaging29:943-950.
    [244]. Hui KKS, Liu J, Marina O, Napadow V, Haselgrove C, et al.(2005) Theintegrated response of the human cerebro-cerebellar and limbic systems to acupuncturestimulation at ST36as evidenced by fMRI. Neuroimage27:479-496.
    [245]. Smola AJ, Sch lkopf B (1998) Learning with kernels: Citeseer.
    [246]. Mourao-Miranda J, Friston KJ, Brammer M (2007) Dynamic discriminationanalysis: a spatial-temporal SVM. Neuroimage36:88-99.
    [247]. Friston KJ, Holmes AP, Worsley KJ, Poline JP, Frith CD, et al.(1994) Statisticalparametric maps in functional imaging: a general linear approach. Human brainmapping2:189-210.
    [248]. Chikama M, McFarland NR, Amaral DG, Haber SN (1997) Insular corticalprojections to functional regions of the striatum correlate with cortical cytoarchitectonicorganization in the primate. The Journal of neuroscience17:9686-9705.
    [249]. Dunckley P, Wise RG, Fairhurst M, Hobden P, Aziz Q, et al.(2005) A comparisonof visceral and somatic pain processing in the human brainstem using functionalmagnetic resonance imaging. The Journal of neuroscience25:7333-7341.
    [250]. Duffy J, Campbell3rd J (1994) The regional prefrontal syndromes: a theoreticaland clinical overview. The Journal of Neuropsychiatry and Clinical Neurosciences6:379-387.
    [251]. Beijing S (1980) Nanjing colleges of traditional Chinese medicine. Essentials ofChinese acupuncture. Beijing, Foreign Language Press.
    [252]. Price D, Rafii A, Watkins L, Buckingham B (1984) A psychophysical analysis ofacupuncture analgesia. Pain19:27-42.
    [253]. Pomeranz B, Chiu D (1976) Naloxone blockade of acupuncture analgesia:endorphin implicated. Life sciences19:1757-1762.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700