夹持同步控制系统的多余力补偿与控制算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以北京市科委支持项目为背景,建立夹持同步控制实验平台,利用电液伺服数字控制及实现技术,对加载系统的多余力问题进行了研究,结合夹持同步系统自身特点设计夹持同步控制算法,实现了高精度的夹持力控制。
     首先,本文根据夹持同步控制系统结构及运动特点,分析并提出了夹持同步控制中的关键问题。在广泛阅读相关文献的基础上,总结了针对多余力问题的各种校正方法,介绍了电液力系统的控制策略研究发展情况。
     其次,根据夹持同步控制工作原理和过程,进行了系统解析建模研究,对于实际中难以精确得到的参数,给出相应估算或试验测量方法,并进行了夹持同步位置、力加载系统时域仿真和频域计算。对多余力的产生机理进行深入分析,并对其工作特点进行研究。在理论分析和仿真计算的基础上,由结构不变性原理校正多余力和实际应用的估计速度相位滞后等问题,提出结构矢量校正设计思路,并引入迭代自学习控制思想,提出结构矢量自学习方法,以完成结构矢量校正控制器的自动设计和优化过程。
     再次,完成对夹持同步控制系统数字控制硬件接口的设计。研究基于Windows操作系统的实时中断、数据采集和实时数据显示以及存储等工作的实现技术,完成对控制过程和控制策略的面向对象方法的设计。
     最后,介绍了夹持同步控制实验研究情况。在实现了夹持同步力加载数字控制的基础上,进行了结构不变性原理补偿、结构矢量修正补偿实验研究,进一步对基于迭代学习控制确定结构矢量控制方法进行了研究。
The thesis is focused on a scientific research item of Beijing Municipal Science&Technology Commission. It establishes the grasping synchronization control experiment platform. Taking advantage of electro-hydraulic servo digital control technology, the surplus force of loading system is researched. Then combined grasping synchronization control system with its own characteristics, the control algorithm is designed. The grasping synchronization control system achieves a high-accuracy.
     Firstly, according to system structure and movement characteristics, the critical problem in grasping synchronization control procedure is analyzed and lodged. Based on numerous related literatures and reference materials at home and abroad, it summarizes the various correction methods for surplus force, and introduces the control strategy development of electro-hydraulic force control system.
     Secondly, on the basis of working principle and process of grasping synchronization control system, the mathematical models of system are built and the correlative parameters of system model are estimated and calculated. Then the time simulation and frequency simulation study of position control system and force control system are carried out. Furthermore, the mechanism and operating features of surplus force are deeply analyzed and researched. The design method of structure vector control has been raised in connection with the problems that surplus force correction by structure -invariable theory and the estimate of velocity phase lag in practical application. Thinking of ILC theory, the structure vector learning method is put forward, in order to complete the automatic design and optimization process of the structure vector correction controller.
     Thirdly, the digital hardware interface of grasping synchronization control system is designed. The implementing technology about real-time discontinuity, data acquisition, real-time data display and data storage in Windows are studied. The design of control process and strategy with object-oriented methods are completed.
     Finally, experiment study for grasping synchronization control system is performed. With the realization of grasping synchronization force loading digital control, some experiments and researches have been done, such as the experiment of structure-invariable theory compensation and structure vector correction compensation, as well as the method of structure vector control basing on ILC.
引文
[1]周欣.电液伺服系统同步控制策略研究.北京交通大学硕士论文.2006
    [2]Liu,Xiaodong;Li,Changchun;Zhou,Xin;Meng,Yadong,"Synchronization Control Study for Two Cylinders Electro-hydraulic Grasping System," Mechatronics and Automation,2007.ICMA 2007.International Conference on,vol.,no.,pp.1650-1654,5-8 Aug.2007
    [3]Wang,Jingfu;Liang,Lihua;Zhang,Songtao;Ye,Zhengmao;Li,Hongren,"Application of H∞Control Based on Mixed Sensitivity in the Electro-hydraulic Load Simulator," Mechatronics and Automation,2007.ICMA 2007.International Conference on,vol.,no.,pp.2991-2996,5-8Aug.2007
    [4]崔浏.电液负载模拟器的鲁棒控制策略研究.哈尔滨工业大学硕士论文.2006
    [5]Feng-Yi Hsu;Li-Chen Fu,"Intelligent robot deburring using adaptive fuzzy hybrid position/force control," Robotics and Automation,IEEE Transactions on,vol.16,no.4,pp.325-335,Aug 2000
    [6]Heinrichs,B.;Sepehri,N.;Thornton-Trump,A.B.,"Position-based impedance control of an industrial hydraulic manipulator," Control Systems Magazine,IEEE,vol.17,no.1,pp.46-52,Feb 1997
    [7]Ding Mei;Sun Zengqi;He Bin,"A general dual-arm robotic simulation system and cooperative control research of multi-manipulator," Intelligent Control,1992.,Proceedings of the 1992IEEE International Symposium on,vol.,no.,pp.23-28,11-13 Aug 1992
    [8]Naumovic,M.,"Cross-coupled motion controller for two cooperating robot arms," Industrial Electronics,1999.ISIE '99.Proceedings of the IEEE International Symposium on,vol.2,no.,pp.909-913 vol.2,1999
    [9]刘长年.液压伺服系统优化设计理论.冶金工业出版社.1989
    [10]梁利华.减摇鳍电液负载仿真台性能研究.哈尔滨工程大学博士论文.2003
    [11]Mohieddine Jelali,and Kroll,Andreas,Hydraulic Servo-Systems:Modelling,Identification and Control.-(Advances in Industrial Control).2003,London:Springer-Verlag.
    [12]王晓东,华清,焦宗夏,王少萍.负载模拟器中的摩擦力及其补偿控制.中国机械工程.2003,(6):511-154
    [13]Huang,Y.J.;Yuan-Jay Wang,"Limit cycle analysis of electro-hydraulic control systems with friction and transport delay," Intelligent Control and Automation,2000.Proceedings of the 3rd World Congress on,vol.5,no.,pp.3306-3311 vol.5,2000
    [14]熊德锋.使用大正开口流量型伺服阀的加载系统.机床与液压.1983,(6):11-15
    [15]西北工业大学五零八教研室.被动式加载四路的蓄压器校正方法,科技资料.总字号第676期,1987,(9):17-22
    [16]杨斌.对转矩模拟系统静、动态特性改善的研究.机床与液压.1987,(5):14-19
    [17]郝经佳,赵克定.双阀控制在电液负载仿真台中的应用.中国机械工程.2002,(10):13-16
    [18]陈恒权.用同步反向法克服多余力.机床与液压.1985,(3):13-17
    [19]徐本洲.被动式电液力控制系统的干扰抵制与渐进跟踪研究.哈尔滨工业大学博士论文.1992
    [20]Matsui Takashi.Effect of positive angular velocity feedback on torque control of hydraulic actuator.JSME.Int.J.ser.C372,1992(6):406-412
    [21]赵玉琢,周连山,叶文柄,徐本洲.被动式电液力控制系统的辅助同步及补偿控制.自动化技术与应用.1985,4(2):25-31
    [22]喻统武.舵面力矩负载模拟器的研究与设计.中国航空学会液压气动学术讨论会论文集.1992:135-140
    [23]刘长年.负载模拟器的优化设计.流体控制工程与机器人第八届学术会议论文集,洛阳.1996:78-81
    [24]刘长年.函数负载模拟器的设计与实验.机床与液压.1982,(4):11-32
    [25]Doyle,J.C.,B.A.Francis,& A.R.Tannenbaum,Feedback Control Theory.New York,Macmillan Publishing Company.1992.
    [26]Ge-Qiang Li;Jian Cao;Biao Zhang;Ke-Ding Zhao,"Design of Robust Controller in Electrohydraulic Load Simulator," Machine Learning and Cybernetics,2006 International Conference on,vol.,no.,pp.779-784,Aug.2006[27]胡智奇,王印松.H∞控制方法及研究现状.电力情报.2000(3):5-7
    [28]孙以泽,赵慧,韩俊伟.舵机加载系统H∞控制的研究.船舶工程.2001,13(2):40-43,51
    [29]关静丽,王占林.位置扰动型电液伺服施力系统的自适应控制.北京机械工业学院学报.2001(1):31-35
    [30]冯勇建.自适应控制用于消除被动加载系统中多余力.机床与液压.2002(4):53-55
    [31]E.Richard,J.-C.Vivalda."Mathematical analysis of stability and drift behavior of hydraulic cylinders driven by a servovalve",Journal of Dynamical Systems,Measure and.Control (ASME),1,124,2002,p.206-213
    [32]华清,焦宗夏.负载模拟器的DRNN神经网络控制.机械工程学报.2003,39(1):15-19
    [33]苏东海,刘峰等.被动式加载系统多余力矩的本质特征分析.沈阳工业大学学报,2001,23(6):449-451
    [34]焦宗夏,华清.电液负载模拟器的复合控制.机械工程学报.2002,38(12):34-38
    [35]Li Yunhua,"Development of Hybrid Control of Electro-hydraulic Torque Load Simulator,"Journal of Dynamical Systems,Measure and Control(ASME),2002,124(3):415-419
    [36]王新民,张举中,刘卫国.伺服加载的一种新反馈控制方法.计算机仿真.2007(6):330-333
    [37]王新民,刘卫国.被动加载的内部反馈控制方法.中国机械工程.2006,17(23):2447-2450
    [38]叶正茂,李洪人,王经甫.基于CMAC的电液负载模拟器自学习控制.控制与决策.2003,18(3):343-347
    [39]李洪人.液压控制系统.北京:国防工业出版社.1990.
    [40]Stribeck R.Die wesentlischen Eigenschaften der Gleit- und Rollenlager.Zeitschrift des Vereines deutscher Ingenieure 1902;46(37):1341-1348
    [41]Sohl,G.A.;Bobrow,J.E.,"Experiments and simulations on the nonlinear control of a hydraulic servosystem," Control Systems Technology,IEEE Transactions on,vol.7,no.2,pp.238-247,Mar 1999
    [42]杨军宏,尹自强,李圣怡.阀控非对称缸的非线性建模及其反馈线性化.机械工程学报.2006,42(5):203-207
    [43]肖志权,邢继峰,朱石坚.长行程阀控非对称缸建模分析.流体传动与控制.2007(1):19-22
    [44]汪首坤,王军政,张宇河.基于小脑模型神经网络的对称阀控非对称缸复合控制方法.北 京理工大学学报.2005,25(1):49-53
    [45]郭洪波,李洪人.基于Backstepping的阀控非对称缸电液伺服系统非线性控制.液压与气动.2004(10):38-40
    [46]Lee K-I,Dynamisches Verhalten der Steuerkette Servoventil-Motor-Last.Dissertation,Institut fur hydraulische,und pneumatische Antriebe und Steuerungen,RWTH.Aachen,1977.
    [47]Merritt,HE.Hydraulic Control Systems,John Wiley & Sons,New York 1967.
    [48]蔡永强.数字式操纵负荷系统的研究.北京航空航天大学博士论文,1998
    [49]杨斌.电液伺服低速大扭矩模拟系统设计与研究.液压与气动.1986,(2):23-26
    [50]高俊霞,华清,焦宗夏.电液加载系统中的多余力及各种补偿方法的比较.液压气动与密封.2003,(5):1-6
    [51]秦洪艳,张红,侯之超.圆柱形橡胶垫刚度经验公式的研究.潍坊学院学报.2006,2(6):6-9
    [52]周祚万.低刚度铁路轨枕胶垫的研制.橡胶工业.2005,3(52):189-190
    [53]肖春林,胡德,李毓贵.不变性原理及复合控制系统.国防工业出版社.1965
    [54]高峰,茅及愚,李维嘉.基于结构不变性原理的有效提升液压伺服系统动特性的新方法.液压与气动.2004,(07):59-61
    [55]王述运.结构不变性原理在减摇鳍加载台中的研究分析.哈尔滨工程大学硕士论文,2005.
    [56]刘伯春.不变性原理在复合控制系统中的应用.电气自动化.1983(1):19-21
    [57]Tafazoli,S.;de Silva,C.W.;Lawrence,P.D.,"Tracking control of an electrohydraulic manipulator in the presence of friction," Control Systems Technology,IEEE Transactions on,vol.6,no.3,pp.401-411,May 1998
    [58]赵慧,韩俊伟,聂伯勋,曾祥荣.基于LMI的H∞控制在电液力控制系统中的应用.哈尔滨工业大学学报.2000,6(32):22-25
    [59]李长春,刘晓东,宝暄,张金英.冻土冻胀试验液压动态力控制系统的研究.系统仿真学报.2007,10(19):2144-2147
    [60]蔡自兴.智能控制(第二版).电子工业出版社.2004
    [61]孙明轩,黄宝健.迭代学习控制.国防科技图书出版.1999
    [62]胡玉娥,翟春艳.迭代学习控制现状与展望.自动化仪表.2005,6(26):1-4
    [63]M.J.Blachuta.On zeros of pulse transfer functions.Trans.on Automatic Control,44:1229-1234,June 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700