轴向伺服加载试验系统设计及研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伺服加载系统在工程领域通常也被称为负载模拟器,是在实验室条件下合理地模拟被试件所受真实载荷的加载试验装置,其具有高响应、高精度、高功率重量比和大功率输出等优点。电液伺服加载系统是伺服加载系统的一个重要组成部分,它是对结构件进行静力性能、疲劳性能、断裂韧度等试验的关键设备,能够为结构件设计提供充分的理论依据。
     本课题所研制的轴向伺服加载试验系统,是为立管疲劳试验而设计的。其功能是模拟输油管道在海底所受到的轴向力作用,从而检测被试件的各种机械性能指标,将经典的自破坏全实物试验转化为在实验室条件下的预测性试验,以达到缩短研制周期、节约研制经费、提高可靠性和成功率的目的。
     本轴向伺服加载试验系统属于典型的被动式电液力伺服系统。在试验过程中,立管试件会同时受到正弦变化的径向加载力作用,造成的弯曲变形会导致其两端头位置发生持续的移动,对施力系统来说这是一个扰动信号。本文从整体设计出发,通过对多个加载方案的详细仿真分析和比较,确立了采用伺服阀和蓄能器联合控制的加载方式;完成了电液系统的设计计算;完成了支架结构的布局分析;完成了控制策略的优化以及控制程序编制,控制软件采用功能强大的梯形图编程软件FPWIN GR,触摸屏软件采用简捷易懂的工程常用软件EasyBuilder,数据采集、存储及实时显示软件采用方便实用的图形化编程软件Labview,它们均具有良好的可读性和实时性;最后,完成了对实际立管被试件的加载试验,验证了试验结果的可靠性。本文各章节具体内容如下:
     第一章,主要介绍了各种伺服加载系统的原理和特点,总结了电液伺服加载系统的发展优势和难点,介绍了目前电液伺服加载系统在国内外研究和应用现状,并在此基础之上,提出了本课题的研究意义和主要研究内容。
     第二章,主要介绍了轴向伺服加载系统的设计任务,结合三种不同的加载方案,进行系统建模和仿真,对比分析各方案的优缺点,综合设计出符合任务要求的整体方案,并对轴向伺服加载试验系统的主要特点进行了归纳总结。
     第三章,在满足加载试验系统功能的前提下,基于系统紧凑化和操作便捷化的设计理念,分别对试验用液压系统各部分进行模块化设计,并对关键元件进行选型计算。对试验系统的支架结构布局进行详细的设计和受力分析,并且充分利用ANSYS软件的优势,对关键部分进行了有限元分析和强度校核,以保证实现其对整个系统稳定可靠的支撑作用。
     第四章,在满足加载试验系统功能的前提下,充分利用PLC和数据采集设备各自的优势对电控系统进行设计及软、硬件配置,并对关键元器件进行选型。以轴向伺服加载试验系统为基础,建立系统的数学模型,分析多余力的产生机理,建立多余力的数学模型,采用结构不变性补偿方法优化控制策略,并通过MATLAB/Simulink建模和动态仿真验证结构不变性补偿多余力的效果。最后,按照立管疲劳试验轴向加载的要求编写系统控制程序,并对加载试验流程进行合理规划。
     第五章,以轴向伺服加载试验系统为平台,对立管试件进行加载试验。主要是详细分析实现液压缸有杆腔压力和活塞杆输出加载力稳定的试验方法,结合本系统的特点,对试验结果进行研究分析和验证,从而为进一步研究如何提高伺服加载系统的稳态精度提供试验支撑。
     第六章,对全文的工作进行总结并作了下一步的展望。
Servo loading system is also called load simulator in the field of engineering. It is to simulate different kinds of loads exerting on the sample under laboratory conditions and has the advantages of high response, high accuracy, high power weight ratio and high power output. Electro-hydraulic servo loading system is a important part of servo loading system. It is significant equipment on structure testing for static performance, fatigue performance, fracture toughness, and so on. These kinds of testings can provide theoretical basis for the design of structures.
     In this thesis, the axial servo loading test system is designed for the fatigue test of pipe which is used under the sea. Its function is to simulate the axial load exerting on the pipe subsea in order to check whether the performance of sample can meet the design requirement. Thus the classical all-objective experiment will be converted into half-objective forecasting experiment in laboratory to achieve the aims such as shorting developing time, saving developing funds, enhancing reliability and success proportion.
     The axial servo loading test system is a typical passive electro-hydraulic force servo system. During the test, the tested pipe is also exerted a radial force load. Because of the bending deformation which is caused by radial load, the axial position of pipe moves back and forth continuously and the movement is considered as interfering with the load system. In this dissertation, beginning with the overall design, the servo valve and accumulator united controlled load mode is established via the comparisons of three distinct load projects. The electro-hydraulic system and mechanical support are all designed. The control strategy is optimized and the program is prepared. The control software is organized by powerful Ladder-diagram software FPWIN GR, easy understanded Engineering software EasyBuilder and convenient graphical software Labview, all with well readability and real-time. The experiment on a tested pipe is conducted, and the reliability of experimental result is checked. Each chapter of this dissertation is introduced as follows:
     In chapter 1, the scheme and characteristics of each kind of servo loading system are introduced, and the advantages and difficulties of development are also summarized. The current situation of research and application on servo loading system is analyzed. Finally, the significance and main research subjects of this paper are presented.
     In chapter 2, the design tasks of the axial servo loading test system are introduced. The simulation models of three different kinds of load projects are built and the whole scheme of test system is proposed via the comparisons of their advantages and disadvantages. The main characteristics of the test system in this paper are inducted.
     In chapter 3, each module of hydraulic system is designed based upon compact design and convenient operation, under the context that the functions are fulfilled. the mechanical support of axial servo loading test system is also designed. The force analysis is carried out in details. Stress analysis and strength checkage on the key parts are made taking advantage of finite element analysis software ANSYS, in order to realize the function of stable and reliable support.
     In chapter 4, The software and hardware of electronic control system are configured taking advantages of programmed logic controller and data acquisition device. The mathematical model of this servo loading test system and the additional force are built. The causes of additional force is analyzed. The control strategy is optimized by using invariance theory. The effect of optimization is checked through the dynamic simulation of MATLAB/Simulink model. Finally, the control program is prepared and the process of axial loading testing is planned properly under the testing standard.
     In chapter 5, the experimental research on a certain tested pipe is carried out on the basis of the axial loading test system. The test items as well as their realization are analyzed in details. The test results are analyzed combining the characteristics of the system which can provide experimental support for the further research on improving the accuracy of servo loading system.
     In chapter 6, conclusions in this thesis are summarized and future research proposals are suggested.
引文
[1]王春行.液压控制系统[M].北京:机械工业出版社,2008
    [2]吴根茂,邱敏秀,王庆丰等.新编实用电液比例技术[M].杭州:浙江大学出版社,2006
    [3]路甬祥.流体传动技术与控制的历史进展与展望,2001,37(10):1-8
    [4]王益群,王燕山.电液力控制研究的进展[J].液压与气动.2002(7):1-4
    [5]雷天觉.新编液压工程手册[M].北京:北京理工大学出版社,1998
    [6]陈启松.液压传动与控制手册[M].上海:上海科学技术出版社,2006
    [7]黄传火.工程机械中液压技术发展的新动向[J].采矿技术,2006,6(2):71-73
    [8]W.霍夫曼等.液压元件及系统的动态仿真[M].杭州:浙江大学出版社,1988
    [9]陆元章.液压系统的建模与分析[M].上海:上海交通大学出版社,1989
    [10]林建亚,何存兴.液压元件[M].北京:机械工业出版社,1988
    [11]杨叔子,杨克冲等.机械工程控制基础[M].武汉:华中科技大学出版社,2002
    [12]章宏甲.液压传动[M].北京:机械工业出版社,2003.4
    [13]黎启柏.液压元件手册[M].北京:机械工业出版社,1999.10
    [14]刘晓东.电液伺服系统的多余力补偿及数字控制策略研究[D].北京交通大学博士学位论文,2008
    [15]郭建华.位置扰动型电液伺服力加载控制系统的研究[D].中国民航大学硕士学位论文,2008
    [16]刘长年.液压伺服系统优化设计理论[M].北京:冶金工业出版社,1989
    [17]于慈远.电液负载仿真台控制策略的研究[D].哈尔滨工业大学博士学位论文,1998
    [18]史维祥,杜彦亭等.电液伺服系统自适应控制的新发展[J].机床与液压,1995(1):1-12
    [19]苏东海.提高电液负载仿真台控制性能的研究[D].哈尔滨工业大学博士学位论文,1998
    [20]张立勋.电液负载模拟器多余力的研究[D].哈尔滨工业大学博士学位论文,1994
    [21]高俊霞,华清,焦宗夏.电液加载系统中的多余力及各种补偿方法的比较[J].液压气动与密封,2003(5):1-6
    [22]齐蓉,林辉,陈明.被动式电动加载系统多余力的研究[J].控制与决策,2006,21(2):225-228
    [23]李运华.负载模拟器多余力矩的抑制方法研究[J].机床与液压,1999,27(2):27-30
    [24]李运华.近代液压伺服系统控制策略的现状与展望[J].液压与气动,1995:1-6
    [25]王鑫.电液伺服加载台的设计和实验研究[D].西北工业大学硕士学位论文,2003
    [26]刘长年.液压伺服系统的分析与设计[M].北京:科学出版社,1987
    [27]裴忠才.电液负载仿真台的理论分析及多余力矩消除方法的研究[D].哈尔滨工业大学硕士学位论文,1997
    [28]段卫民.电液伺服加载系统理论分析与仿真研究[D].沈阳工业大学硕士学位论文,2005
    [29]王安敏.电液负载模拟器加载特性的研究[D].哈尔滨工业大学博士学位论文,1995
    [30]李洪人.液压控制系统[M].北京:国防工业出版社,1990
    [31]刘金甫.飞机结构疲劳试验系统的协调控制[J].试验机技术与试验机,1991(3):7-11
    [32]熊宇飞,张永昊,陆元章.多输入多输出电液伺服系统解耦自适应控制的研究[J].上海交通大学学报,1992(4):1-7
    [33]李运华,史维祥,林廷圻.近代液压伺服系统控制策略的现状与发展[J].液压与气动,1995(1):3-6
    [34]王占林,裘丽华.非对称液压缸伺服系统的特性补偿[J].机床与液压,1987(6):1-7
    [35]邬国秀.基于AMESim的阀控液压缸液压伺服系统仿真[J].计算机应用技术,2008(1):28-30
    [36]余佑官,龚国芳,胡国良AMESim仿真技术及其在液压系统中的应用[J].液压气动与密封,2005(3):28-30
    [37]秦家升,游善兰AMESim软件的特征及其应用[J].工程机械,2004(12):6-8
    [38]付永领,祁晓野AMESim系统建模和仿真—从入门到精通[M].北京:航空航天大学出版社,2005
    [39]岳庆来.变频器、可编程控制器及触摸屏综合应用[M].北京:机械工业出版社,2007
    [40]郭纯生.可编程控制器编程实践与提高[M].北京:电子工业出版社,2006
    [41]张建峰.某测控系统的伺服加载系统研制[D].南京理工大学硕士学位论文,2010
    [42]王辉,高媛媛,史永胜.位置扰动性电液力伺服控制系统的复合控制研究[J].计算机与数字工程,2010(2):35-39
    [43]王辉,闫祥安,王立文.位置扰动型施力系统力跟踪性能的研究[J].机械科学与技术,2006,25(12):1484-1486
    [44]王春梅,周仕强等.液压集成阀块的设计[J].煤矿机械,2008,29(9):40-41
    [45]周惠友.液压系统集成块设计趋势[J].液压气动与密封,2001(2):13-15
    [46]王林.皮囊式蓄能器的选用体会[J].液压气动与密封,2009(6):49-50
    [47]徐兵,欧阳小平,杨华勇.配置蓄能器的变频液压电梯节能控制系统[J].浙江大学学报(工学版),2002,36(5):521-525
    [48]陈铁民,荆宝德.皮囊式液压蓄能器的选择与计算[J].建筑机械,1995(8):22-23
    [49]孟继梅,韩晓明.基于闭环控制的压力控制系统研究[J].液压与气动,2009(9):31-32
    [50]张增猛,周华,孙健,杨华勇.基于压差控制的蓄能器压力调节方法及其AMEsim仿真[J].机床与液压,2007,35(6):99-101
    [51]H.Ohnchi, Hart Jukui.K.Inatomi and H.Ikai. Model Reference Adaptive Control of a Hydraulic Load Simulator.New Achievement in Fluid Power Engineering("931CFP), Hangzhou,1993:136-140
    [52]Panala.A.S. Controller design for a multi-channel electro hydraulic system.ASME Trans.of Journal of Dynamic System Measurement and control.1989Vo1111(2):299-306
    [53]Yonsu Narn, Jinyoung Lee, Sung Kyung Hong. Force control system design for Aerodynamic load Simulator[J].American Control Conference,2000:3043-3047
    [54]Zhang Rong, Chen Jian. Repetitive Control Algorithms for a Real-Time Dynamic Electronic Load Simulator[J].Applied Power Electronics Conference and xposition,2006:919-922
    [55]Hyung-MinRyu, Sung-JunKim, Seung-KiSul, etc.. Dynamic load simulator for high-speed elevator system[C].Power Proceedings of the Conversion Conference,2002:885-889
    [56]Velthuis J R. Learning Feed-Forward Control-Theory,Design and Applications[D]. Netherlands:Univ. of Twente,2000
    [57]黄忠霖.控制系统MATLAB计算及仿真[M].北京:国防工业出版社,2004
    [58]王沫然.Simulink建模及动态仿真[M].北京:电子工业出版社,2002
    [59]张伟,袁朝辉,章卫国.被动式电液伺服加载系统复合控制方法研究[J].中国机械工程,2008,19(20):2411-2418
    [60]王永进,权龙,杨付生.大型钢坯修磨机恒力加载系统的研究[J].工程设计学报,2006,13(1):58-61
    [61]陈健,徐鸣谦,萧子渊.大型构件液压加载试验台调试[J].工程机械,2000(6):11-12
    [62]徐汇音.电液伺服加载系统的数学建模[J].机电产品开发与创新,2006,19(6):22-36
    [63]Liu QH. Study of Dynamic Compensation for the Surplus Torque of Eleetrohydraulie Load Simulator.Proceedings of the 3rd International Symposiumon Fluid Power Transmission and Control.1999:254-258
    [64]Mohieddine Jelali, Kroll Andreas. Hydraulic Servo-Systems:Modelling, Identification and Control.(Advances in Industrial Control).2003.London:Springer-Verlag.
    [65]Hogan P. and Burrows C.R. Synchronizing Unevenly-Loaded Hydraulic Cylinders. Proceedings of the ASME Fluid Power and Systems Technology Division,Vol.1,pp.75-80
    [66]Lixun Zhang etc.. The Load Simulator Using Blow Servo Valve with Interconnected Pores. Proceedings of Third China-Russia-Ukraine Symposiumon Astronautical Science and Technology,Xi'an.1994(9): 652-655
    [67]Yoonsu Nam. "QFT force loop design for the aerodynamic load simulator,"Aerospace and Electronic Systems,IEEE Transactions On,Vol.37.no.4,PP,1384-1392,Oct 2001
    [68]Niksefat N., Sepehri N.. "Designing robust force control of hydraulic actuators despite system and environmental uncertainties,"Control Systems Magazine IEEE,Vol.2l,no.2,PP,66-77,Apr 2001
    [69]谢卓伟,黄献龙.阀控非对称缸主动式伺服加载系统的数学模型[J].华南理工大学学报(自然科学版),2000,28(5):86-90
    [70]胡俊宏,王绍为,孙晋龙.非对称缸垂直力加载系统研究[J].机械研究与应用,2008,21(1):88-91
    [71]周振华,邓和平等.基于AMESim的500t液压拉力试验机液压系统仿真[J].矿业研究与开发,2008,28(5):44-45
    [72]苏东海,于江华.液压仿真新技术AMESim及应用[J].计算机应用技术,2006,11(33):35-37
    [73]Watton J. A distal compen sator design for electro-hydraulic single-Rod cylinder position control systems. Journal of Dynamic Systems,Measurements,and Control.Transactions of the ASME,1990,112:403-409
    [74]Yao B,Bu F,Reedy J. Adaptive robust motion control of single-rod hydraulic actuators:theory and experiments.IEEE/ASME Transactions on Mechatronics,2000,5(1):79-91
    [75]He S.Sepehri N. Modeling and prediction of hydraulic servo actuators with neural networks.In:Proceedings of the American Control Conference.San Diego,California,1999:3708-3712
    [76]Erdmann F,Dierke R,Biertumpel E. Hybrid electrodraulic stick-force simulation. DLR,1988. DLR-FB: 73-99
    [77]Ramachandran S,Dransfield P. Interaction in a 2-channel loaded electrohydraulic drive.J of Fluid control.] 982,14(3):21-33
    [78]MTS 810 FlexTestTM Material Testing Systems, www.mts.com.
    [79]Robert H. Bishop. LabVIEW 6i实用教程[M].乔瑞萍等译.北京:电子工业出版社,2003
    [80]张琦等.电液流量伺服阀模型的两种辨识方法[J].机械科学与技术,1996(3):251-254
    [81]肖金陵.位置扰动型施力系统的两种建模方法[J].液压与气动,1993(5):13-16
    [82]刘君华.基于LabVIEW的虚拟仪器设计[M].北京:电子工业出版社,2003
    [83]黄献龙,战兴群,李晨光等.阀控非对称缸力伺服系统中两腔油压变化的分析[J].机床与液压,1998(6):30-31
    [84]张业建,李洪人.非对称缸系统液压缸两腔压力特性的研究[J].机床与液压,2000(5):63-64
    [85]易孟林等.电液加载系统中的伺服阀[J].液压气动与密封,1997(1):22-25
    [86]刘杰,马中武.多通道协调加载控制系统的设计[J].测控技术,1996(7):36-39
    [87]黄献龙,李尚义,黄泽焕,张德新.静力试验用电液伺服加载系统的分析和实验—如何实现系统保护[J].导弹与航天运载技术,2000(3):20-24
    [88]刘长年.液压伺服系统分析与设计.北京:科学出版社,1985

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700