高速大型振动筛结构动态特性及可靠性基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型化、高速化和轻型化是振动筛分设备发展的主要趋势。在满足振动筛的大处理量和高工作效率的同时,保证振动筛结构的强度和刚度是实现振动筛大型化和高速化的关键问题。本课题以抑制振动筛的弹性振动为研究目标,采用对振动筛横梁添加多余约束的方法实现应力集中的弱化和能量的均匀分布,从而保证振动筛在不改变整体质量的前提下提高强度和刚度,为高速大型振动筛的设计提供一种新思路。
     本课题首先对直线振动筛进行了多余约束设计。在保证其横梁质量和转动惯量不变的前提下,设计出了多余约束结构横梁,并建立了多余约束振动筛的力学模型。在此基础上,建立了静定横梁振动筛和多余约束横梁结构振动筛的有限元模型。
     对多余约束横梁结构振动筛和静定横梁振动筛有限模型进行了动力学特性分析。分别提取了两种模型的前10阶的固有频率、模态振型和工作频率下的动应力响应。结果表明,多余约束横梁结构振动筛的动应力和变形比静定横梁振动筛有明显下降,整体的刚度和强度比静定横梁振动筛有明显提高。
     该课题还基于功率流理论研究了多余约束结构对弹性振动的抑制机理。采用基于Ritz级数法的模态功率流方法分析了多余约束横梁和静定横梁内部的能量分布。结果表明:多余约束横梁在整段梁上都有能量波动,且在横梁的两端功率流的幅值较小,多余约束横梁能够使传递能量均匀分布,抑制了能量向侧板的传播,有利于提高侧板寿命。
     通过对模型机的模态功率流测试对理论分析的结果进行了验证。模态实验时的测点布置参考了有限元模态分析的结果,选择模态变形较大的区域布置测点。由实验结果可知,多余约束横梁的两端能量分布较小,主要振动集中在附板之间,表明附板结构的设计可以有效吸收传递能量。横梁的输入功率流结果表明多余约束横梁的输入功率流向低频段移动,在高频时衰减较快,有利于振动筛的提速实现高速化。实验总体效果与理论分析结论一致。
     阐明了多余约束结构对弹性振动的抑制机理,对多余约束横梁附板的数量、位置、厚度以及双层附板之间的距离等参数进行了优化设计。优化结果表明:采用单层附板时,附板置于梁中部对弹性振动的抑制效果比较好,且随着附板厚度的增加减振效果增强,附板厚度为管梁壁厚的两倍以上时,增强的效果变的不再明显。采用双层附板时,通过调整两块附板之间的间隔可以获得两倍厚度的单块附板更好的效果,因此在不增加总体质量的前提下采用双层附板较好。对优化后的横梁进行了稳态响应分析,结果表明优化后的多余约束横梁结构对弹性振动具有更显著的抑制作用。
     该论文有图69幅,表23个,参考文献174篇。
Strength and stiffness problems of vibrating screen are the key factors of restricting its development towards high-speed and large-scale. Based on the point of view that restricting the elastic vibration of vibrating screen,a method of adding redundant constraints to the vibration screen beam was put forward in this paper to decrease the stress concentration and uniform the energy distribution,thus improving the strength and stiffness without changing the mass of vibration screen was ensured. This is a new idea of designing high-speed and large-scale vibration screen.
     Firstly,the properties of the redundant constraints beam were analyzed,and the structure of redundant constraints beam was designed based on the basic principles of mechanics of materials,of which the mass and rotational inertia were designed corresponding to the ordinary tube beam.Then the design calculation of dynamic model of the vibrating screen was done.
     Dynamics property of the vibrating screen with redundant constraints beam and vibrating screen with general tube beam are analyzed.Two kinds of model of the first 10 natural frequencies, mode shapes and stress response under work frequency were obtained. The results show that dynamic stress and deformation of vibrating screen with redundant constraint beam decreased significantly, and the overall stiffness and strength are improved obviously.
     The suppressive effect of the redundant constraints beam, which is to reduce the amplitude,was studied on from the angle of energy transfer based on the results of finite element analysis.The modal power flow analysis results from Ritz series method shows the distribution of power flow within the beam.In comparison with ordinary tube beam,the modal power flow of the redundant constraints beam is evenly distributed in each mode,fluctuates throughout the beam and has a low amplitude at the ends of the beam.As a result,the redundant constraints beam can transfer the energy of vibration to the beam ends,helping improving the service life of the side plate.
     A experimental study of the modal and power flow test on the beam was carried out.The natural frequencies and modal shapes obtained from the modal test corresponds to that from the finite element analysis,indicating that the method of finite element analysis are reliable and the results of test are true.The modal test shows that the energy is concentrated on the central part of the redundant constraints beam between the two attached plates but attenuates at the ends of the beam,indicating that the attached plate can restrain vibration.The power flow test indicates that the power flow of redundant constraints beam attenuates rapidly at high frequencies and moves to low frequencies,it is helpful in speeding up the vibrating screen rapidly.
     Finally,to make full advantage of redundant constraints beam, the number, location,thickness of attached plates and the distance between double-deck attached plates are optimized respectively.The results show that the single-deck attached plate placed in the middle of the beam suppresses the vibration effectively,the suppressive effect on the vibration increases obviously with the increasing thickness until the twice as thickness as the tube beam.The double-deck attached plates will gain a better result than the single-deck ones with double thickness by adjusting the space between the two attached plates and therefore the double-deck attached plate is a better choice.Comparing the optimized redundant constraints beam with the optimized tube beam,the steady-state response were analyzed.
     The paper has 69 figures, 23 tables and 174 references.
引文
[1]石剑锋.煤用振动筛分设备的研究现状及发展趋势[J].煤矿机械,2,30(5):8-9.
    [2]发改能源2007.煤炭工业节能减排工作意见[J].中国煤炭工业,2007,9:8-10.
    [3]刘峰.近年选煤技术综合评述[J] .选煤技术,2003(6):1-13.
    [4]陈建中,夏育才.九五选煤研究成果对中国选煤技术的影响[J].选煤技术,2001
    [5]刘奎胜,谭兆衡.筛分机械的应用和发展[J].矿山机械,1998(7):56-57.
    [6]王峰,王皓.筛分机械[M].北京:机械工业出版社,1998.
    [7]王峰.我国矿山振动技术及设备的新发展[J].矿山机械,1991,(4):24-27.
    [8] Courtney Dehn.Novel screening unit provides alternative to conventional shale shaker[J].Oil & Cas Journal,l999,97(15):40-48.
    [9]程秀芳.提高大型振动筛筛分效率的实践[J].矿山机械,1999(4):46-47.
    [10]张路霞,李云峰.振动筛筛分效率的影响因素分析[J].煤矿机械,2008,29(11):74-76.
    [11] R Rong,T J Napier-Munn.Development of improved dense medium and classifying cyclones[A].Proceedings of XIV International Coal Preparation Congress[C].Sandton Convention Centre,Johannesburg,South Africa.2002:297-302.
    [12] N Lourens . The Rejector[A] . Proceedings of XIV International Coal Preparation Congress[C].Sandton Convention Centre,Johannesburg,South Africa.2002:285-289.
    [13] Yasuo Kubo and Tatsuya Zushi.Designing points of the fluidized bed type dry coal cleaning system[A].Proceedings of First International Symposium on Dry Coal Cleaning,Clean Coal Technology[C].Xuzhou,Jiangsu,China.2002:79-89.
    [14] Mikhail V Davydov.On development and practical application of pneumatic coal preparation in Russia[A].Proceedings of First International Symposium on Dry Coal Cleaning,Clean Coal Technology[C].Xuzhou,Jiangsu,China.2002:13-23.
    [15]曾本仁.国外筛分机的发展[J].矿山设计研究,1986(2):10-14.
    [16] Jacques steyn.Fatigue failure of deck support beams on vibrating creen[J].Int.J.pres.Ves.& Piping,1995,(61):315-327.
    [17]王正浩,范改燕.振动筛结构强度研究的现状[J].沈阳建筑工程学院学报,1999 (3):278-281.
    [18]刘瑞宏,陈少华.筛分机械大型化的发展趋向.内蒙古石油化工,1999(3):87-88.
    [19]朱福先,殷样超,徐小丽.基于有限元法的单、双通道振动筛筛体动态特性分析[J].煤矿机械,2006(7):60~62.
    [20]陈文龙.煤用特大型振动筛现状与对策[J].煤质技术与科学管理,1997(2):21-24.
    [21]李岿然.27m2大型直线振动筛可靠性的研究[D].天津:天津大学,2002.
    [22]王峰,刘恋华.筛分机的动态特性分析[J].矿山机械,1989(10):41-43.
    [23]段斌修.振动筛分机械的应用与发展[J].武钢技术,1999,37(5):3-5.
    [24]王波.振动筛模态分析及降噪[D].辽宁:辽宁科技大学,2007.
    [25]宫美英.大型振动筛系统与结构的动力学研究[D].河北:燕山大学,2008.
    [26]谭兆衡.国内筛分设备的现状和展望[J].矿山机械,2004(1):34-37.
    [27]王峰.筛分机械的发展与展望[J].矿山机械,2004(1):37-39.
    [28]孙刚.大型潮湿细粒物料筛分机的研制和应用[J].煤炭加工与综合利用,2004(1):18-20.
    [29]刘初升,赵跃民,杨传良.一种新型弛张筛[J].矿山机械.1999(7):46-47.
    [30] J Znber . Screening of difficult material on bivtee screens with flip-flow strm [J].Aufbereitungn Technik,1995(7):18-20.
    [31]刘建平.双轴椭圆振动筛系统动力学分析[D].北京:北京科技大学,2004.
    [32]周传荣.结构动态设计[J].振动、测试与诊断,2001,21(1):1-8.
    [33]陈新,贾玉兰.机械结构动态设计理论方法及应用[M].北京:机械工业出版社,1997.
    [34] R L Fox,M P KaPoor.Structural optimization in the dynamic regime:A computational approach[J].AIAA J,1970,8(10):1798-1804.
    [35]张令弥,何柏庆,袁向荣.特征向量导数计算各种模态法的比较和发展[J].应用力学学报,1994,11(3):69-73.
    [36]林家浩.结构动力优化中的灵敏度分析[J].振动与冲击,1995,14(1):1-6.
    [37]傅志方.振动模态分析与参数辩识[M].北京:上海交通大学出版社,2000.
    [38]何红妮,吕震宙,王维虎.模糊结构的能度可靠性灵敏度分析方法[J].西北工业大学学报,2009,27(5):651-658.
    [39] E Taroco , R Feijoo . A unified approach for shape sensitivity analysis of elastic shells[J].Structural and Multidisciplinary Optimization,2004,27(1-2):66-79.
    [40] Zhang Jianping,Gong Shuguang,Huang Yunqing.Structural dynamic shape optimization and sensitivity analysis based on RKPM[J].Structural and Multidisciplinary Optimization,2008,36(3):307-317.
    [41] Park Chan-Kyoo,Kim Woo-Je,Lee Sangwook.Positive sensitivity analysis in linear programming[J].Asia-Pacific Journal of Operational Research,2004,21(1):53-68.
    [42]方远翔,陈安宁,董卫平.振动模态分析技术[M].北京:国防工业出版社,1993.
    [43]王敦曾.选煤新技术的研究与应用[M].北京:煤炭工业出版社,1999.
    [44]顾培英,邓昌,吴福生.结构模态分析及其损伤诊断[M].南京:东南大学出版社,2008.
    [45]傅志方,华宏星.模态分析理论与应用[M].上海:上海交通大学出版社,2000.
    [46]李德葆,陆秋海.实验模态分析及其应用[M].北京:科学出版社,2001.
    [47]沈鹏程,何沛祥.多变量样条有限元法[J].固体力学学报,1994.15(3):234-243.
    [48]王培军,李国强.火灾下轴向约束钢梁的样条有限元法[J].同济大学学报,2007,35(12):1592-1596.
    [49]何正嘉,陈雪峰,李兵等.小波有限元理论及其工程应用[M].北京:科学出版社,2006.
    [50]李兵,陈雪峰,向家伟等.基于小波有限元法的悬臂梁裂纹识别的试验研究[J].机械工程学报,2005,41(5):114-119.
    [51] Wang Renhong.Multivariate Splines and its Application[M].Beijing:China Machine Press,2006.
    [52]陈新.机械结构动态设计理论方法及应用[M].北京:机械工业出版社,1997.
    [53]李向东.YR-924振动筛筛框结构理论模态分析[J].矿山机械,1997(10):42-44.
    [54]张阿舟,姚起航.振动控制工程[M].北京:航空工业出版社,1989.
    [55]左鹤声,彭玉莺.振动试验模态分析[M].北京:中国铁道出版社,1995.
    [56]俞云书.结构模态实验分析[M].北京:宇航出版社,2000.
    [57] J Lardies,N TaM,Berthillier M.Modal parameter estimation based on the wavelet transform of output data[J].Archive of Applied Mechanics,2004,73(9-10):718-733.
    [58] T P Le and P Argoul.Continuous wavelet transform for modal identification using free decay response[J].Journal of Sound and Vibration,2004,277(1-2):73-100.
    [59]曹树谦,张文德,萧龙翔.振动结构模态分析—理论、实验与应用[M].天津:天津大学出版社,2001.
    [60]杜尚之.超静定问题[J].丽水师范专科学校学报,2003,25(5):30-32.
    [61]吴宏礼,刘颖.土木工程力学[M].上海:东华大学出版社,2007.
    [62]吴代华.材料力学[M].武汉:武汉理工大学出版社,1994.
    [63]李清禄,杨静宁.超静定等强度梁在复合载荷作用下的优化[J].甘肃科学学报,2009,21(4):93-96.
    [64]吴阿林.超静定桁架结构的有限元计算方法研究及应用[J].浙江科技学院学报,2003,15(1):12-17.
    [65]卞松德,超静定连续梁递推分析法[J].上海工业大学学报,1991,12(5):377-382.
    [66]方清,孙宇新,沈培辉,康宗维.伸缩杆管体超静定问题的有限元求解[J].兵工学报,2009,30(4):408-414.
    [67] JIANG Wen-guang,Warby M K,Henshall J L.Statically indeterminate contacts in axially loaded wire strand[J].European Journal of Mechanics A/Solids,2008,27:69-78.
    [68]胡庆陪.用逐次面积矩法解简单超静定梁[J].湛江水产学院学报,1990.10(1):80-85.
    [69]陈尚纲.计算梁变形的逐次面积矩法[J].力学与实践,1982(4):65.
    [70]张长平,张黎明.含有弹性支撑超静定结构的内力分析[J].河南城建学院学报.2009.18(4):19-20.
    [71]李强,孙传忠.分析超静定结构的基本方法[J].建筑与工程,2008,36:120.
    [72] G Pavic.Measurement of structure born wave intensity,Part I:formulation and the methods[J].Journal of Sound and Vibration,1976,49(1):35-45.
    [73]姚德源,王其政.统计能量分析原理及其应用[M].北京:北京理工大学出版社,1994.
    [74] R H Lyon,H Richard.Statistical energy analysis of dynamical systems:theory and applications[M].Cambridge:Mass MIT Press,1975.
    [75] D J Nefske,S H Sung.Power flow finite element analysis of dynamic systems:Basictheory and application to beams[J].Journal of Vibration,Acoustics,Stress,and Reliability in Design,1989,111(1):94-100.
    [76] H G D Goyder,R G White.Vibrational power flow from machines into built-up structures . I . Introduction and approximate analyses of beam and plate-like foundations[J].Journal of Sound and Vibration,1980,68(1):59-75.
    [77] H G D Goyder,R G White.Vibrational power flow from machines into built-up structures.II.Wave propagation and power flow in beam-stiffened plates[J].Journal of Sound and Vibration,1980,68(1):77-96.
    [78] H G D Goyder,R G White.Vibrational power flow from machines into built-up structures.III.Power flow through isolation systems[J].Journal of Sound and Vibration,1980,68(1):97-117.
    [79] C Boisson,J L Guyader,P Millot,C Lesueur.Energy transmission in finite coupled plates-2.Application to an L shaped structure[J].Journal of Sound and Vibration,1982,81(1):93-105.
    [80] J M Cuschieri.Structural power flow analysis using a mobility approach of an L-shaped plate[J].Journal of the Acoustical Society of America,1990,87(3):1159-1165.
    [81] R S Langley.Analysis of power flow in beams and frameworks using the direct-dynamic stiffness method[J].Journal of Sound and Vibration,1990,136(3):439-452.
    [82] G Pavic.Vibration energy flow in elastic circular cylindrical shells[J].Journal of Sound and Vibration,1990,142(2):293-310.
    [83] R S Langley.Wave motion and energy flow in cylindrical shells[J].Journal of Sound and Vibration,1994,169(1):43-53.
    [84] L S Beale and M L Accorsi . Power flow in two-and three-dimensional frame structures[J].Journal of Sound and Vibration,1995,185(4):685-702.
    [85] A N Bercin.Assessment of the effects of in-plane vibrations on the energy flow between coupled plates[J].Journal of Sound and Vibration,1996,191(5):661-680.
    [86] J Cuschieri.In-plane and out-plane waves power transmission through an L-plate junctionusing the mobility power flow approach[J].Journal of the Acoustic Society of America,1996,100(2):857-870.
    [87] A N Bercin.Analysis of energy flow in thick plate structures[J].Computers and Structures,1997,62(4):747-756.
    [88] R M Grice and R J Pinnington.Method for the vibration analysis of built-up structures.Part I: introduction and analytical analysis of the plate-stiffened beam[J].Journal of Sound and Vibration,2000,230(4):825-849.
    [89] R M Grice and R J Pinnington.Method for the vibration analysis of built-up structures.Part II: analysis of the plate-stiffened beam using a combination of finite element analysis and analytical impedances[J].Journal of Sound and Vibration,2000,230(4):851-875.
    [90] S H Seo,S Y Hong,H G Kil.Power flow analysis of reinforced beam-plate coupled structures[J].Journal of Sound and Vibration,2003,259(5):1109-1129.
    [91] J T Xing,W G Price,Y P Xiong.Substructure-subdomain methods for power flow analysis of fluid-structure interaction dynamics[M].Stockholm,Sweden:Institute of Acoustics,2003.
    [92] S V Sorokin.Analysis of vibrations and energy flows in sandwich plates bearing concentrated masses and spring-like inclusions in heavy fluid-loading conditions[J].Journal of Sound and Vibration,2002,253(2):485-505.
    [93] S V Sorokin,J B Nielsen,N Olhoff.Green's matrix and the boundary integral equation method for the analysis of vibration and energy flow in cylindrical shells with and without internal fluid loading[J].Journal of Sound and Vibration,2004,271(3-5):815-847.
    [94] L Ji,B R Mace,R J Pinnington.A mode-based approach to the vibration analysis of coupled long-and short-wavelength subsystems[M].Stockholm,Sweden:Institute of Acoustics,2003.
    [95] L Ji,B R Mace,R J Pinnington.A power mode approach to estimating vibrational power transmitted by multiple sources[J].Journal of Sound and Vibration,2003,265(2):387-399.
    [96] L Ji,B R Mace,R J Pinnington.Estimation of power transmission to a flexible receiver from a stiff source using a power mode approach[J].Journal of Sound and Vibration,2003,268(3):525-542.
    [97] N J Kessissoglou.Power transmission in L-shaped plates including flexural and in-plane vibration[J].Journal of the Acoustic Society of America,2004,115(2):467-474.
    [98] E Savin.Transient transport equations for high-frequency power flow in heterogeneous cylindrical shells[J].Waves Random Media,2004,14(3):303.
    [99] E Savin.Radiative transfer theory for high-frequency power flows in fluid-saturated,poro-visco-elastic media[J].Journal of the Acoustical Society of America,2005,117(31):1020-1027.
    [100] Y P Xiong,J T Xing,W G Price.Interactive power flow characteristics of an integrated equipment-nonlinear isolator-Traveling flexible ship excited by sea waves[J].Journal of Sound and Vibration,2005, 287(1-2):245-276.
    [101] E C N Wester,B R Mace.Wave component analysis of energy flow in complex structures-Part I:A deterministic model[J].Journal of Sound and Vibration,2005,285(1-2):209-227.
    [102] E C N Wester,B R Mace.Wave component analysis of energy flow in complex structures-Part II:Ensemble statistics[J].Journal of Sound and Vibration,2005,285(1-2):229-250.
    [103] E C N Wester,B R Mace.Wave component analysis of energy flow in complex structures-Part III:Two coupled plates[J].Journal of Sound and Vibration,2005,285(1-2):251-265.
    [104] S Z Peng,J Pan.Flexural wave propagation and power flow in an axisymmetrical circular plate by the acoustical wave propagator technique[J].Journal of Sound and Vibration,2006,296(4-5):1013-1027.
    [105] Y H Park,S Y Hong.Vibrational energy flow analysis of corrected flexural waves in Timoshenko beam-Part I:Theory of an energetic model[J].Shock and Vibration,2006,13(3):137-165.
    [106] Y H Park,S Y Hong.Vibrational energy flow analysis of corrected flexural waves in Timoshenko beam-Part II:Application to coupled Timoshenko beams[J].Shock and Vibration,2006,13(3):167-196.
    [107] Y H Park,S Y Hong.Hybrid power flow analysis using coupling loss factor of SEA for low-damping system-Part I:Formulation of 1-D and 2-D cases[J].Journal of Sound and Vibration,2007,299(3):484-503.
    [108] Y H Park,S Y Hong.Hybrid power flow analysis using coupling loss factor of SEA for low-damping system-Part II:Formulation of 3-D case and hybrid PFFEM[J].Journal of Sound and Vibration,2007,299(3):460-483.
    [109] S A Hambric.Power flow and mechanical intensity calculations in structural finite element analysis[J].Journal of Vibration,1990,112(4):542-549.
    [110] L Gavric,G Pavic.Finite element method for computation of structural intensity by the normal mode approach[J].Journal of Sound and Vibration,1993,164(1):29-43.
    [111] T E Rook,R Singh.Structural intensity calculations for compliant plate-beam structures connected by bearings[J].Journal of Sound and Vibration,1998,211(3):365-386.
    [112] S A Hambric,R P Szwerc.Predictions of structural intensity fields using solid finite elements[J].Noise Control Engineering Journal,1999,47(6):209-217.
    [113] A M Wilson,L B Josefson.Combined finite element analysis and statistical energy analysis in mechanical intensity calculations[J].AIAA Journal,2000,38(1):123-130.
    [114] K M Ahmida,J R F Arruda.Spectral element-based prediction of active power flow in Timoshenko beams[J].International Journal of Solids and Structures,2001,38(10-13):1669-1679.
    [115] X D Xu,H P Lee,C Lu,J Y Guo.Streamline representation for structural intensity fields[J].Journal of Sound and Vibration,2005,280(1-2):449-454.
    [116] F Wang,H P Lee,C Lu.Relations between structural intensity and J-integral[J].Engineering Fracture Mechanics,2005,72(8):1197.
    [117] H P Lee,S P Lim,M S Khun.Diversion of energy flow near crack tips of a vibrating plate using the structural intensity technique[J].Journal of Sound and Vibration,2006,296(3): 602-622.
    [118]赵其昌.振动结构中功率流的测量[J].声学学报,1989,14 (4):45-59.
    [119]张小铭,张维衡.周期简支梁的振动功率流[J].振动与冲击,1990,(3):28-34.
    [120]张小铭,张维衡.在任意位置激励时周期简支梁的振动功率流[J].振动工程学报,1990,3(4):75-81.
    [121] Z X M hang,W H Zhang.Reduction of vibrational energy flow in a periodically supported beam[J].Journal of Sound and Vibration,1991,151(1):1-7.
    [122]李天匀,张小铭.周期简支曲梁的振动波与功率流[J].华中理工大学学报,1995,23(9):112-115.
    [123]李伟,仪垂杰,胡选利.梁板结构功率流的导纳法研究[J].西安交通大学学报,1995,29(7):29-35.
    [124]仪垂杰,陈天宁,李伟等.板结构功率流的参数研究[J].应用力学学报,1995,12(4):21-27.
    [125]李天匀,张小铭.有不连续材料层的组合板结构振动功率流研究[J].声学学报,1997,22(3):274-281.
    [126]徐慕冰.圆柱壳—流场耦合系统的振动波传播与能量流研究[D].武汉:华中科技大学,1999.
    [127]王敏庆,盛美萍.筋受力激励下加筋板结构振动功率流研究[J].西北工业大学学报,1998,16(2):237- 240.
    [128]刘雁梅,黄协清,陈天宁.非阻塞性颗粒阻尼加筋板振动功率流的研究[J].西安交通大学学报,2001,35(1):61- 65.
    [129]严谨.水下复杂圆柱壳振动能量流和声辐射特性研究[D].武汉:华中科技大学,2006.
    [130]汪国和,吴广明,沈荣瀛.振动控制中的功率流方法研究现状[J].华东船舶工业学院学报,2003,17(4):17-22.
    [131]王术新,姜哲.振动结构功率流的研究现状及进展[J].现代制造工程,2004,8(1):104-106.
    [132]伍先俊,朱石坚,曹建华.振动能量流的计算方法研究[J].力学进展,2006,36(3):363-372.
    [133] N K Mandal,S Biswas.Vibration power flow:A critical review[J].The Shock and Vibration Digest,2005, 37(1):3-11.
    [134]严峰,刘焕胜.筛分机械[M].北京:煤炭工业出版社,1995.
    [135]李文英.大型振动筛动力学分析及动态设计[D].太原:太原理工大学,2004.
    [136]朱福先.大型振动筛结构强度研究[D].徐州:中国矿业大学,2006.
    [137]闻邦椿,刘树英,何勍.振动机械的理论与动态设计方法[M].北京:机械工业出版社,2002.
    [138] T Thomson Willianm,胡宗武译.振动理论及其应用[M].北京:煤炭工业出版社,1980.
    [139]王敦曾.选煤新技术的研究与应用[M].北京:煤炭工业出版社,1999.
    [140] P Wodzinski.Tendencies in screen design[J].Powder handling & processing,1993:357-361.
    [141]饶寿期.有限元法和边界元法基础[M].北京:航空航天大学出版社,1990.
    [142]周昌玉,贺小华.有限元法分析的基本方法及工程应用[M].北京:化学工业出版社,2006.
    [143]王文亮,杜作润.结构振动与动态子结构方法[M].上海:复旦大学出版社,1985.
    [144]高旭,崔文好.振动筛侧板强度有限元分析及试验研究[J].建筑机械,1999(5):34-36.
    [145]梁坤京,白勇军,邵佩森.动态设计在2ZKP3660直线振动筛中的应用[J].矿山机械,2001(7):36-37.
    [146] R.D.库克著,关正西,强洪夫译.有限元分析的概念和应用[M].西安:西安交通大学出版社,2007.
    [147]刘尔烈,崔恩第,徐振铎.有限单元法及程序设计[M].天津:天津大学出版社,1999.
    [148]王勖成,邵敏.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [149]邵忍平.机械系统动力学[M].北京:机械工业出版社,2005.
    [150]倪振华.振动力学[M].西安:西安交通大学出版社,1989.
    [151]杜平安,甘娥忠,于亚婷.有限元法—原理、建模及应用[M].北京:国防工业出版社,2004.
    [152] Saeed Moaveni著.王崧,董春敏,金云平等译.有限元分析—ANSYS理论与应用(第二版)[M].北京:电子工业出版社,2005.
    [153]段进,倪栋,王国业.ANSYS结构分析从入门到精通[M].北京:兵器工业出版社,2006.
    [154]和世超,赵尚民.振动筛筛框模态分析及动力响应[J].焦作工学院学报,2001(5):400-403.
    [155]刘习军,贾启芬.工程振动理论与测试技术[M].北京:高等教育出版社,2004.
    [156]姚伟岸,钟万勰.弹性力学[M].北京:高等教育出版社,2002.
    [157] C L Dym and I H Shames.袁祖贻,姚金山,应达之译.固体力学变分法[M].北京:中国铁道出版社,1984.
    [158] M Levinson.A new rectangular beam theory[J].Journal of Sound and Vibration,1981,74(1):81-87.
    [159] M Levinson.Further results of a new beam theory[J].Journal of Sound and Vibration,1981,77(3):440-444.
    [160] W B Bickford.A consistent of higher order beam theory[C].Chung T J. Developments in Theory and Applied Mechanics.Huntsville,Ala:University of Alabama in Huntsville,1982,137-150.
    [161] M Levinson.On Bickford’s consistent higher order beam theory[J].Mechanics Research Communications,1985,12(1):1-9.
    [162]徐翔,郝际平.从Levinson高阶梁理论的一致变分到高次翘曲梁理论[J].工程力学, 2008,25(2):56-61.
    [163] G Pavic.Structure-borne energy flow[J].Encyclopedia of Acoustics,1997:881-891.
    [164] X Q Wang,W O Wong,L Cheng.Modal power flow with application to damage detection[J].International Journal of Engineering Science,2009,47:512-523.
    [165]谢官模,振动力学[M].北京:国防工业出版社,2007.
    [166] J.H.金斯伯格著,白化同,李俊宝译.机械与结构振动-理论及应用[M].北京:中国宇航出版社,2005.
    [167] L米罗维奇著,陈幼明,沈守正译.结构动力学计算方法[M].北京:国防工业出版社,1987.
    [168] S.铁木辛柯,胡人礼译.工程中的振动问题[M].北京:人民铁道出版社,1978.
    [169]范志毅,任勇生,刘立厚等.力边界条件对瑞利-李兹法求梁固有频率的影响[J].上海工程技术大学学报,2005,19 (1):9-11.
    [170] F J Fahy.Measurement of mechanical input power to a structure[J].Journal of Sound and Vibration,1969,10(3):517-518.
    [171]朱翔.裂纹损伤结构的振动功率流特性与损伤识别[D].武汉:华中科技大学,2004.
    [172] L Cremer and M Heckl.Structure-borne sound: structural vibration and radiation at audio frequencies[M].Beilin:Springer,2005.
    [173] L Cremer Lions and M Heckl Springer.Structure-borne sound:structural vibrasound radiation at audio frequencies[M].Beilin:2005.
    [174] H U Manfred,S E Semercigil.Vibration control for plate-like swctures using strategic cut-outs[J].Journal of Sound and Vibration,2008,309(1-2):246-261.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700