光梳状滤波器在光通信和微波信号处理中的研究及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光梳状滤波器具有独特的周期性幅度滤波或相位滤波性能,因而在光通信和微波信号处理领域倍受关注。诸如,取样光纤光栅(SFBG)型、Mach-Zehnder干涉仪型、高双折射光纤型等梳状滤波器已广泛应用于波分复用/解复用器、多信道色散补偿器、高速光脉冲源、微波滤波器、以及实时微波频率测量技术等。与此同时,伴随着新技术和新需求的不断涌现,光梳状滤波器的研究和应用正面临着许多新的挑战和机遇。以此为选题背景,本文对SFBG型和高双折射光纤型梳状滤波器进行了研究:从理论上着手研究了SFBG型梳状滤波器的信道中心波长分布规律和滤波信道密集化技术;从新型应用的角度出发,设计了基于高双折射光纤型梳状滤波器的实时微波频率测量方案和基于等效梳状滤波效应的重复速率可调型光脉冲序列生成方案。
     SFBG型梳状滤波器的理论研究和分析主要借助于Fourier级数法、Fourier变换法和传输矩阵法。运用Fourier级数法、Fourier变换法推导得到信道中心波长、滤波信道间隔的理论结论,再用传输矩阵法数值验证结论的正确性。对高双折射光纤型梳状滤波器和等效梳状滤波效应的应用研究侧重于新方案设计,然后搭建实验平台论证新方案的有效性和优势。基于以上分析方法和研究思路,本文的主要研究内容和成果如下:
     深入研究了均匀、切趾型、大啁啾型SFBG信道中心波长的分布规律。在均匀和切趾型SFBG中,利用Fourier级数法将SFBG分解成一系列子光栅,单独求解每个子光栅的反射峰波长,即SFBG各阶信道的中心波长;其分布规律受占空比、取样周期和相位匹配条件的影响。针对大啁啾型SFBG,将啁啾效应等效成离散相移,以Fourier变换法获得Talbot效应下的波长偏移量;此偏移量与均匀SFBG信道中心波长之和为大啁啾效应下的信道中心波长。
     首次提出在SFBG中应用周期性啁啾结构实现滤波信道密集化。周期性啁啾结构由多个结构一致的啁啾周期(或超结构)构成。啁啾效应导致的相位分布同时满足Talbot相位条件和相位空间2π的整数倍等效关系,从而以频域Talbot效应实现了信道密集化。并对周期性啁啾结构进行了扩展:将相位条件由二次扩展到高次,将结构设计的自由度从一维扩展到三维。
     探讨了取样方案在设计超窄带平坦滤波器和一维光子晶体型滤波器中的推广应用。基于SFBG的等效相移技术和光栅的多相移技术在SFBG的-1阶反射带上形成一个窄带(约为数十皮米)、平坦的透射峰,即超窄带平坦滤波器。将一维光子晶体中高、低折射率层交替排列的反转等效定义为π相移跳变,借助优化算法获得相位跳变点,从而将二元相位取样方案巧妙地用于设计一维光子晶体型梳状滤波器。
     应用色散光纤或偏振调制器(PolM),分别设计了具有可调谐测量频段或宽带测量频段的实时微波频率测量方案。利用色散光纤的色散斜率,构建两个不同的色散导致的微波功率衰减函数,并从两者的比值中反解得到微波频率;以调整波长间隔的方式改变功率衰减函数,实现了可调谐的测量范围。借助PolM和检偏器,同步得到两个调制深度一致的强度调制光和相位调制光。引入色散效应,由相位调制和强度调制光信号分别得到两互补型微波功率衰减函数;对比两互补型衰减函数计算出微波频率,扩大了频率测量范围。
     应用高双折射光纤型梳状滤波器,设计了两种基于光功率检测的实时微波频率测量方案。载波抑制型小信号调制下,将经微波信号调制的两路光信号的载波波长分别置于Sagnac环梳状谱的波峰和波谷处进行滤波,然后对比两波长上的光功率得到待测微波频率。采用单个光波长和一对互补型梳状滤波器实现了更为稳定的频率测量方案。同样在载波抑制型小信号调制下,光信号的载波波长同时置于一对互补型梳状滤波器中一个滤波谱的波峰和另一个滤波谱的波谷:检测并对比两滤波器输出端的光功率从而获得微波频率。后一种方案不仅减少了光源的数目,而且完全消除了光源功率波动对频率测量的影响。
     设计了重复速率简易可调的高速光脉冲序列生成方案。结合PolM和偏振分束器,奇次、偶次光边带在两个偏振态上得以分离,实现了等效梳状滤波效应:其频率选取间隔随驱动微波频率而自动调整,无需额外的物理调节机制。基于等效梳状滤波效应,生成了二倍频重复速率的归零码(RZ)和载波抑制归零码(CS-RZ)光脉冲序列,大为简化了重复速率的调节过程。
Due to their cyclical amplitude filtering or phase filtering characteristics, the comb filters have attracted great interest in optical communications and microwave signal processing. For instance, the sampled fiber Bragg grating- (SFBG), the Mach-Zehnder interferometer- and high birefringence fiber (HBF)-based comb filters can find applications in the wavelength division multiplexer/demultiplexer, the multi-channel dispersion compensator, the high-speed pulse generator, the microwave filter, the instantaneous microwave frequency measurement, and so on. At the same time, along with the emergence of novel technologies and requirements, the research and the application about the optical comb filters are facing new challenges and opportunities. Against such a profound background, in this dissertation the investigation on the SFBG- and the HBF-based comb filters has been performed. Firstly, the peak wavelengths of reflection channels and the channel density techniques are theoretically investigated for the SFBG-based comb filters. Secondly, instantaneous microwave frequency measurement approaches using HBF-based comb filters are proposed and demonstrated. Finally, based on the equivalent comb filtering effect, a simple approach is designed to generate pulse trains with a tunable repetition rate.
     During the theoretical investigation and analysis on the filtering characteristics of SFBGs, three analysis tools have been used, i.e., the Fourier series method, the Fourier transform method, and the transfer matrix method. With the Fourier series method and the Fourier transform method, results and conclusions which describe the peak wavelengths or the channel spacing are derived. The transfer matrix method is then adopted to verify the derived results or conclusions. As for the HBF-based comb filter and the equivalent comb filtering effect, the application investigation focuses on the proposal of novel approaches or architectures. Related experiments have been performed to confirm the effectiveness and the advantages of proposed approaches. According to the analysis tools and the design ideas aforementioned, the main research work and results are listed in the following.
     An in-depth analysis about the distribution of peak wavelengths of SFBGs has been conducted. The uniform or apodized SFBG is decomposed into a number of ghost gratings using Fourier series method. All peak wavelengths of SFBG are obtained as the peak wavelength of each ghost grating is calculated. The peak wavelengths of SFBG are associated with the duty cycle, the sampling period, and the phase-matching condition. While in the SFBG having large chirp effect, the chirp effect is transformed into discrete phase shifts to implement the Fourier transform, with the wavelength drift induced by Talbot effect being derived. The sums of this wavelength drift and the peak wavelengths of uniform SFBG are the peak wavelengths of SFBG having large chirp.
     The periodic chirp structure is firstly proposed to get narrow channel spacing in the spectrum of SFBG. The periodic chirp structure consists of a number of identical chirp structures (or superstructures). The channel density can be realized by the spectral Talbot effect, as long as both the phase condition for Talbot effect and the equivalence of integer multiple of 2πin the phase plane are satisfied. Moreover, the periodic chirp structure can be further extended, with the phase condition being extended from parabolic to the high-order and the design degree being extended from one-dimensional to three-dimensional.
     The sampling approaches can find applications in designing the ultra-narrow, flat-top filter and the one-dimension photonic crystal-based filter. The combination of the equivalent phase shift (EPS) technique in SFBG and the multiple phase shift technique in fiber grating is able to open an ultranarrow (several tens of pico-meter) and flat transmission peak in the -1~(st) reflection band of SFBG. Namely, ultra-narrow and flat-top filters have been achieved. In the one-dimension photonic crystal, the inversion in the alternate arrange of low- and high- refractive index layers is defined as the equivalentπphase shift. A number of phase transmit points are then obtained using optimal algorithms. Therefore, the binary sampling function can be used to implement comb filters based on one-dimension photonic crystal.
     Instantaneous microwave frequency measurement approaches with a tunable measurement range or a wideband measurement range, are designed by the use of a length of dispersive fiber or a polarization modulator (PolM). Due to the dispersion slope of the dispersive fiber, two different microwave power fading functions caused by dispersion effect are detected, with the microwave frequency being calculated from the ratio of two functions. Since different fading functions can be achieved by adjusting the wavelength spacing, a tunable measurement range has been achieved. With the joint function of a PolM and a polarizer, a phase-modulated lightwave and an intensity-modulated lightwave, with an identical modulation index, are simultaneously generated. Two complementary microwave power fading functions resulted from dispersion effect are detected from the two modulated lightwaves. By estimating the microwave frequency from the ratio of the two complementary functions, a large measurement range is realized.
     Two frequency measurement approaches in the way of optical power detection are proposed by using HBF-based comb filters. Under the condition of the carrier-suppressed, small-signal modulation, two lightwaves are modulated by an unknown microwave signal to generate±1~(st) optical sidebands. The two carriers of the two lightwaves are located at a peak and a valley of the Sagnac loop's comb response, to perform two complementary comb filtering functions. The frequency to be measured is estimated by detecting the optical powers at two lightwaves. Moreover, a more stable measurement approach is implemented by using a single lightwave and a complementary comb filter pair. In a similar way, the carrier-suppressed, small-signal modulation is employed. The carrier of the modulated lighwave is simultaneously set at the peak of one transmission comb and the valley of the other complementary transmission comb. The microwave frequency is then estimated by monitoring the optical powers from the two outputs of the filter pair. In the latter approach, the setup is greatly simplified and the influence of the optical power fluctuations on the frequency measurement is eliminated completely.
     A simple approach is proposed and implemented to generate high-speed pulse trains having a tunable repetition rate. The odd- and the even-order sidebands are separated along the two polarization states by the use of a PolM and a polarization beam splitter, leading to an equivalent comb filtering effect. The comb spacing of the equivalent comb filtering effect varies automatically with the microwave frequency, without additional tuning mechanism. With the equivalent comb filtering effect, return-to-zero (RZ) and carrier-suppressed return-to-zero (CS-RZ) pulse trains having a repetition rate twice of the microwave frequency are generated, leading to the adjustment of the repetition rate greatly simplified.
引文
[1] T. Li. Optical fiber communication-the state of the art. IEEE Trans. Commun., 1978,26(7): 946-955.
    [2] T. Li. Advances in optical fiber communications: an historical perspective. IEEE J. Sel. Areas in Commun., 1983,1(3): 356-372.
    [3] A. Yariv. Optical electronics in modern communications, the fifth edition. Oxford University Press, 1997.
    [4] J. C. Palais. Fiber optical communications, the fourth edition. Prentics-Hall Inc., 1998.
    [5] B. Mukherjee. WDM optical communication networks: progress and challenges. IEEE J. Sel. Areas in Commun., 2000, 18(10): 1810-1824.
    [6] M. Nakazawa, T. Yamamoto, and K. R. Tamura. 1.28 Tbit/s 70km OTDM transmission using third and fourth-order simultaneous dispersion compensation with as phase modulator. Electron. Lett., 2000, 36(24): 2027-2029.
    [7] R. Ramaswami. Optical fiber communication: from transmission to networking. IEEE Commun. Mag., 2002, 50~(th) anniversary Commemorative Issue: 138-147.
    [8] R. J. Manning, A. D. Ellis, A. J. Poustie, et al. Semiconductor laser amplifiers for ultrafast all-optical signal processing. J. Opt. Soc. Am. B, 1997, 14(11): 3204-3216.
    [9] A. M. Weiner and A. M. Kan'an. Femtosecond pulse shaping for synthesis, processing, and time-to-spacing conversion of ultrafast optical waveforms. IEEE J. Sel. Top. Quantum Electron., 1998,4(2): 317-331.
    [10] Z. Jiang, D. E. Leaird, and A. M. Weiner. Optical processing based on spectral line-by-line pulse shaping on a phase-modulated CW laser. IEEE J. Quantum Electron., 2006,42(7): 657-666.
    [11] R. L. Fork. Optical frequency filter for ultrashort pulses. Opt. Lett., 1986, 11(10): 629-631.
    [12] C. Madsen and J. H. Zhao. Optical filter design and analysis: a signal processing approach. John Wiley & Sons, Inc., 1999.
    [13] S. Cao, J. Chen, J. N. Damask, et al. Interleaver technology: comparisons and applications requirements. J. Lightwave Technol., 2004,22(1): 281-289.
    [14] S. E. Hrris and R. W. Wallace. Acousto-optic tunable filter. J. Opt. Soc. Am, 1969, 59(6): 744-747.
    [15] C. R. Giles. Lightwave applications of fiber Bragg gratings. J. Lightwave Technol.,1997,15(8):1391-1404.
    [16]林洪榕,迟晓玲,李利军.光滤波器:结构、原理与特性.激光与光电子学进展,2001,38(11):31-37.
    [17]蔡燕民,陈高庭,方祖捷.波分复用系统中的交错复用(Interleaver)技术.激光与光电子学进展,2002,39(1):1-6.
    [18]黄章勇.新型光无源器件.北京邮电大学出版社,2003.
    [19]M.K.Smit and C.V.Dam.PHASAR-based WDM devices:principles,design and applications.IEEE J.Sel.Top.Quantum Electron.,1996,2(2):236-250.
    [20]C.H.Hsieh,R.Wang,Z.James,et al.Flat-top interleavers using two Gires-Toumois etalons as phase dispersive mirrors in a Michelson interferometer.IEEE Photon.Technol.Lett.,2003,15(2):242-244.
    [21]H.H.Yaffe,C.H.Henry,R.F.Kazarinov,et al.Polarization independent silica on silicon Mach-Zehnder interferometers.J.Lightwave Technol.,1994,12(1):64-67.
    [22]M.Kuznetsov.Cascaded coupler Mach-Zehnder channel dropping filters for wavelength division multiplexed optical systems.J.Lightwave Technol.,1994,12(2):226-230.
    [23]E.Yablonovitch.Photonic band-gap structures.J.Opt.Soc.Am.B,1993,10(2):283-295.
    [24]http://www.nature.com/nature/joumal/v390/n6656/fig_tab/390125aO_F1.html
    [25]P.Rigby and T.F.Krauss.The Vs and Qs optical microcavities.Nature,1997,390:125.
    [26]R.Kashyap.Fiber Bragg gratings.Academic Press,1999.
    [27]K.O.Hill,Y.Fujii,D.C.Johnson,et al.Photosensitivity in optical fiber waveguide:application to reflection filter fabrication.Appl.Phys.Lett.,1978,32(10):647-649.
    [28]J.Bures,J.Lapierre,and D.Pascale.Photosensitivity effect in optical fibers:a model for the growth of an interference filter.Appl.Phys.Lett.,1980,37(10):860-862.
    [29]D.K.W.Lam and B.K.Garside.Characterization of single-mode optical fiber filters.Appl.Opt.,1981,20(3):440-445.
    [30]G.Meltz,W.W.Morey,and W.H.Glenn.Formation of Bragg gratins in optical fibers by a transverse holographic method.Opt.Lett.,1989,14(15):823-825.
    [31]A.Othonos.Fiber Bragg gratings(review article).Rev.Sci.Instrum.,1997,68(12):4309-4341.
    [32]R.Kashyap,J.R.Armitage,R.Wyatt,et al.All-fiber narrowband reflection grating at 1550 nm.Electron.Lett.,1990,26(11):730-732.
    [33] B. J. Eggleton, P. A. Krug, L. Poladian, et al. Experimental demonstration of compression of dispersed optical pulses by reflection from self-chirped optical fiber Bragg gratings. Opt. Lett., 1994, 19(12): 877-879.
    [34] K. O. Hill, B. Malo, F. Bilodeau, et al. Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask. Appl. Phys. Lett., 1993, 62(10): 1035-1037.
    [35] D. Z. Anderson, V. Mizrahi, T. Erdogan, et al. Production of in-fiber gratings using a diffractive optical element. Electron. Lett., 1993,29(6): 566-568.
    [36] B. Malo, K. O. Hill, F. Bilodeau, et al. Point-by point fabrication of micro-Bragg gratings in photosensitive fibre using single excimer pulse refractive index modification techniques. Electron. Lett., 1993, 29(18): 1668-1669.
    [37] L. Dong, J. L. Archambault, L. Reekie, et al. Single pulse Bragg gratings written during fiber drawing. Electron. Lett., 1993, 29(17): 1577-1578.
    [38] D. S. Starodubov, V. Grubsky, and J. Feinberg. Efficient Bragg grating fabrication in a fibre through its polymer jacket using near UV-light. Electron. Lett., 1997, 33(15): 1311-1313.
    [39] A. Martinez, I. Y. Khrushchev, I. Bennion. Direct inscription of Bragg gratings in coated fibers by an infrared femtosecond laser. Opt. Lett., 2006, 31(11): 1603-1605.
    [40] D. Grobnic, S. J. Mihailov, C. W. Smelser, et al. Ultrafast IR laser writing of strong Bragg gratings through the coating of high Ge-doped optical fibers. IEEE Photon. Technol. Lett., 2008,20(12): 973-975.
    [41] R. C. Jones. A new calculus for the treatment of optical systems III. the Sohncke theory of optical activity. J. Opt. Soc. Am., 1941,31(7): 500-503.
    [42] X. J. Fang and R. O. Claus. Polarization-independent all-fiber wavelength- division multiplexer based on a Sagnac interferometer. Opt. Lett., 1995, 20(20): 2146-2148.
    [43] P. Petropoulos, M. Ibsen, M. N. Zervas, et al. Generation of a 40-GHz pulse stream by pulse multiplication with a sampled fiber Bragg grating. Opt. Lett., 2000,25(8): 521-523.
    [44] P. Petropoulos, M. Ibsen, A. D. Ellis, et al. Rectangular pulse generation based on pulse reshaping using a superstructured fiber Bragg grating. J. Lightwave Technol., 2001,19(5): 746-752.
    [45] J. Magne, J. Bolger, M. Rochette, et al. Generation of a 4x100 GHz pulse-train from a single wavelength 10-GHz mode-locked laser using superimposed fiber Bragg gratings and nonlinear conversion. J. Lightwave. Technol., 2006, 24(5): 2091-2099.
    [46] V. Torres-Company, J. Laucis, and P. Andres. Unified approach to describe optical pulse generation by propagation of periodically phase-modulated CW laser light. Opt. Express, 2006,14(8): 3171-3180.
    [47] Y. Dai, X. Chen, H. Ji, et al. Optical arbitrary waveform generation based on sampled fiber Bragg gratings. IEEE Photon. Lett., 2007,19(23): 1916-1918.
    [48] R. Slavik, Y. Park, and J. Azana. Long-period fiber-grating-based filter for generation of picosecond and subpicosecond transform-limited flat-top pulses. IEEE Photon. Technol. Lett., 2008,20(10): 806-808.
    [49] J. Yu, Z. Jia, L. Xu, et al. DWDM optical millimeter-wave generation for radio-over-fiber using an optical phase modulator and an optical interleaver. IEEE Photon. Technol. Lett., 2006,18(13): 1418-1420.
    [50] X. Chen, Z. Deng, and J. P. Yao. Photonic generation of microwave signal using a dual-wavelength single-longitudinal-mode fiber ring laser. IEEE Trans. Microw. Theory Tech., 2006, 54(2): 804-809.
    [51] D. B. Hunter, M. E. Parker, and J. L. Dexter. Demonstration of a continuously variable true-time delay beamformer using a multichannel chirped fiber grating. IEEE Trans. Microw. Theory Tech., 2006, 54(2): 861-867.
    [52] L. V. T. Nguyen and D. B. Hunter. A photonic technique for microwave frequency measurement. IEEE Photon. Technol. Lett., 2006, 18(10): 1188- 1190.
    [53] Y. Kim, S. Coucet, M. E. M. Pasandi, et al. Optical multicarrier generator for radio-over-fiber systems. Opt. Express, 2008,16(2): 1068-1076.
    [54] L. Chen, H. Wen, and S. C. Wen. A radio-over-fiber system with a novel scheme for millimeter-wave generation and wavelength reuse for up-link connection. IEEE Photon. Technol. Lett., 2006,18(19): 2056-2058.
    [55] S. Blais and J. P. Yao. Tunable photonic microwave bandpass filter using a superstructured FBG with two reflection bands having complementary chirps. IEEE Photon. Technol. Lett., 2008,20(3): 199-201.
    [56] J. Li, K. Xu, S. Fu, et al. Photonic polarity switchable ultra-wideband pulse generation using a tunable Sagnac interferometer comb filter. IEEE Photon. Technol. Lett., 2008,20(15): 1320-1322.
    [57] V. Jayaraman, Z. M. Chuang, and L. A. Coldren. Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings. IEEE J. Quantum Electron., 1993,29(6): 1824-1834.
    [58] B. J. Eggleton, P. A. Krug, L. Poladian, et al. Long periodic superstructure Bragg gratings in optical fibres. Electron. Lett., 1994, 30(19): 1620-1622.
    [59]瞿荣辉,丁浩,赵浩,等.取样光纤布拉格光栅.光学学报,1999,19(2):226-229.
    [60]王庆亚,秦莉,韦占雄,等.光纤光栅梳状滤波器的设计及制作.光电子激光,2000,11(1):20-22.
    [61]林宗强,王国忠,李栩辉,等.取样光栅周期中等效啁啾的实验研究.光电子·激光,2002,13(5):487-490.
    [62]贾宝华,盛秋琴,冯丹琴,等.超结构光纤布拉格光栅的理论研究.中国激光,2003,30(3):247-251.
    [63]曹辉,孙军强,张新亮,等.一种新颖的超结构光纤Bragg光栅梳状滤波器的设计.物理学报,2004,53(9):3077-3082.
    [64]蔡海文,黄锐,瞿荣辉,等.基于马赫.曾德尔干涉仪和取样光纤光栅的全光纤梳状滤波器.中国激光,2003,30(3):243-246.
    [65]黄勇林,董孝义,李杰,等.基于马赫.曾德尔干涉仪和光纤光栅的光分插复用器.中国激光,2005,32(3):423-426.
    [66]刘玉敏,俞重远,杨红波,等.优化二元相位取样光纤布喇格光栅以及对色散和色散斜率补偿的应用.光子学报,2005,34(11):1701-1705.
    [67]沈矿铁.基于超结构光纤光栅的宽带波分复用信道滤波器设计.北京交通大学,硕士学位论文,2006.
    [68]X.Liu.A dual-wavelength sampled fiber Bragg grating and its application in L-band and dual-wavelength Erbium-doped fiber lasers.IEEE Photon.Technol.Lett.,2006,18(20):2114-2116.
    [69]X.Liu,Y.Gong,L.Wang,et al.Identical dual-wavelength fiber Bragg gratings.J.Lightwave Technol.,2007,25(9):2706-2710.
    [70]F.Ouellette,P.A.Krug,T.Stephens,et al.Broadband and WDM dispersion compensation using chirped sampled fiber Bragg gratings.Electron.Lett.,1995,31(11):899-901.
    [71]C.H.Wang,L.R.Chen,and P.W.E.Smith.Analysis of chirped-sampled and sampled-chirped fiber Bragg grating.Appl.Opt.,2002,41(9):1654-1660.
    [72]C.Wang,J.Aza(?)a,and L.R.Chen.Spectral Talbot-like phenomena in one-dimensional photonic bandgap structures.Opt.Lett.,2004,29(14):1590-1592.
    [73]J.Aza(?)a,C.Wang,and L.R.Chen.Spectral self-imaging phenomena in sampled Bragg gratings.J.Opt.Soc.Am.B,2005,22(9):1829-1841.
    [74]C.Wang,J.Aza(?)a,and L.R.Chen.Efficient technique for increasing the channel density in multiwavelength sampled fiber Bragg grating filters.IEEE Photon.Technol.Lett.,2004,16(8):1867-1869.
    [75]L.R.Chen and J.Aza(?)a.Spectral Talbot phenomena in sampled arbitrarily chirped Bragg gratings.Opt.Commun.,2005,250:302-308.
    [76]J.Magn(?),P.Giaccari,S.LaRochelle,et al.All-fiber comb filter with tunable free spectral range.Opt.Lett.,2005,30(16):2062-2064.
    [77]X.F Chen,Y.Luo,C.C.Fan,et al.Analytical expression of sampled Bragg gratings with chirp in the sampling period and its application in dispersion management design in a WDM system.IEEE Photon.Technol.Lett.,2000,12(8):1013-1015.
    [78]Y.Dai,X.Chen,L.Xia,et al.Sampled Bragg grating with desired response in one channel by use of a reconstruction algorithm and equivalent chirp.Opt.Lett.,2004,29(12):1333-1335.
    [79]Y.T.Dai,X.F.Chen,D.J.Jiang,et al.Equivalent phase shift in a fiber Bragg grating achieved by changing the sampling period.IEEE Photon.Technol.Lett.,2004,16(10):2284-2286.
    [80]D.Jiang,X.Chen,Y.Dai,et al.A novel distributed feedback fiber laser based on equivalent phase shift.IEEE Photon.Technol.Lett.,2004,16(12):2598-2600.
    [81]X.F.Chen,J.P.Yao,and Z.Deng.Ultranarrow dual-transmission-band fiber Bragg grating filter and its application in a dual-wavelength single-longitudinal-mode fiber ring laser.Opt.Lett.,2005,30(16):2068-2070.
    [82]Y.T.Dai,X.F.Chen,X.Xu,et al.High channel-count comb filter based on chirped sampled fiber Bragg grating and phase shift.IEEE Photon.Technol.Lett.,2005,17(5):1040-1042.
    [83]Y.T.Dai,X.F.Chen,J.Sun,et al.Wideband multichannel dispersion compensation based on a strongly chirped sampled Bragg grating and phase shifts.Opt.Lett.,2006,31(3):311-313.
    [84]Y.T.Dai,X.F.Chen,Y.Yao,et al.511-chip,500Gchip/s OCDMA en/decoders based on equivalent phase-shift method.Optical Fiber Communication Conference 2006,paper OFF2.
    [85]Y.Dai,X.Chen,J.Sun,et al.High-performance,high-chip-count optical code division multiple access encoders-decoders based on a reconstruction equivalent-chirp technique.Opt.Lett.,2006,31(11):1618-1620.
    [86]戴一堂.新型光纤布拉格光栅的研究与应用.清华大学,博士学位论文,2006.
    [87]夏历.大啁啾光纤光栅特性研究.清华大学,博士学位论文,2004.
    [88]H.Ishii,Y.Tohmori,Y.Yoshikuni,et al.Multiple-phase-shift super structure grating DBR lasers for Broad wavelength tuning. IEEE Photon. Technol. Lett., 1993, 5(6): 613-615.
    [89] H. Li, Y. Sheng, Y. Li, et al. Phased-only sampled fiber Bragg gratings for high-channel-count chromatic dispersion compensation. J. Lightwave Technol., 2003,21(9): 2074-2083.
    [90] J. E. Rothenberg, H. Li, Y. Sheng, et al. Phase-only sampled 45 channel fiber Bragg grating written with a diffraction-compensated phase mask. Opt. Lett., 2006, 31(9): 1199-1201.
    [91] H. Li, M. Li, K. Ogusu, et al. Optimization of a continuous phase-only sampling for high channel-count fiber Bragg gratings. Opt. Express, 2006, 14(8): 3152-3160.
    [92] H. Lee and G.P. Agrawal. Purely phase-sampled fiber Bragg gratings for broad-band dispersion and dispersion slope compensation. IEEE Photon. Technol. Lett., 2003,15(8): 1091-1093.
    [93] H. Lee and G. P. Agrawal. Add-drop multiplexers and interleavers with broad-band chromatic dispersion compensation based on purely phase-sampled fiber gratings. IEEE Photon. Technol. Lett., 2004, 16(2): 635-637.
    [94] H. Li, M. Li, Y. Sheng, et al. Advances in the design and fabrication of high-channel-count filber Bragg gratings. J. Lightwave Technol., 2007, 25(9): 2739-2750.
    [95] X. Wang, C. Yu, Z. Yu, et al. Sampled phase-shift fiber Bragg gratings. Chin. Opt. Lett., 2004,2(4): 190-191.
    [96] Y. Nasu and S. Yamashita. Densification of sampled fiber Bragg gratings using multiple phase shift (MPS) technique. J. Lightwave. Technol., 2005, 23(4):1808-1817.
    [97] S. Yamashita and M. Yokooji. Channel spacing-tunable sampled fiber Bragg grating by linear chirp and its application to multiwavelength fiber laser. Opt. Commun., 2006, 263: 42-46.
    [98] A. V. Buryak, K. Y. Kolossovski, and D. Y. Stepanov. Optimization of refractive index sampling for multichannel fiber Bragg gratings. IEEE J. Quantum Electron., 2003, 39(1): 91-98.
    [99] K. Y. Kolossovski, R. A. Sammut, A. V. Buryak, et al. Three-step design optimization for multi-channel fiber Bragg gratings. Opt. Express, 2003, 11(9): 1029-1038.
    [100] Q. Wu, C. Yu, K. Wang, et al. New sampling-based design of simultaneous compensation of both dispersion and dispersion slope for multichannel fiber Bragg gratings. IEEE Photon. Technol. Lett., 2005,17(2): 381-383.
    [101]J.Skaar,L.Wang,and T.Erdogan.On the synthesis of fiber Bragg gratings by layer peeling.IEEE J.Quantum Electron.,2001,37(2):165-173.
    [102]H.Li,T.Kumagai,K.Ogusu,et al.Advanced design of a multichannel fiber Bragg grating based on a layer-peeling method.J.Opt.Soc.Am.B,2004,21(11):1929-1938.
    [103]高志鹏,余震虹,刑丽华.一种重构强反射光纤布拉格光栅的新方法.光学学报,2006,26(7):991-996.
    [104]A.Othonos and K.Kalli.Fiber Bragg gratings-fundamentals and applications in telecommunications and sensors.Artech House,1999.
    [105]饶云江,王义平,朱涛.光纤光栅原理及应用.科学出版社,2006.
    [106]M.Ibsen,M.K.Durkin,M.J.Cole,et al.Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation.IEEE Photon.Technol.Lett.,1998,10(6):842-844.
    [107]M.S.Kumar and A.Bekal.Performance evaluation of SSBG based optical CDMA systems employing gold sequences.Opt.Fiber Technol.,11(1):56-68.
    [108]F.Zeng and J.P.Yao.Ultrawideband impulse radio signal generation using a high-speed electrooptic phase modulator and a fiber-Bragg-grating-based frequency discriminator.IEEE Photon.Technol.Lett.,2006,18(19):2062-2064.
    [109]F.Zeng,J.Wang,and J.P.Yao.All-optical microwave bandpass filter with negative coefficients based on a phase modulator and linearly chirped fiber Bragg gratings.Opt.Lett.,2005,30(17):2203-2205.
    [110]J.Capmany,B.Ortega,and D.Pastor.A tutorial on microwave photonic filters.J.Lightwave Technol.,2006,24(1):201-229.
    [111]V.T.Company,M.F.Alonso,J.Laucis,et al.Millimeter-wave and microwave signal generation by low-bandwidth electro-optic phase modulation.Opt.Express,2006,14(21):9617-9626.
    [112]J.Aza(?)a and M.A.Muriel.Technique for multiplying the repetition rates of periodic trains of pulses by means of a temporal self-imaging effect in chirped fiber gratings.Opt.Lett.,1999,24(23):1672-1674.
    [113]F.Parmigiani,P.Petropoulos,M.Ibsen,et al.Pulse retiming based on XPM using parabolic pulses formed in a fiber Bragg grating.IEEE Photon.Technol.Lett.,2006,18(7):829-831.
    [114]D.Janner,G.Galzerano,G.D.Valle,et al.Slow light in periodic superstructure Bragg gratings.Phy.Rev.E,2005,72(5):056605.
    [115]G.Meltz.Overview of fiber grating-based sensors.Proc.of SPIE,1995,2838:2-22.
    [116]李川,张以谟,赵永贵,等.光纤光栅:原理、技术和传感应用.科学出版社,2005.
    [117]A.D.Kersey,M.A.Davis,H.J.Patrick,et al.Fiber grating sensors.J.Lightwave Technol.,1997,15(8):1442-1463.
    [118]Y.J.Rao.In-fibre Bragg grating sensors.Meas.Sci.Technol.,1997,8:355-375.
    [119]X.Shu,K.Chisholm,I.Felmeri,et al.Highly sensitive transverse load sensing with reversible sampled fiber Bragg gratings.Appl.Phys.Lett.,2003,83(15):3003-3005.
    [120]T.Erdogan.Fiber grating spectra.J.Lightwave Technol.,1997,15(8):1277-1294.
    [121]X.Fang,H.Ji,C.T.Allen,et al.A compound high-order polarization independent birefringence filter using Sagnac interferometer.IEEE Photon.Technol.Lett.,1997,9(4):458-460.
    [122]R.M.Sova,C.S.Kim,and J.U.Kang.Tunable all-fiber birefringence comb filters.Optical Fiber Communication Conference and Exhibit 2002,698-699.
    [123]M.P.Fok,C.Shu,and W.W.Tang.A cascadable approach to produce widely selectable spectral spacing in birefringent comb filters.IEEE Photon.Technol.Lett.,2006,18(18):1937-1939.
    [124]Y.W.Lee,J.Jung,and B.Lee.Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter.IEEE Photon.Technol.Lett.,2004,16(1):54-56.
    [125]S.Hu,L.Zhao,Y.J.Song,et al.Switchable multiwavelength Erbium-doped fiber ring laser with a multisection high-birefringence fiber loop mirror.IEEE Photon.Technol.Lett.,2005,17(7):1387-1389.
    [126]R.M.Sova,C.S.Kim,and J.U.Kang.Tunable dual-wavelength all PM fiber ring laser.IEEE Photon.Technol.Lett.,2002,14(3):287-289.
    [127]S.Li,K.S.Chiang,and W.A.Gambling.Gain flattering of an Erbium-doped fiber amplifier using a high-birefringence fiber loop mirror.IEEE Photon.Technol.Lett.,2001,13(9):942-944.
    [128]X.Wei,J.Leuthold,and L.Zhang.Delay-interferometer-based optical pulse generator.Optical Fiber Communication Conference 2004,paper WL6.
    [129]Z.Pan,S.Chandel,and C.Yu.160 GHz optical pulse generation using a 40GHz phase modulator and two stages of delayed MZ interferometers.Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies 2006,paper CFP2.
    [130] C. Yu, Z. Pan, T. Luo, et al. Beyond 40-GHz Return-to-zero optical pulse-train generation using a phase modulator and polarization-maintaining fiber. IEEE Photon. Technol. Lett., 2007,19(1): 42-44.
    [131] C. S. Kim, Y. G. Han, R. M. Sova, et al. Optical fiber modal birefringence measurement based on Lyot-Sagnac interferometer. IEEE Photon. Technol. Lett., 2003,15(12): 269-271.
    [132] H. Chi and J. P. Yao. Fiber chromatic dispersion measurement based on wavelength-to-time mapping using a femtosecond pulse laser and an optical comb filter. Opt. Commun., 2007,280(2): 337-342.
    [133] T. J. Ahn, Y. Park, and J. Azana. Pulse characterization using Hilbert transformation temporal interferometry (HTTI). Conference on Lasers and Electro-Optics 2007, paper JThD16.
    [134] H. Chi and J. P. Yao. All-fiber chirped microwave pulse generation based on spectral shaping and wavelength-to-time conversion. IEEE Trans. Microw. Theory Tech., 2007, 55(9): 1958-1963.
    [135] Y. Dai and J. P. Yao. Multi-user UWB-over-fiber system based on high-chip-count phase coding. Optical Fiber Communication Conference 2008, paper OThH5.
    [136] J. M. Heaton, C. D. Waston, S. B. Jones, et al. Sixteen channel (1 to 16 GHz) microwave spectrum analyzer device based on a phased array of GaAs/AlGaAs electro-optic waveguide delay lines. Proc. SPIE, 1998, 3278: 245-251.
    [137] W. Wang, R. L. Davis, T. J. Jung, et al. Characterization of a coherent optical RF channelizer based on a diffraction grating. IEEE Trans. Microw. Theory Tech., 2001,49(10): 1996-2001.
    [138] D. B. Hunter, L. G. Edvell, and M. A. Englund. Wideband microwave photonic channelised receiver. International Topical Meeting on Microwave Photonics 2005,249-251.
    [139] S. T. Winnall, A. C. Lindsay, M. W. Austin, et al. A microwave channelizer and spectroscope based on an integrated optical Bragg-grating Fabry-Perot and integrated hybrid Fresnel lens system. IEEE Trans. Microw. Theory Tech., 2006, 54(2): 868-892.
    [140] F. A. Volkening. Photonic channelized RF receiver employing dense wavelength division multiplexing. U.S. patent 7245833B1,2007.
    [141] A. Yariv. Coupled-mode theory for guided-wave optics. IEEE J. Quantum Electron., 1973,9(9): 919-933.
    [142] D. C. Champeney. Fourier transforms and their physical applications. Academic Press, 1973.
    [143]P.M.Duffieux.The Fourier transform and its application to optics,the second edition.John Wiley & Sons,1983.
    [144]X.H.Zou,W.Pan,B.Luo,et al.Accurate analytical expression for reflection-peak wavelengths of sampled Bragg grating.IEEE Photon.Technol.Lett.,2006,18(3):529-531.
    [145]M.Yamada and K.Sakuda.Analysis of almost-periodic distributed feedback slab waveguides via a fundamental matrix approach.Appl.Opt.,1987,26(16):3474-3478.
    [146]S.Huang,M.LeBlanc,M.M.Ohn,et al.Bragg intragrating structural sensing.Appl.Opt.,1995,34(22):5003-5009.
    [147]吴志芳.基于高双折射光纤环镜的波长交错器(Interleaver)研究.南开大学,硕士学位论文,2005.
    [148]邵永红.光学梳状滤波器技术研究.中国科学院研究生院.长春光学精密机械与物理研究所,博士学位论文,2004.
    [149]邹喜华,潘炜,罗斌,等.非啁啾取样光纤布拉格光栅反射峰值波长的分析.光学学报,2007,27(6):971-976.
    [150]L.Poladian.Graphical and WKB analysis of nonuniform Bragg gratings.Phys.Rev.E,1993,48(6):4758-4767.
    [151]吕昌贵,徐新华,崔一平.无自致啁啾布拉格光纤光栅的制作方法及原理.光学学报,2003,23(9):1049-1052.
    [152]J.J.Pan and Y.Shi.Steep skirt fiber Bragg grating fabrication using a new apodised phase mask.Electron.Lett.,1997,33(22):1895-1896.
    [153]N.Yokoi,T.Fujisawa,K.Saitoh,et al.Apodized photonic crystal waveguide gratings.Opt.Express,2006,14(10):4459-4468
    [154]X.Zou,W.Pan,B.Luo.Analysis of reflection-peak wavelengths of sampled fiber Bragg gratings with large chirp.Appl.Opt.,2008,47(26):4729-4734.
    [155]X.Zhu,Y.Lu,G.Zhang,et al.Analytical determination of reflection-peak wavelength of chirped sampled fiber Bragg gratings.Appl.Opt.,2008,47(8):1135-1140.
    [156]J.Aza(?)a and S.Gupta.Complete family of periodic Talbot filters for pulse repetition rate multiplication.Opt.Express,2006,14(10):4270-4279.
    [157]X.H.Zou,W.Pan,B.Luo,et al.Periodically chirped sampled fiber Bragg gratings for multichannel comb filter.IEEE Photon.Technol.Lett.,2006,18(12):1371-1373.
    [158]X.H.Zou,W.Pan,B.Luo,et al.Spectral Talbot effect in sampled fiber Bragg gratings with super-periodic structures.Opt.Express,2007,15(14):8812-8817.
    [159] H. Ishii, Y. Tohmori, T. Tamamura, et al. Super structure grating (SSG) for broadly tunable DBR laser. IEEE Photon. Technol. Lett., 1993,4(4): 393-395.
    [160] G P. Agrawal and S. Radic. Phase-shifted fiber Bragg gratings and their application for wavelength demultiplexing. IEEE Photon. Technol. Lett., 1994, 6(8): 995-997.
    [161] R. Zengerle and O. Leminger. Phase-shifted Bragg-grating filters with improved transmission characteristics. J. Lightwave Technol., 1995, 13(12): 2354-2358.
    [162] F. Bakhti and P. Sansonetti. Design and realization of multiple quarter-wave phase-shifts UV-written bandpass filters in optical fibers. J. Lightwave Technol., 1997,15(8): 1433-1437.
    [163] L. Wei and J. W. Y. Lit. Phase-shifted Bragg grating filters with symmetrical structures. J. Lightwave Technol., 1997, 15(8): 1405-1410.
    [164] X. Zou, F. Wang, and W. Pan. Flat-top and ultra-narrow bandpass filter designed by sampled fiber Bragg grating with multiple equivalent phase shifts. Appl. Opt., 2009,48(4): 691-694.
    [165] X. H. Zou, W. Pan,, B. Luo, et al. One-dimensional photonic crystal-based multichannel filters using binary phase-only sampling approach. J. Lightwave Technol., 2007,25(9): 2482-2486.
    [166] A. D'Orazio, M. De Sario, V. Petruzzelli, et al. Photonic band gap filter for wavelength division multiplexer. Opt. Express, 2003,11(3): 230-239.
    [167] M. Born and E. Wolf. Principles of Optics, the 7th edition. Cambridge University Press, 1999.
    [168] H. Taniyama. Waveguide structures using one-dimensional photonic crystal. J. Appl. Phys., 2002, 91(6): 3511-3515.
    [169] L. C. Botten, T. P. White, C. Martjin de Sterke, et al. Photonic crystal devices modeled as grating stacks: matrix generalizations of thin film optics. Opt. Express, 2004,12(8): 1592-1640.
    [170] N. Yokoi, T. Fujisawa, K. Saitoh, et al. Apodized photonic crystal waveguide gratings. Opt. Express, 2006,14(10): 4459-4468.
    [171] L. Mandel. Automatic microwave frequency measurement system. U.S. patent 3541444,1970.
    [172] P. M. Gale, M. McMillan, and A. Gagnon. Apparatus for measuring the frequency of microwave signals. U.S. patent 4859934,1989.
    [173] W. Anwajler, A. Zajdel, J. Kus, et al. High dynamic range octave-band microwave frequency measurement systems up to 18 GHz. 12th International Conference on Microwave and Radar, 1998. 2 : 653-657.
    [174] G H. Smith, D. Novak, and Z. Ahmed. Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators. IEEE Trans. Microw. Theory Tech., 1997,45(8): 1410-1415.
    [175] X. Zou and J. P. Yao. An optical approach to microwave frequency measurement with adjustable measurement range and resolution. IEEE Photon. Tech. Lett., 2008, 20(23): 1989-1991.
    [176] X. Zou and J. P. Yao. Instantaneous microwave frequency measurement based on simultaneous phase modulation and intensity modulation with improved measurement range and accuracy. J. Lightwave Technol., submitted.
    [177] A. L. Campillo and F. Bucholtz. Chromatic dispersion effects in analog polarization-modulated links. Appl. Opt., 2006,45(12): 2742-2748.
    [178] J. D. Bull, N. A. F. Jaeger, H. Kato, et al. 40 GHz electro-optic polarization modulator for fiber optic communication systems. Proc. SPIE, 2004, 5577: 133-143.
    [179] F. Zeng and J. P. Yao. Investigation of phase modulator based all-optical bandpass microwave filter. J. Lightwave Technol., 2005,23(4): 1721-1728.
    [180] H. Chi, X. Zou, and J. P. Yao. An approach to the measurement of microwave frequency based on optical power monitoring. IEEE Photon. Tech. Lett., 2008, 20(14): 1249-1251.
    [181] N. Sarkhosh, H. Emami, L. Bui, et al. Reduced cost photonic instantaneous frequency measurement system. IEEE Photon. Technol. Lett., 2008, 20(18): 1521-1523.
    [182] X. Zou, H. Chi, and J. P. Yao. Microwave frequency measurement based on optical power monitoring using a complementary optical filter pair. IEEE Trans. Microw. Theory Tech., 2009, 57(2): 505-511.
    [183] D. H. Kim and J. U. Kang. Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity. Opt. Express, 2004,12(19): 4490-4495.
    [184] A. Tervonen, P. Poyhonen, S. Honkanen, et al. A guide-wave Mach-Zehnder interferometer structure for wavelength multiplexing. IEEE Photon. Technol. Lett., 1991, 3(6): 516-518.
    [185] H. Singh and F. Diner. Ultra-stable optical wavelength division multiplexer/demultiplexer. U.S. patent 6185345B1,2001.
    [186] A. Yariv. Optical electronics in modern communications, the fifth edition. Oxford University Press, 1997.
    [187] Y. Miyamoto, A. Hirano, K. Yonenaga, et al. 320 Gbit/s (8×40 Gbit/s) WDM transmission over 367km with 120km repeater spacing using carrier-suppressed return-to-zero format.Eletron.Lett.,1999,35(23):2041-2042.
    [188]G.Bosco,A.Carena,V.Curri,et al.On the use of NRZ,RZ,and CSRZ modulation at 40 Gbit/s with narrow DWDM channel spacing.J.Lightwave Technol.,2002,20(9):1694-1704.
    [189]R.Ohhira,D.Ogasahara,and T.Ono.Novel RZ signal format with alternate-chirp for suppression of nonlinear degradation in 40 Gb/s based WDM.Optical Fiber Communication Conference 2001,paper WM2.
    [190]A.H.Gnauck,J.Leuthold,C.Xie,et al.6×42.7-Gb/s transmission over ten 200-km EDFA-amplified SSMF spans using polarization-alternating RZ-DPSK.Optical Fiber Communication Conference 2004,paper PDP35.
    [191]P.J.Winzer and R.J.Essiambre.Advanced optical modulation formats.Proc.IEEE,2006,94(5):952-985.
    [192]Z.Jiang,D.E.Leaird,and A.M.Weiner.Width and wavelength-tunable optical RZ pulse generation and RZ-to-NRZ format conversion at 10 GHz using spectral line-by-line control.IEEE Photon.Technol.Lett.,2005,17(12):2733-2735.
    [193]J.J.Veselka and S.K.Korotky.Pulse generation for soliton systems using Lithium Niobate modulator.IEEE J.Sel.Top.Quantum Electron.,1996,2(2):300-310.
    [194]X.Zou and J.P.Yao.Repetition-rate-tunable return-to-zero and carrier-suppressed return-to-zero optical pulse train generation using a polarization modulator.Opt.Lett.,2009,34(3):313-315.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700