草鱼与赤眼鳟杂交F_1遗传特征及对草鱼呼肠孤病毒抗性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草鱼,中国四大家鱼之一,在我国大宗淡水鱼类养殖中占据举足轻重的地位。目前,草鱼种质资源衰退较为严重,疾病频发。草鱼出血病是草鱼养殖中至今没有得到有效控制的难题,制约着我国水产养殖业的健康可持续发展。随着生物技术发展,着眼草鱼种质资源改良,提高草鱼抗病力可望成为从根本上解决草鱼出血病这一难题的治本途径。远缘杂交是鱼类育种的重要方法之一,并且取得了较好的成果。赤眼鳟,与草鱼同属雅罗鱼亚科,不仅外形上与草鱼相似,还具有抗病力强等优点,是理想杂交对象。为此,本课题研究团队从2010年起开展了草鱼与赤眼鳟的杂交试验,获得了草鱼(♀)×赤眼鳟(♂)正交Fl和赤眼鳟(♀)×草鱼(♂)反交F12个杂交子代群体。为了探索杂交的可行性和杂交子代的杂种优势,本研究对草鱼与赤眼鳟正、反交F1及其父母本子代的外形与红细胞特征、一年龄内的生长、基因组DNA和线粒体基因组DNA多态性及抗草鱼呼肠孤病毒的特性进行比较分析。主要研究结果如下:
     1.草鱼与赤眼鳟正、反交F1形态、生长与细胞遗传学比较
     5月龄正、反交F1体型偏向于赤眼鳟,而二年龄正、反杂交F1体型、体色和鳞被与草鱼更相似。8个可量可数性状的杂种指数显示正交F1有4个性状偏向草鱼,有4个性状偏向赤眼鳟,而反交F1有5个性状偏向赤眼鳟,3个性状偏向草鱼。
     红细胞长径与短径比值以反交F1最小,其余3种鱼无显著差异,说明反交F1红细胞最圆。
     池塘养殖条件下,一年龄正、反交F1体重和体长的绝对增长优于父母本子代;正、反交F1增重率介于父母本子代之间,比赤眼鳟小,但优于草鱼。
     2.草鱼与赤眼鳟正、反交F1分子遗传学比较
     RAPD分析基因组DNA多态性表明赤眼鳟的基因多样性系数和Shannon信息指数最大,正交F1和草鱼次之,反交Fl的最小。遗传同源性和UPGMA聚类分析表明正、反交F1遗传偏向赤眼鳟。
     线粒体基因组结构与多态性分析表明,正、反交F1及赤眼鳟线粒体基因组均包括2个rRNA基因,13个蛋白编码基因,22个tRNA基因和2个非编码区;同源性和聚类分析表明正、反交F1与母本的同源性更高。湘江赤眼鳟与长江下游地区(采样点为江苏省)赤眼鳟线粒体基因组序列长度相同,同源性为99%。
     3.草鱼与赤眼鳟正、反交F1对草鱼呼肠孤病毒抗性比较
     结合RT-PCR和改良RACE技术克隆了正、反交F1Mx基因,cDNA全长分别为2306和2330bp;二者开放阅读框和氨基酸序列长度一致,分别为1884bp和627aa。二者序列结构具有发动蛋白家族典型结构域:N-端发动蛋白GTP酶结构域(DYNc)和C-端发动蛋白GTP酶效应结构域(GED)。多序列比对发现正、反交F1的Mx基因氨基酸序列只有3个差异位点,与草鱼Mx2的同源性高于赤眼鳟Mx。
     感染草鱼呼肠孤病毒后,正、反交F1成活率显著高于草鱼,也高于赤眼鳟,赤眼鳟的成活率又高于草鱼。各个血液生理生化指标在4种鱼中的变化趋势基本一致,正、反交F1的T-SOD和IL-1β浓度介于父母本子代之间,C3和IFN-α活力偏母性。感染后96h内,T-SOD整体呈下调趋势,4种鱼对超氧化物的歧化作用降低;至感染后96h,正交F1C3以及正、反交F1IL-1β含量显著提高;4种鱼IFN-α含量在感染后36h内基本处于下调状态,之后上调至正常水平或高于正常水平。
     Mx基因和IFN基因在健康草鱼、赤眼鳟及其正、反交F1肝脏、脾脏、肠、鳃、头肾和肌肉中都有表达,但表达量不同;感染草鱼呼肠孤病毒后96h内,Mx基因和1FN基因在4种鱼6种组织中的表达呈波动变化。整体上赤眼鳟和反交F1Mx和IFN基因的表达量高于草鱼和正交F1;杂交子代IFN基因的表达模式与母本同源子代相似,而至感染96h,正交F1IFN基因在各组织中的表达均高于草鱼。Mx基因能被草鱼呼肠孤病毒诱导上调表达,Mx基因上调表达后对IFN基因的表达有一定的抑制作用。
     综合以上养殖成活率、血液生理生化指标和抗病毒相关基因的克隆与表达特征的比较结果,赤眼鳟的抗草鱼呼肠孤病毒的能力优于草鱼,正、反交F1抗草鱼呼肠孤病毒的能力也优于草鱼。
Grass carp (Ctenophaiyngodon idellus), one of four chinese carps, occupies a pivotal position in conventional freshwater fish industries of China. However, to date, the germplasm resource of grass carp has been declining, along with a lot of diseases. Grass carp hemorrhagic disease, an epidemic disease caused by grass carp reovirus, is still no effective methods to control and seriously restricts the develpoment of aquaclture in China. With the development of biological techonology, enhancing the disease resistance of grass carp by inproving germplasm resource must be a useful approach to slove the tough problem. Distant hybridization, an important way for fish breeding, has been used in many cases and has good effect.
     Barbel chub (Squaliobarbus curriculus), belonging to Leuciscinae as grass carp, is the ideal hybrid object for grass carp. Not only is barbel chub similar to grass carp in appearance but also the barbel chub possesses outstanding capability of disease resistance. Therefore, we carry out the expriment of distant hybridization between grass carp and barbel chub from2010, and we obtain two populations of hybrids:the F1hybrid of grass carp (♀) x barbel chub (♂)(direct cross F1)and the F1hybrid of barbel chub (♀)×grass carp (♂)(reverse cross F1). To explore the feasibility of hybridization and the heterosis of hybrids, the characteristics of appearance, erythrocyte, growth, genome DNA, mitochondrial DNA and the Grass Carp Reovirus (GCRV) resistance of reciprocal cross F1between grass carp and barbel chub were studied. The major results are as follows:
     1. Comparative analysis of morphology, growth and cytogenetics
     The somatotype of5months old direct cross F1and reverse cross F1were more similar to barbel chub by visual inspection. With age, the characteristics of somatotype, body color, squamation of two years old reciprocal cross F1were more similar to grass carp. Hybrid indexes indicated that four of the eight measurable and numerable characters of direct cross F1were biased toward grass carp, the others were biased toward barble chub; while five of eight of reverse cross F1were biased toward barble chub, three were biased toward grass carp. The size of erythrocyte was no significant difference among grass carp, barbel chub and their direct cross F1, but the ratio erythrocyte long diameter/short diameter of reverse cross F1was minimum.which indicated the erythrocyte of reverse cross F1was most round.
     By pond culture, the absolute mean body weight and mean body length of reciprocal cross F1were superior to the F1of grass carp and the F1of barbel chub. The hybrid indexes of weight gain rate of reciprocal cross F1,which were superior to the F1of grass carp but worse than the F1of barbel chub, were intermediate type between two parents
     2. Comparative analysis of molecular genetics
     Genetic diversity of grass carp, barbel chub and their reciprocal cross F1was analyzed by Random Amplified Polymorphic DNA (RAPD). These results illustrated the Nei's gene diversity and Shannon's Information index of barble chub were highest, then direct cross F and grass carp, while the Nei's gene diversity and Shannon's Information index of reverse cross F1were lowest. The genetic identity and UPGMA analysis indicated the reciprocal cross F1were more similar to barbel chub.
     Genetic structure and genetic diversity analysis of mitogenomes showed the composition and organization of mitogenomes of the reciprocal cross F1and barbel chub were the same as that of other cyprinid fish, including two ribosomal RNA genes,13protein-coding genes,22transfer RNA genes, and two non-coding control region. The results indicated genetic structure of fish mitogenome was highly conserved sequence.Genetic identity and cluster analysis results showed the reciprocal cross F1were more similar to female parent, although there were some mutations which were mainly base substitution. The genetic identity between Xiangjiang River barbel chub and the lower reaches of Yangtze River (Jiangsu province) barbel chub was99%
     3. Comparative analysis of the characteristic of GCRV resistance
     The Mx gene cDNA sequences of the direct cross F1and reverse cross F1,2306bp and2330bp in length respectively, were cloned by RT-PCR and improved RACE methods. The length of their open reading frames and amino acid sequences were both1884bp and627aa. respectively. The two Mx genes were found containing DYNc domain in the N-terminal and GED domain in the C-terminal. There are only three variation sites in amino acid sequences between direct cross F1and reverse cross F1. Multiple sequence alignment showed the genetic identity of Mx between hybrids F1and grass carp was higher than that between hybrids F1and barbel chub.
     After challenge with GCRV, the survival rates of reciprocal cross F1were higher than that of barbel chub and significant higher than that of grass carp, while the survival rate of barbel chub was higher than that of grass carp.each blood physiological and biochemical index showed the similar variation trends in the four kinds of fish within96h, respectively. The concentrations of T-SOD and IL-1β were intermediate type between two parents, while the enzyme activities of C3and IFN-a were more similar to female parent. The results indicated the concentrations of T-SOD of grass carp, barbel chub and their reciprocal cross F1were down-regulated within96h after infection by GCRV, which implied the dismutation of superoxide of the four kinds of fish were reduced. At the time point of96h, the enzyme activities of C3of direct cross F1and the concentrations of IL-1β of direct cross F1and reverse cross F1were significantly increased.The enzyme activities of IFN-a of the four kinds of fish were down-regulated in the first36h after infection, then up-regulated to normal level or higher than normal.
     qPCR assays showed expression of Mx and IFN transcripts was observed in liver, spleen, intestine, gill, head kidney and muscle of grass carp, barbel chub and their reciprocal cross F1although the levels were different. Within96h after challenge with GCRV, overall pattern of expression of Mx and IFN transcripts was fluctuated in all the tested tissues of four kinds of fish, and the expression of Mx and IFN gene transcripts of reverse cross F1and barble chub were higher than that of direct cross F1and grass carp.The expression pattern of IFN gene of reciprocal cross F1were similar with that of the maternal homologous offspring, but the expression of IFN gene transcripts of direct cross F1was higher than of grass carp in all detected tissues at the time point of96h. It was concluded that Mx gene was inducibly up-regulated by GCRV, but the up-regulated Mx could inhibit the expression of IFN to a certain extent.
     Comprehensive analysis of the results of the survival rate, blood physiological and biochemical indexes, cloning and expression of anti-virus genes, showed the GCRV resistance of barbel chub was better than that of grass carp, so were the reciprocal cross F1.
引文
[1]戈贤平,缪凌鸿.我国大宗淡水鱼产业发展现状与体系研究进展[J].中国渔业质量与标准,2011,(03):22-31.
    [2]中国水产编辑部.2012年全国渔业工作亮点回顾(一)[J].中国水产,2013,(01):9-16.
    [3]楼允东.我国鱼类近缘杂交研究及其在水产养殖上的应用[J].水产学报,2007,(04):532-538.
    [4]吴仲庆,洪水根.鱼类杂交育种的原理和应用[J].福建水产,1985,(01):61-65.
    [5]董在杰,夏德全,吴婷婷,等.兴国红鲤和散鳞镜鲤杂种优势的RAPD分析[J].上海水产大学学报,1999,(01):31-36.
    [6]张建森.荷元鲤(荷包红鲤♀×元江鲤♂)回交试验及其经济效益的研究[J].水产科技情报,1985,(03):17-19.
    [7]李万程.岳鲤及其双亲(荷包红鲤♀、湘江野鲤♂)LDH同工酶的研究[J].遗传学报,1988,(01):46-51+84.
    [8]马仲波,林康生,杨冬梅.三杂交鲤(荷元鲤F1♀×镜鲤♂)生长性状与产量的数理统计分析[J].淡水渔业,1985,(01):32-33.
    [9]湖南省水产研究所.散鳞镜鲤♀×兴国红鲤♂杂种一代杂交优势的研究[J].湖南水产科技,1980,(01):21.26.
    [10]张建森,孙小异.建鲤的生物工程育种技术及其意义[J].中国水产,1999,(03):26-27.
    [11]梁利群,孙效文,闫学春RAPD支术分析荷包红鲤抗寒品系与亲本的基因组变化[J].中国水产科学,1998,(01):7-10.
    [12]沈俊宝,刘明华.荷包红鲤抗寒品系的筛选和培育[J].淡水渔业,1988,(03):14-17.
    [13]刘明华,沈俊宝,白庆利,等.新品种高寒鲤的选育[J].水产学报,1997,(04):391-397.
    [14]金万昆.墨龙鲤的选育研究[J].淡水渔业,2005,(01):10-12.
    [15]王兵,李思发,蔡完其.“新吉富”罗非鱼、“吉丽”罗非鱼及萨罗罗非鱼耐寒力的测定[J].上海海洋大学学报,2011,(04):499-503.
    [16]沈俊宝,刘明华.蓝色鳞鲤品系的起源、筛选和培育[J].淡水渔业,1988,(04):3-6.
    [17]傅建军,王荣泉,刘峰,等.长江草鱼♀×珠江草鱼♂杂交子一代与其亲本一龄阶段生长性能和体型分析[J].Agricultural Science & Technology,2009,(05):119-122.
    [18]楼允东,沈竤,徐庆登,等.高邮杂交鲫(鲫♀x白鲫♂)及其亲本血清生化组成的比较研究[J].水生生物学报,1995,(02):157-163.
    [19]赵金良,李家乐,曹阳.草鱼杂交育种及杂交后代生物学研究进展[J].安徽农学通报,2008,(11):162-164+139.
    [20]欧阳习修.草鱼与鮻鱼人工杂交的研究[J].黑龙江科技信息,2011,(15):205
    [21]楼允东,李小勤.中国鱼类远缘杂交研究及其在水产养殖上的应用[J].中国水产科学,2006,(01): 151-158.
    [22]王金龙,杨弘.吴婷婷.等.奥利弧罗非鱼(♀)×鳜(♂)远缘杂交子代的遗传结构[J].中国水产科学.2007,(01):32-38.
    [23]杨弘.夏德全,刘蕾.等.奥利亚罗非鱼(♀)、鳜(♂)及其了代间遗传关系的研究[J].水产学报.2004,(05):594-598.
    [24]俞菊华,夏德全.杨弘.等.奥利亚罗非鱼(♀)×鳜(♂)杂交后代的形态[J].水产学报,2003.(05):431.435.
    [25]金万昆.淡水鱼类远缘杂交实验报告[M].中国农业科学技术出版社,2009.
    [26]魏刚.瓦氏黄颡鱼与长吻(鱼危)杂交的初步研究[J].淡水渔业,1987,(06):14-17+49.
    [27]王新成,尤锋,倪高田,等.石鲽与牙鲆人工杂交的研究[J].海洋科学,2003.(01):1-4.
    [28]徐冬冬,尤锋,楼宝.等.8种鲆鲽鱼种间遗传距离与杂交亲和性的相关性分析[J].水产学报,2010.(02): 178-184.
    [29]金万昆,杨建新,赵宜双.等.框鳞镜鲤佰♀×x团头鲂♂杂种F1与亲本性腺组织学比较研究[J].中国水产,2005,(07):63.65.
    [30]金万昆.俞丽,杨建新.等.框鳞镜鲫♀×青鱼♂杂种F1胚胎发育和仔鱼早期发育初步研究[J].水产学报.2006.(01):21-28.
    [31]金万昆.俞丽.杨建新,等.框鳞镜鲤♀与青鱼♂亚科间杂交杂种F1的产孵及鱼苗培育研究[J].大津水产.2005.(01):18-22.
    [32]陈淑群.青鱼(♀)和三角鲂(♂)不同亚科之间的杂交研究Ⅰ、青鱼(♀)、三角鲂(♂)及其了一代的比较细胞遗传学研究[J].湖南师范大学自然科学学报,1984,(04):71-80.
    [33]金万昆,俞丽,杨建新,等.赤眼鳟(♀)与鳙(♂)杂交子代生物学特性[J].中国水产利学.2012,(04):611-619.
    [34]He W., Qin Q., Liu S., et al. Organization and variation analysis of 5S rDNA in different ploidy-level hybrids of red crucian carp x topmouth culter[J]. PLoS One.2012,7(6):e38976.
    [35]Yan J., Liu L., Liu S., et al. Comparative analysis of mitochondrial control region in polyploid hybrids of red crucian carp (Carassius auratus) x blunt snout bream (Megalobrama amblycephala)[J]. Fish Physiol Biochem.2010,36(2):263-272.
    [36]金万昆,杨建新,朱振秀.等.(白鲫♀×墨龙鲤♂)F1三纠合的体色表现及黑色素细胞表达规律的观察[J].水产养殖.2011,(11):1-3.
    [37]王冬武,李传武,王金龙,等.芙蓉鲫(芙蓉鲤♀×红鲫♂)及其原始亲本的形态学分析[J].淡水渔业,2009,(05):3-6.
    [38]杨品红,杨凡,王晓艳,等.洞庭青鲫(♀)×兴国红鲤(♂)杂交F1代的RAPD分析[J].湖南文理学院学报(自然科学版),2006,(03):42-45.
    [39]张克俭,高健,张景龙.等.杂交鲫(白鲫♀×散鳞镜鲤)及其双亲染色体组型的研究[J].水产学报, 1995, (04):305-309.
    [40]Liu D., Liu S., You C., et al. Identification and expression analysis of genes involved in early ovary development in diploid gynogenetic hybrids of red crucian carp x common carp[J]. Mar Biotechnol (NY), 2010,12(2):186-194.
    [41]Bergmann S. M., Sadowski J., Kielpinski M., et al. Susceptibility of koi x crucian carp and koi x goldfish hybrids to koi herpesvirus (KHV) and the development of KHV disease (KHVD)[J]. J Fish Dis,2010,33(3): 267-272.
    [42]Liu S., Duan W., Tao M., et al. Establishment of the diploid gynogenetic hybrid clonal line of red crucian carp x common carp[J]. Sci China C Life Sci,2007,50(2):186-193.
    [43]Duan W., Qin Q., Chen S., et al. The formation of improved tetraploid population of red crucian carp x common carp hybrids by androgenesis[J]. Sci China C Life Sci,2007,50(6):753-761.
    [44]Liu S. J., Sun Y. D., Zhang C., et al. Triploid crucain carp-allotetraploid hybrids (male) x goldfish(hermaphrodite)[J]. Yi Chuan Xue Bao,2004,31(1):31-38.
    [45]任维美.英国欢迎杂交鲢鱼[J].饲料研究,1990,(10):28.
    [46]葛玲瑞.团头鲂(♀)×翘嘴红鲔(♂)杂交F1的生物学特征及遗传分析[D].湖南师范大学,2011.
    [47]顾志敏,贾永义,叶金云,等.翘嘴红鲌(♀)×团头鲂(♂)杂种F1的形态特征及遗传分析[J].水产学报,2008,(04):533-544.
    [48]任丽珍,程利民.徐建荣,等.鳃鱼(♀)和赤眼鳟(♂)杂交F1胚胎发育研究[J].淡水渔业,2011,(04):89-95.
    [49]湘潭地区、湖南省水产研究所鲴类研究协作组.鲴类的属间杂交试验初报[J].湖南水产科技,1982,(01):38-42+27.
    [50]史会来,王奋芬,楼宝,等.大黄鱼(♀)与黄姑鱼(♂)人工杂交子代的胚胎发育[J].水产学杂志,2011,(04):16-20.
    [5l]王晓清,王志勇,谢中国,等.大黄鱼(早)与鲵(♀)杂交的遗传分析[J].水产学报,2008,(01):51-57.
    [52]朱杰,郭海燕,蒋伟.苏氏圆腹芒(♂)与南方大口鲶(♀)杂交种的胚胎学观察[J].水产养殖,2011,(04):24-27.
    [53]江世贵,李加儿,区又君,等.平鲷♀与真鲷♂的杂交研究[J].海洋科学,1997,(05):33-38.
    [54]区又君,李加儿,周宏团.鲷科鱼类属间远缘杂交的发育和生长[J].中国水产科学,2000,(02):110.112.
    [55]俞寅寅.真鲷(♀)与黑鲷(♂)杂交子代遗传物质构成的分析[D].宁波大学,2012.
    [56]蒋宏雷,吴雄飞,沈庞幼.真鲷与黑鲷杂交繁育技术研究[J].河北渔业,2009,(01):25-27+46+53.
    [57]蒋宏雷,吴雄飞,石刚德,等.真鲷与黑鲷杂交子一代的胚胎发育[J].河北渔业,2007,(02):40-42.
    [58]徐革锋,尹家胜,刘洋.等.哲罗鲑与细鳞鲑属间远缘杂交的初步研究[J].中国水产科学,2009,(06):959-966.
    [59]Takeda Y.,Tanaka M. Freshwater adaptation during larval,juvenile and immature periods of starry flounder Platichthys stellatus,stone flounder Kareius bicoloratus and their reciprocal hybrids[J]. J Fish Biol,2007.70(5):1470-1483.
    [60]肖炜,李大宇,邹芝英,等.四种杂交组合奥尼罗非鱼及其亲本的生长对比研究[J].水生生物学报,2012,(05):905-912.
    [61]郭金涛,赵金良,颜标.等.尼罗罗非鱼♀×萨罗罗非鱼♂杂交F1亲本分析[J].广东农业科学.2012,(21):144-147.
    [62]杨淞,叶星.卢迈新,等.橙色莫桑比克罗非鱼和荷那龙罗非鱼的AFLP分析[J].中国海洋大学学报(自然科学版),2006,(06):937-940+980.
    [63]杨淞,卢迈新,黄樟翰,等.5种杂交F1罗非鱼生长性能比较研究[J].淡水渔业,2006,(04):41-44.
    [64]Gomez-Ponce M.A., Granados-Flores K.,Padilla C.,et al. Age and growth of the hybrid tilapia Oreochromis niloticus x Oreochromis aureus (Perciformes:Cichlidae) in the dam "Zimapan" Mexico[J]. Rev Biol Trop,2011,59(2):761-770.
    [65]Medeiros A. P.. Chellappa S., Yamamoto M. E. Agonistic and reproductive behaviors in males of red hybrid tilapia. Oreochromis niloticus (Linnaeus,1758)x O. mossambicus (Peters,1852) (Osteichthyes: Cichlidae)[J]. Braz J Biol,2007.67(4):701-706.
    [66]Harvey S. C. Campos-Ramos R., Kennedy D. D.,et al Karyotype evolution in Tilapia:mitotic and meiotic chromosome analysis of Oreochromis karongae and O. niloticus x O. karongae hybrids[J]. Genetica, 2002,115(2):169-177.
    [67]Melamed P.,Gur G.,Rosenfeld H., et al. Reproductive development of male and female tilapia hybrids (Oreochromis niloticus x O. aureus) and changes in mRNA levels of gonadotropin (GtH) Ibeta and Ilbeta subunits[J]. J Exp Zool,2000,286(1):64-75.
    [68]马进.邬国民,胡红,等.斑点胡子鲶和革胡子鲶杂交子一代的染色体组型[J].淡水渔业,1996.(06):17-18.
    [69]Xu D. H., Klesius P. H. Comparison of serum antibody responses and host protection against parasite Ichihyophthirius multifiliis between channel catfish and channel x blue hybrid catfish[J].Fish Shellfish Immunol.2013,34(5):1356-1359.
    [70]Klomklao S., Kishimura H., Benjakul S. Use of viscera extract from hybrid catfish (Clarias macrocephalus x Clarias gariepinus) for the production of protein hydrolysate from toothed ponyfish (Gazza minutd) muscle[J]. Food Chem,2013.136(2):1006-1012.
    [71]Bilodeau A. L., Peterson B. C., Bosworth B. G. Response of toll-like receptors,lysozyme,and IGF-Ⅰ in back-cross hybrid (F1 male (blue x channel) x female channel) catfish challenged with virulent Edwardsiella ictaluri[J]. Fish Shellfish Immunol,2006,20(1):29-39.
    [72]星叶,刚谢,祁宝伦,等.广东鲂(♀)×团头鲂(♂)杂交子一代及其亲染色体组型的分析[J].大连 水产学院学报,2002,(02):102-107.
    [73]王明宝,陈强,陈耀炳,等.黄颡鱼与瓦氏黄颡鱼杂交技术研究[J].现代农业科技,2012,(24):273+278.
    [74]王卫民,严安生,张志国,等.黄颡鱼♀与瓦氏黄颡鱼♂的杂交研究[J].淡水渔业,2002,(03):3-5.
    [75]周翰林,张勇,齐鑫,等.两种杂交石斑鱼子一代杂种优势的微卫星标记分析[J].水产学报,2012,(02):161-169.
    [76]李炎璐,王清印,陈超,等.云纹石斑鱼(♀)×七带石斑鱼(♂)杂交子一代胚胎发育及仔稚幼鱼形态学观察[J].中国水产科学,2012,(05):821-832.
    [77]刘付永忠,赵会宏,刘晓春,等.赤点石斑鱼♀与斜带石斑鱼♂杂交的初步研究[J].中山大学学报(自然科学版),2007,(03):72-75.
    [78]Berrebi P., Povz M., Jesensek D., et al. The genetic diversity of native, stocked and hybrid populations of marble trout in the Soca river, Slovenia[J]. Heredity (Edinb),2000,85 Pt 3:277-287.
    [79]Pendas A. M., Moran P., Martinez J. L., et al. Applications of 5S rDNA in Atlantic salmon, brown trout, and in Atlantic salmon x brown trout hybrid identification[J]. Mol Ecol,1995,4(2):275-276.
    [80]Quillet E.. Chevassus B., Devaux A. Timing and duration of hatching in gynogenetic, triploid, tetraploid, and hybrid progenies in rainbow trout[J]. Genet Sel Evol,1988,20(2):199-210.
    [81]Nygren A., Nyman L., Svensson K., et al. Cytological and biochemical studies in back-crosses between the hybrid Atlantic salmon x sea trout and its parental species[J]. Hereditas,1975,81(1):55-62.
    [82]Wuntch T., Goldberg E. A comparative physico-chemical characterization of lactate dehydrogenase: lsozymes in Brook trout, Lake trout and their hybrid Splake trout[J]. J Exp Zool,1970,174(3):233-251.
    [83]关健,柳学周,刘洪军,等.褐牙鲆(♀)×犬齿牙鲆(♂)杂交子代及亲本群体形态和外周血红细胞DNA含量[J].渔业科学进展,2011.(05):17-23.
    [84]关健.褐牙鲆♀×犬齿牙鲆♂杂交育种的初步研究[D].中国海洋大学,2007.
    [85]邱洋洋,陆海燕,宓华明,等.金鱼红白虎头和红白蝶尾及其杂交F_1代的体色和体型的分析[J].大连海洋大学学报,2011,(03):209-214.
    [86]朱桂华.湘云鲫(白鲫♀×四倍体鱼♂)生长的初步研究[J].淡水渔业,1999,(09):12-13.
    [87]金燮理,陈尔曼.草鱼×赤眼鳟杂种一代主要生物学特征[J].内陆水产,2002,(08):19.
    [88]王祖熊,张锦霞,黄文郁,等.鲮鱼遗传改良的研究Ⅰ.杂交育种和遗传性状分析[J].水生生物学集刊,1984,(02):195-206.
    [89]蒋宏雷,吴雄飞.真鲷与黑鲷及杂交F1耐受温度、生长比较[J].现代渔业信息,2009,(02):26-28.
    [90]马爱军,黄智慧,王新安,等.大菱鲆(Scophthalmus maximus)对高温品系选育及耐温性能评估[J].海洋与湖沼,2012,(04):797-804.
    [9l]刘宝锁,张天时,孔杰,等.大菱鲆生长和耐高温性状的遗传参数估计[J].水产学报,2011,(11):1601-1606.
    [92]张建森,马仲波,王楚松.元江鲤♀与柏氏鲤♂杂交一代(柏元鲤)的研究和利用[J].淡水渔业,1979,(02):14-18+33.
    [93]王楚松,夏德全,胡玫,等.奥尼(?)(S.nilotica♀×S.aurea)种优势利用的研究[J].淡水渔业,1989.(06): 14-15+13.
    [94]朱桂华.湘云鲫人工繁殖及养殖技术[J].淡水渔业,1999,(07):31-33.
    [95]黄立新.国家重点新产品——湘云鲫、湘云鲤[J].农村实用技术与信息,2005,(11):27.
    [96]王金龙,刘臻,李传武.等.芙蓉鲫(芙蓉鲤♀×红鲫♂)及其原始亲本间的遗传关系[J].大连海洋大学学报,2010.(03):197-202.
    [97]刘思阳.三倍体草鲂杂种及其双亲的细胞遗传学研究[J].水生生物学报,1987,(01):52-58.
    [98]湖北省水生生物研究所育种组家鱼研究小组.用理化方法诱导草鱼(♀)×团头鲂(♂)杂种和草鱼的三倍体、四倍体[J].水生生物学集刊,1976,(01):111-114.
    [99]桂建芳,梁绍昌,朱蓝菲,等.鱼类远缘杂交正反交杂种胚胎发育差异的细胞遗传学分析[J].动物学研究,1993,(02):171-177+202.
    [100]俞豪祥,徐皓.关宏伟,等.冷休克诱导天然雌核发育银鲫♀×鲫鱼♂四倍体[J].水产科技情报,1991,(06):165-168.
    [101]刘少军.冯浩.刘筠,等.四倍体湘鲫F3、 F4、三倍体湘云鲫、湘云鲤及有关二倍体的DNA含量[J].湖南师范大学自然科学学报,1999,(04):61-68.
    [102]刘国安.吴维新.林临安,等.兴国红鲤×草鱼受精细胞学研究[J].湖南水产科技,1983,(03):13-19.
    [103]Zhou L., Wang Y., Gui J. F. Genetic evidence for gonochoristic reproduction in gynogenetic silver crucian carp(Carassius auratus gibelio bloch) as revealed by RAPD assays[J].J Mol Evol.2000,51(5): 498-506.
    [104]李传武,吴维新,徐大义,等.鲤和草鱼杂交中雄核发育子代的研究[J].水产学报,1990,(02):153-156.
    [105]俞豪祥,吴锦忠,李平,等.雄核发育异育银鲫及其初步应用[J].水产学报,2000,(01):17-21+94.
    [106]叶玉珍,吴清江,陈荣德.草鱼和鲤杂交的细胞学研究——鱼类远缘杂交核质不同步现象[J].水生生物学报,1989,(03):234-239+299-300.
    [107]湖南省武岗县鱼苗鱼种场.草鱼(♀)×鲤鱼(♂)人工杂交试验的初步总结[J].湖南水产科技,1974.(01):8-9.
    [108]吴维新,李传武,刘国安,等.鲤和草鱼杂交四倍体及其回交三倍体草鱼杂种的研究[J].水生生物学报,1988,(04):355-363+393.
    [109]刘国安,吴维新,林临安,等.兴国红鲤同草鱼杂交的受精细胞学研究[J].水产学报,1987,(01):17-21.
    [110]吴维新,刘国安,郑远刚,等.兴国红鲤♀×草鱼♂杂交后代遗传性状的比较研究[J].湖南水产科 技,1983,(02):28-32+37.
    [111]吴维新,林临安,徐大义.一个四倍体杂种——兴国红(cyprinus carpio.L)×草鱼(ctenopharyngodon idellus V)[J].湖南水产科技,1982,(01):28-31.
    [112]郭汉青,涂福命,王宾贤.等.草鱼与鳙鱼人工杂交及其后代的初步观察[J].动物学杂志,1966,(04):188-189+154.
    [113]郭诗照,王荣泉,傅建军,等.草鱼、鳙及其杂交鱼的形态差异分析[J].江苏农业科学,2011,(05):320-322.
    [114]毛铭庭,梁桂霞.草鱼、团头鲂卵球杂交受精的细胞学研究[J].西北师范大学学报(自然科学版),1985,(04):20-25.
    [115]刘思阳.草鱼卵子和三角鲂精子杂交的受精细胞学研究[J].水产学报,1987,(03):225-232.
    [116]刘思阳.三倍体草鱼鲂杂种与双亲性腺发育的比较观察[J].淡水渔业,1988,(04):27-28+45+49.
    [117]李万程.草鱼、三角鲂及其杂种一代乳酸脱氢酶同工酶电泳分析[J].湖南师范大学自然科学学报,1985,(01):32-35+31.
    [118]江苏省建湖县水产养殖场研究小组.草鱼和翘嘴铂杂交试验报告[J].淡水渔业,1974,(03):22-23.
    [119]金燮理.青鱼和草鱼杂交种的早期发育[J].湖南水产科技,198l,(01):55.
    [120]金燮理,金宏,王明龙,等.草鱼×赤眼鳟F1与其亲本遗传性状的比较研究[J].生命科学研究,1999,(04):316-320.
    [121]Liu Q. L., Xu B. H., Xiao T. Y., et al. The complete mitochondrial genome of the hybrid of Ctenopharyngodon idella (♀)×Squaliobarbus curriculus (♂)[J]. Mitochondrial DNA,2013,online.
    [122]胡廷尖,李训朗,黄小红,等.赤眼鳟(♀)×草鱼(♂)及其杂交F1形态差异分析[J].河北渔业,2011,(09):1-4.
    [123]Liu Q. L., Liu M., Xiao T. Y., et al. Mitochondrial DNA sequence of the hybrid of Squaliobarbus curriculus (♀)×Ctenopharyngodon idella(♂)[J]. Mitochondrial DNA,2013,online.
    [124]刘巧林,肖调义,刘敏,等.赤眼鳟生物学研究进展[J].水产科学,2012,31(11):687-691.
    [125]何学福,阳清发.嘉陵江西河赤眼鳟的生长研究[J].西南师范大学学报(自然科学版),1997,(06):680-685.
    [126]郭丽丽,严云志,席贻龙.长江芜湖段赤眼鳟的年龄与生长[J].水生生物学报,2009,(01):130-135.
    [127]龙光华,林岗,胡大胜,等.赤眼鳟的繁殖生物学[J].动物学杂志,2005,(05):28-36.
    [128]杨明生,陈金安,黄孝湘,等.赤眼鳟繁殖生物学研究[J].淡水渔业,2005,(03):38-40.
    [129]宋新成,徐国成.赤眼鳟繁殖生物学研究进展[J].河北渔业,2007,(06):6-8+49+53.
    [130]陆豪,潘华龙,卢兆恩.赤眼鳟人工繁殖及育苗试验[J].科学养鱼,2003,(08):8-9.
    [131]龙光华,胡大胜,刘坚红,等.赤眼鳟人工繁殖技术研究[J].淡水渔业,2005,(03):44-46.
    [132]宓国强,沈土山,许谷星.赤眼鳟人工繁殖技术研究[J].浙江海洋学院学报(自然科学版),2007,(03):272-276.
    [133]陈三木,张水波.赤眼鳟养殖技术[J].渔业现代化.2004.(02):20-23.
    [134]龚小宁.谢杏人.赤眼鳟和黄鱼幼(Hypseleotris swinhonis)的粘孢子虫两新种[J].水生生物学报,2000,(04):380-383.
    [135]周有明.赤眼鳟卵甲藻病防治一例[J].水利渔业,2006,(06):97.
    [136]Yao Jia-yun, Zhou Zhi-ming, Li Xi-lian,et al. Antiparasitic efficacy of dihydrosanguinarine and dihydrochelerythrine from Macleaya microcarpa against Ichlhyophthirius multifiliis in richadsin (Squaliobarbus curriculus)[J]. Vet Parasitol,2011:183(1-2):8-13.
    [137]耿建国.钱华,张建,等.韭菜在赤眼鳟鱼病防治中的科学应用[J].渔业致富指南.2007,(10):50.
    [138]李桂峰,康裕财,孙际佳,等.酵母多糖对赤眼鳟非特异性免疫机能的影响[J].中山大学学报(自然科学版),2003,(04):55-58.
    [139]LI G-F, LIU L-B, TAN Y-L, et al. In vitro effect of levamisole on the cell viability, phagocytosis and respiratory burst of Barbel Chub(Squaliobarbus curriculus) macrophages[J]. Aquacult Nutr,2011,(17): 263-270.
    [140]金燮理,田习初.曾国清.等.草鱼与赤眼鳟杂交繁埴及苗种培育的初步研究[J].内陆水产.1997,(12):6-7.
    [141]蔡永祥,陈友明,陈校辉.等.江黄桑!(Pelteobagrus vachelli)和乌苏里拟鲿(Pseudobagrus ussuriensis)杂交F_1代形态差异[J].湖泊科学.2011.(02):264-270.
    [142]郭诗照.草鱼与鳙及其杂交子一代的形态、生长和遗传分析[D].上海海洋大学,2011.
    [143]王芳,丁庆忠.齐遵利,等.琉金、龙睛及其杂交种的形态学特征研究[J].安徽安业科学,2012,(15):8542-8543+8546.
    [144]刘思阳,李素文.三倍体草鲂杂种及其双亲的红细胞(核)大小和DNA含量[J].遗传学报,1987,(02):142-148.
    [145]方礼豹.周小云,崔蕾,等.二倍体、四倍体泥鳅与大鳞副泥鳅杂交子代DNA相对含量与染色体组型的比较[J].华中农业大学学报.2011,(04):500-505.
    [146]张纯,刘少军,李涛,等.红鲫(♀)×鲤(♂)杂交鱼的胚胎染色体组倍性研究[J].水产学报,2011,(09):1369-1373.
    [147]闫学春,梁利群.葛彦龙.两种鲤鲫杂交回交子代染色体核型分析及比较[J].水产学杂志,2011.(02):4-8.
    [148]陈友铃,张秋金,江彦愔,等.彩鲷(♀)×美洲虎鲷(♀)杂交后代及其双亲的染色体研究[J].农业生物技术学报,2009,(03):469-475.
    [149]吴清江,叶玉珍,董新红.由鲤(Cyprinus carpio)和鲫(Carassius auratus)染色体组叠加构建的两个单性人工多倍体克隆[J].中国科学(C辑:生命科学).2003,(03):281-288.
    [150]冯浩,刘少军,张轩杰,等.红鲫(♀)×湘江野鲤(♂)F2和F3的染色体研究[J].中国水产科学,2001, (02): 1-4.
    [151]Beck M. L., Biggers C. J. Chromosomal investigation ofCtenopharyngodon idella x Aristichthys nobilis hybrids[J]. Experientia,1982,38(3):319-319.
    [152]Schwarzacher T., Leitch A. R., Bennett M. D., et al. In Situ Localization of Parental Genomes in a Wide Hybrid[J]. Ann Bot,1989,64(3):315-324.
    [153]毕克.杂交扇贝(华贵栉孔扇贝Chlamys nobilis♀)栉孔扇贝C.farreriS)的分子细胞遗传学分析[D]. 中国海洋大学,2004.
    [154]Li Z., Liu H. L., Luo P. Production and cytogenetics of intergen eric hybrids between Brassica napus and Orychophragmus violaceus[J]. Theor Appl Genet,1995,91(1):131-136.
    [155]Li Z. Y., Liu H. L., Heneen W. K. Meiotic Behaviour in Intergeneric Hybrids between Brassica Napus and Orychophragmus Violaceus[J]. Hereditas,1996,125(1):69-75.
    [156]陈淑群,李万程,唐会国,等.青鱼和三角鲂不同亚科之间的杂交研究——Ⅱ青鱼(♀)、三角鲂(♂)及其子一代乳酸脱氢酶同工酶的比较研究[J].湖南师范大学自然科学学报,1987,(03):75-81.
    [157]赵振山,吴清江,熊传喜,等.两种泥鳅不同核质关系下EST和MDH同工酶基因表达的研究[J].华中农业大学学报,1999,(05):479-483.
    [158]陈道印,欧阳敏,李达.赣昌鲫(日本白鲫♀×兴国红鲤♂)及其双亲同工酶的研究[J].淡水渔业,2010,(05): 9-13.
    [159]鲍迪,梁爱军,董莹,等.鲤、鲫杂交子代的同工酶分析[J].水产科学,2012,(05):283-287.
    [160]贺刚,何力,方春林,等.中华草龟(♀)与中华花龟(♂)及其杂种F1代染色体及同工酶比较[J].淡水渔业,2012,(02):3-9.
    [161]Lo Presti R., Gasco L., Lisa C., et al. PCR-RFLP analysis of mitochondrial DNA in tench Tinea tinca[J]. J Fish Biol,2010,76(2):401-407.
    [162]Rahim M. H., Ismail P., Alias R., et al. PCR-RFLP analysis of mitochondrial DNA cytochrome b gene among Haruan (Channa striatus) in Malaysia[J]. Gene,2012,494(1):1-10.
    [163]riazanova I. N., Pliakova N. E. Differentiation of large-scaled redfin Tribolodon hakonensis (Pisces, Cyprinidae) in the Russian part of the range as inferred from the data of karyological analysis and PCR-RFLP analysis of mitochondrial DNA[J]. Genetika,2012,48(2):225-234.
    [164]Yanagimoto T., Kitamura T., Kobayashi T. Genetic stock structure of walleye pollock (Theragra chalcogramma) inferred by PCR-RFLP analysis of the mitochondrial DNA and SNP analysis of nuclear DNA[J]. Mar Genomics,2012,7:17-25.
    [165]Kazianis S., Morizot D. C., McEntire B. B., et al. Genetic mapping in Xiphophorus hybrid fish: assignment of 43 AP-PCR/RAPD and isozyme markers to multipoint linkage groups[J]. Genome Res, 1996,6(4):280-289.
    [166]汤卫琳.日本白鲫(♀)×德国镜鲤(♂)杂种一代及双亲的RAPD和微卫星分析[D].湖南师范大 学,2008.
    [167]Zhou L.,Wang Y., Gui.1. F. Analysis of genetic heterogeneity among five gynogenetic clones of silver crucian carp. Carassius auratus gibelio Bloch. based on detection of RAPD molecular markers[J]. Cytogenet Cell Genet,2000,88(1-2):133-139.
    [168]Vela D.. Guerreiro M. P.. Fontdevila A. Adaptation of the AFLP technique as a new tool to detect genetic instability and transposition in interspecific hybrids[J]. Biotechniques.2011.50(4):247-250.
    [169]Colbeck G.J., Turgeon J.,Sirois P., et al. Historical introgression and the role of selective vs. neutral processes in structuring nuclear genetic variation (AFLP) in a circumpolar marine fish, the capelin (Mallotus villosus)[J]. Mol Ecol,2011,20(9):1976-1987.
    [170]Mendelson T. C., Wong M. K. AFLP phylogeny of the snubnose darters and allies (Percidae:Etheostoma) provides resolution across multiple levels of divergence[J]. Mol Phylogenet Evol.2010.57(3):1253-1259.
    [171]Liu J., Sun Y. H., Wang Y. W., et al. Identification of differential transcript profiles between mutual crossbred embryos of zebrafish (Danio rerio) and Chinese rare minnow(Gobiocypris rants) by cDNA-AFLP[J].Theriogenology,2008.70(9):1525-1535.
    [172]Cheng L., Liu L., Yu X., el al A linkage map of common carp (Cyphnus carpio) based on AFLP and microsatellite markers[J]. Anim Genet,2010,41(2):191-198.
    [173]Liao M.,Zhang L.,Yang G.,el al. Development of silver carp (Hypophthalmichthys nwlitrix) and bighead carp (Aristichthys nobilis) genetic maps using microsatellite and AFLP markers and a pseudo-testcross strategy[J]. Anim Genet,2007,38(4):364-370.
    [174]Mattersdorfer K., Koblmuller S., Sefc K. M. AFLP genome scans suggest divergent selection on colour patterning in allopatric colour morphs of a cichlid fish[J]. Mol Ecol,2012,21(14):3531-3544.
    [175]周远扬,叶星,卢迈新,等.两个罗非鱼杂交组合亲本群体与杂种F1的AFLP分析[J].农业生物技术学报,2007,(03):537-538.
    [176]苗亮.大黄鱼源精子诱导雌核发育及性别特异性AFLP标记筛选[D].宁波大学.2012.
    [177]Chen S. L., Li J., Deng S. P., et al. Isolation of female-specific AFLP markers and molecular identification of genetic sex in half-smooth tongue sole(Cynoglossus semilaevis)[J]. Mar Biotechnol(NY), 2007,9(2):273-280.
    [178]Watanabe T., Yoshida M., Nakajima M., el al. Linkage mapping of AFLP and microsatellite DNA markers with the body color-and sex-determining loci in the guppy (Poecilia reticulata)[J]. Zoolog Sci. 2005.22(8):883-889.
    [179]Ma H.,Chen S., Yang J., el al. Genetic linkage maps of barfin flounder (Verasper moseri) and spotted halibut(Verasper variegatus) based on AFLP and microsatellite markers[J]. Mol Biol Rep,2011.38(7): 4749-4764.
    [180]Shaw P. W., Turan C., Wright J. M., et al. Microsatellite DNA analysis of population structure in Atlantic herring (Clupea harengus), with direct comparison to allozyme and mtDNA RFLP analyses[J], Heredity (Edinb),1999,83 (Pt 4):490-499.
    [181]Crespo-Lopez M. E.. Duarte T., Dowling T., et al. Modes of reproduction of the hybridogenetic fish Squalius alburnoides in the Tejo and Guadiana rivers:an approach with microsatellites[J]. Zoology (Jena), 2006,109(4):277-286.
    [182]Kang J. H., Kim Y. K., Park J. Y., et al. Microsatellite analysis as a tool for discriminating an interfamily hybrid between olive flounder and starry flounder[J]. Genet Mol Res,2011,10(4):2786-2794.
    [183]Hubert S., Higgins B., Borza T., et al. Development of a SNP resource and a genetic linkage map for Atlantic cod (Gadus morhua)[J]. BMC Genomics,2010,11:191.
    [184]Gao Z., Luo W., Liu H., et al. Transcriptome analysis and SSR/SNP markers information of the blunt snout bream (Megalobrama amblycephala)[J]. PLoS One,2012,7(8):e42637.
    [185]Ryynanen H. J., Primmer C. R. Single nucleotide polymorphism (SNP) discovery in duplicated genomes: intron-primed exon-crossing (IPEC) as a strategy for avoiding amplification of duplicated loci in Atlantic salmon (Salmo salar) and other salmonid fishes[J]. BMC Genomics,2006,7:192.
    [186]Bourret V., Kent M. P., Primmer C. R., et al. SNP-array reveals genome-wide patterns of geographical and potential adaptive divergence across the natural range of Atlantic salmon (Salmo salar)[J]. Mol Ecol, 2013,22(3):532-551.
    [187]Bradley K. M., Breyer J. P., Melville D. B., et al. An SNP-Based Linkage Map for Zebrafish Reveals Sex Determination Loci[J]. G3 (Bethesda),2011,1(1):3-9.
    [188]Salem M., Vallejo R. L., Leeds T. D., et al. RNA-Seq identifies SNP markers for growth traits in rainbow trout[J]. PLoS One,2012,7(5):e36264.
    [189]Kongchum P., Palti Y., Hallerman E. M., et al. SNP discovery and development of genetic markers for mapping innate immune response genes in common carp (Cyprinus carpio)[J]. Fish Shellfish Immunol, 2010,29(2):356-361.
    [190]Symonova R., Majtanova Z., Sember A., et al. Genome differentiation in a species pair of coregonine fishes:an extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications[J]. BMC Evol Biol,2013,13:42.
    [191]Blanco D. R., Lui R. L., Vicari M. R., et al. Comparative cytogenetics of giant trahiras Hoplias aimara and H. intermedius (Characiformes, Erythrinidae):chromosomal characteristics of minor and major ribosomal DNA and cross-species repetitive centromeric sequences mapping differ among morphologically identical karyotypes[J]. Cytogenet Genome Res,2011,132(1-2):71-78.
    [192]Yuan W. A. Identification of fish species based on ribosomal DNA ITS2 locus[J]. Yi Chuan,2010,32(4): 369-374.
    [193]Ubeda-Manzanaro M., Merlo M. A., Palazon J. L., et al. Sequence characterization and phylogenetic analysis of the 5S ribosomal DNA in species of the family Batrachoididae[J]. Genome,2010.53(9): 723-730.
    [194]Alves-Costa F. A.. Wasko A. P.,Oliveira C. et al. Genomic organization and evolution of the 5S ribosomal DNA in Tilapiini fishes[J]. Genetica,2006,127(1-3):243-252.
    [195]Pedrosa-Gerasmio I. R., Babaran R. P.,Santos M. D. Discrimination of juvenile yellowfin (Thunnus albacares) and bigeye (T. obesus) Tunas using mitochondrial DNA control region and liver morphology[J]. PLoS One,2012,7(4):e35604.
    [196]Espineira M., Gonzalez-Lavin N.. Vieites J. M., et al. Development of a method for the genetic identification of flatfish species on the basis of mitochondrial DNA sequences[J]. J Agric Food Chem, 2008,56(19):8954-8961.
    [197]李培,刘丽,谭围,等奥尼罗非鱼杂交子代及亲本mtDNA D-loop基因序列的多态性[J].广东海洋大学学报,2009,(06):12-15
    [198]郭新红,刘少军.刘巧,等.鱼类线粒体DNA研究新进展[J].遗传学报,2004.(09):983-1000.
    [199]周翰林.杨森,高川.等.两种杂交石斑鱼子一代及其亲本的线粒体CO1基因遗传变异分析[J].热带生物学报,2012.(01):1-10.
    [200]吴维新.李传武.曾国清.抗病草鱼(83-2系鱼)选育的研究[J].中国水产科学.1997.(02):74-78.
    [201]严绍颐.陆德裕.杜淼.等.硬骨鱼类的细胞核移柏——Ⅵa.不同亚科间的细胞核移植——由草鱼细胞核和团头鲂细胞质配合而成的核质杂种鱼(英文)[J].生物工程学报1985.(04):15-26+81-82.
    [202]齐福印.许桂珍.草鱼与青鱼、鳙鱼与团头鲂之间的细胞核移植[J].中国兽医学报,1994,(03):242-246.
    [203]张念慈.曹铮,尹文林,等.草鱼、青鱼体外培养细胞的属间、亚科间核移植[J].水产学报.1990.(04):344-346.
    [204]张念慈,杨广智.草鱼吻端组织细胞株ZC-7901其亚株ZC-7901S_1的建立和特性观察[J].水产学报,1981,(02):111-120.
    [205]李业南,毛树坚.紫外线诱变建立草鱼抗出血病病原病毒的AHZC88细胞株[J].水产学报.1990,(02):89-94.
    [206]李涛.抗病草鱼池塘精养试验[J].渔业致富指南,2011.(13):37-38.
    [207]龙建军.陈礼和.雌核发育抗病草鱼池塘养殖对比试验[J].内陆水产.2005,(03):9.
    [208]张虹.雌核发育草鱼群体的建立及其主要生物学特性研究[D].湖南师范大学,2011.
    [209]朱作言.许克圣,谢岳峰,等.转基因鱼模型的建立[J].中国科学(B辑化学 生命科学地学).1989,(02):147-155.
    [210]李晋衡,何铁林,包树,等.人α-T扰素及其对草鱼出血病毒的干扰作用[J].内陆水产,1994,(10):3-4.
    [211]章怀云.张学文,何铁林,等.精子载体法将外源DNA导入草鱼受精卵获得性状转移[J].水产学 报,1997,(01):75-77.
    [212]章怀云,萧克宇,陈韬,等.外源DNA处理的草鱼对草鱼出血病毒的抗性观察[J].湖南农业大学学报,1997,(02):53-56.
    [213]王铁辉,刘汉勤,陈宏溪,等.抗出血病草鱼子代抗病力的分析[J].水生生物学报,1998,(04):389-390.
    [214]钟家玉,朱作言.转人乳铁蛋白基因草鱼抗GCHV的初步研究[J].水生生物学报,2001,(05):528-530.
    [215]张学文,章怀云,符少辉,等.可在鱼体内表达hu-IFN-α的基因重组构建及转化[J].高技术通讯,2001,(04):1-5.
    [216]肖调义,唐湘北,章怀云,等.转Hu-IFN-α基因草鱼雌核发育F1的遗传配型分析[J].水产学报,2006,(06):837-842.
    [217]王红权,章怀云,肖调义,等.转Hu-IFN-α基因草鱼的遗传研究[J].湖南农业大学学报(自然科学版),2006,(03):292-295.
    [218]章怀云,张学文,汪冬庚,等.转hu-IFN-α基因草鱼血液生理生化指标的分析[J].湖南农业大学学报(自然科学版),2001,(06):443-444.
    [219]王红权,章怀云,张学文,等.转Hu-IFN-α基因草鱼F1代人α-干扰素表达水平的研究[J].湖南农业大学学报(自然科学版),2006,(01):60-62.
    [220]陈开健,章怀云,肖调义,等.重组Hu-IFN-α基因在草鱼中的整合和表达[J].淡水渔业,2005,(05): 3-7.
    [221]陈立祥,张学文,肖调义,等.人α-干扰素基因在转基因草鱼中的表达[J].湖南农业大学学报(自然科学版),2001,(03):177-178.
    [222]苏建明,章怀云,张学文,等.转Hu-IFN-α基因草鱼的分子验证及抗性研究[J].湖南农业大学学报(自然科学版),2003,(05):412-414.
    [223]廖莎,陈芸,杜富宽,等.抗草鱼出血病病毒转基因稀有鮈鲫的初步研究[J].水生生物学报,2010,(04):837-842.
    [224]周伟,肖调义,苏建明,等.“全鱼”Mx基因重组构建与转导分析[J].水生态学杂志,2013,34(1):Inpress.
    [225]Castillo A., Razquin B., Villena A. J., et al. Thymic barriers to antigen entry during the post-hatching development of the thymus of rainbow trout,Oncorhynchus mykiss[J]. Fish Shellfish Immunol,1998,8(3): 157-170.
    [226]Dalmo R. A., Ingebrigtsen K., B(?)gwald J. Non-specific defence mechanisms in fish, with particular reference to the reticuloendothelial system (RES)[J]. J Fish Dis,1997,20(4):241-273.
    [227]Kennedy Anthony J., Steinhart Geoffrey B., Greil Roger W. A tool to identify pink salmon (Oncorlynchus gorbuscha)×Chinook salmon (O. tshawytscha) hybrids in the St. Marys River, Michigan-Ontario[J]. J Great Lakes Res,2011,37,Supplement 2(0):35-42.
    [228]刘巧.王跃群.刘少军.等.不同倍性鲫鲤鱼血液及血细胞的比较[J].自然科学进展.2004.(10):32.38(?) 132-133.
    [229]李思发.颜标.蔡完其,等.尼罗罗非鱼与萨罗罗非鱼正反交鱼自繁后代F_2耐盐性、生长性能及亲本对杂种优势贡献力的评估[J].水产学报,2008.(03):335-341.
    [230]Williams J.G.. Kubelik A. R.,Livak K. J.,et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Res,1990,18(22):6531-6535.
    [231]Bartfai R.. Egedi S., Yue G.H.. el al. Genetic analysis of two common carp broodstocks by RAPD and microsatellite markers[J].Aquaculture.2003,219(1-4):157-167.
    [232]Chistiakov D.A., Voronova N.V. Genetic evolution and diversity of common carp Cyprinus carpio L[J]. Cent Eur J Biol,2009.4(3):304-312.
    [233]Saini A.. Dua A., Mohindra V. Genetic variability analysis of Giant river cattish (Sperata seenghala) populations from Indus river system by RAPD-PCR[J].Russ J Genet,2010,46(8):982-987
    [234]Wang C.,Li S. Phylogenetic relationships of ornamental (koi) carp. Oujiang color carp and long-fin carp revealed by mitochondrial DNA COII gene sequences and RAPD analysis[J]. Aquaculture,2004,231(1-4): 83-91.
    [235]Mishra A. K., Lakra W. S., Bhatt J. P., et al. Genetic characterization of two hill stream fish species Barilius bendelisis (Ham.1807) and Barilius barna (Ham.1822) using RAPD markers[J]. Mol Biol Rep. 2012,39(12):10167-10172.
    [236]许玉德.许莉.钟建兴.杂交一代(尼罗罗非非鱼♀二×奥利亚罗非鱼♂)及其亲本基因组DNA的比较[J].水产学报,2001,(01):16-19.
    [237]Li S. F., Tang S. J., Cai W. Q. RAPD-SCAR Markers for Genetically Improved NEW GIFT Nile Tilapia (Oreochromis niloticus niloticus L.) and Their Application in Strain Identification[J]. Dongwuxue Yanjiu, 2010.31(2):147-153.
    [238]陈金辉.黄明敏,郑康,等.两个不同的人工雌核发育草鱼群体基因组DNA的RAPD分析[J].水生生物学报.2004.(05):471-477.
    [239]刘正华.陈金辉,黄明敏,等.草鱼基因组DNA一些RAPD位点的遗传分析及分子标记筛选[J].水生生物学报.2006,(03):292-297.
    [240]薛国雄,刘棘,刘洁.三江水系草鱼种群RAPD分析[J].中国水产科学,1998,(01):2-6.
    [241]杨品红,李静,吴维新.用RAPD技术探讨抗病草鱼F_7(83-2系鱼F_2)与原代双亲的亲缘关系[J].激光生物学报.2009,(01):50-55.
    [242]杨太有.关建义.陈宏喜,等.三个地理群体赤眼鳟遗传多样性的RAPD分析[J].四川动物.2008.(05):783-784.
    [243]杨太有,关建义,陈宏喜,等.丹江口水库赤眼鳟(Squaliobarbus curriculus)遗传多样性的RAPD 和ISSR分析[J].海洋与湖沼,2008,(02):157-161.
    [244]刘哲,李勤慎,蔡原,等.3种虹鳟养殖群体的遗传结构及遗传多样性分析[J].水生态学杂志,2010,(02):48-53.
    [245]M.Nei. Genetic distance between populations[J]. American Nature,1972,(106):283-292.
    [246]M.Nei. Molecular evolutionary genetics[M]. Columbia University Press,1987.
    [247]陈友明,陈校辉,潘莹,等.江黄颡(♀)和乌苏里拟鲼(♂)及其杂交子代遗传变异的RAPD分析[J].上海海洋大学学报,2010,(01):12-18.
    [248]邓普恩,刘丽,刘楚吾.罗非鱼亲本与杂交子代遗传差异的RAPD分析[J].现代农业科学,2008,(12):95-98+111.
    [249]万俊芬,汪小龙,潘洁,等.日本盘鲍×皱纹盘鲍子代杂种优势的RAPD分析[J].青岛海洋大学学报(自然科学版),2001,(04):506-512.
    [250]夏德全,曹萤,杨弘,等.罗非鱼杂交F1代与亲本的遗传关系及其杂种优势的利用[J].中国水产科学,1999,(04):29-32.
    [251]尹绍武,廖经球,邓勤,等.红鳍笛鲷(♀)与千年笛鲷(♂)杂交F_1代及其亲本的核型研究[J].水产科学,2008,(04):171-174.
    [252]杨璞,杨爱国,单伟华,等.栉孔扇贝(♀)×虾夷扇贝(♂)杂交子代胚后发育过程中遗传构成变化研究[J].渔业科学进展,2009,(02):66-70.
    [253]Wright S. Genetical structure of populations[J]. Nature,1950,166(4215):247-249.
    [254]李家乐,董志国,郑汉丰.三角帆蚌三种群Fl遗传差异的RAPD分析[J].水产学报,2007,(06):848-852.
    [255]高俊生,孙效文,梁利群.柏氏鲤与荷包红鲤抗寒品系杂交子二代的RAPD分析[J].上海水产大学学报,2006,(04):414-418.
    [256]陈四海,区又君,李加儿.鱼类线粒体DNA及其研究进展[J].生物技术通报,2011,(03):13-20.
    [257]Kyle C. J., Wilson C. C. Mitochondrial DNA identification of game and harvested freshwater fish species[J]. Forensic Sci Int,2007,166(1):68-76.
    [258]Cawthorn D. M., Steinman H. A., Witthuhn R. C. Establishment of a mitochondrial DNA sequence database for the identification of fish species commercially available in South Africa[J]. Mol Ecol Resour, 2011,11(6):979-991.
    [259]Mandal A., Mohindra V., Singh R. K., et al. Mitochondrial DNA variation in natural populations of endangered Indian feather-back fish, Chitala chitala[J]. Mol Biol Rep,2012,39(2):1765-1775.
    [260]Nevado B., Koblmuller S., Sturmbauer C., et al. Complete mitochondrial DNA replacement in a Lake Tanganyika cichlid fish[J]. Mol Ecol,2009,18(20):4240-4255.
    [261]Wang C., Chen Q., Lu G., et al. Complete mitochondrial genome of the grass carp (Ctenopharyngodon idella, Teleostei):insight into its phylogenic position within Cyprinidae[J]. Gene,2008,424(1-2):96-101.
    [262]Hamasaki K... Toriya S., Shishidou H.. et al. Genetic effects of hatchery fish on wild populations in red sea bream Pagrus major (Perciformes. Sparidae) inferred from a partial sequence of mitochondrial DNA[J]. J Fish Biol,2010,77(9):2123-2136.
    [263]Dominguez-Dominguez O.. Alda F.. de Leon G.P.. et al. Evolutionary history of the endangered fish Zoogoneticus quitzeoensis (Bean,1898) (Cyprinodontiformes:Goodeidae) using a sequential approach to phylogeography based on mitochondrial and nuclear DNA data[J]. BMC Evol Biol.2008.8:161.
    [264]Lowe T. M.. Eddy S. R. tRNAscan-SE:a program for improved detection of transfer RNA genes in genomic sequence[J]. Nucleic Acids Res,1997.25(5):955-964.
    [265]Wyman S. K., Jansen R. K.,Boore J. L. Automatic annotation of organellar genomes with DOGMA[J]. Bioinformatics,2004.20(17):3252-3255.
    [266]Zhang X., Yue B.. Jiang W.,et al. The complete mitochondrial genome of rock carp Procypris rabaudi (Cypriniformes:Cyprinidae) and phylogenetic implications[J]. Mol Biol Rep,2009.36(5):981-991.
    [267]Brown K. H.Fish mitochondrial genomics:sequence, inheritance and functional variation[J]. J Fish Biol, 2008.72(2):355-374.
    [268]Broughton R. E.,Milam J. E.,Roe B. A. The complete sequence of the zebrafish (Danio rerio) mitochondrial genome and evolutionary patterns in vertebrate mitochondrial DNA[J].Genome Res 2001,11(11):1958-1967.
    [269]Liang H. W.,Hu G. F.,Li Z., et al. Mitochondrial DNA sequence of yellow catfish (Pelteobagrus fulvidraco)[J]. Mitochondrial DNA.2012.23(3):170-172.
    [270]Crimi M., Rigolio R. The mitochondrial genome,a growing interest inside an organelle[J]. Int J Nanomedicine,2008.3(1):51-57.
    [271]Brown WesleyM, Prager EllenM, Wang Alice, et al. Mitochondrial DNA sequences of primates:Tempo and mode of evolution [J]. J Mol Evol,1982,18(4):225-239.
    [272]Vinas J.,Tudela S. A validated methodology for genetic identification of tuna species (genus Thunnus)[J]. PLoS One,2009.4(10):e7606.
    [273]von der Heyden S., Lipinski M. R., Matthee C. A. Mitochondrial DNA analyses of the Cape hakes reveal an expanding, panmictic population for Mcrluccius capensis and population structuring for mature fish in Mcrluccius paradoxus[J]. Mol Phylogenet Evol,2007.42(2):517-527.
    [274]Semina A. V., Polyakova N. E., Brykov V. A. Analysis of mitochondrial DNA:taxonomic and phylogenetic relationships in two fish taxa (Pisces:Mugilidae and Cyprinidae)[J]. Biochemistry (Mosc), 2007,72(12):1349-1355
    [275]Fauvelot C., Bernardi G., Planes S. Reductions in the mitochondrial DNA diversity of coral reef fish provide evidence of population bottlenecks resulting from Holocene sea-level change[J].Evolution. 2003.57(7):1571-1583.
    [276]Alves M. J., Coelho H., Collares-Pereira M. J., et al. Mitochondrial DNA variation in the highly endangered cyprinid fish Anaecypris hispanica:importance for conservation[J]. Heredity (Edinb), 2001,87(Pt 4):463-473.
    [277]王铁辉,刘沛霖,陈宏溪,等.稀有鮈鲫对草鱼出血病病毒敏感性的初步研究[J].水生生物学报,1994,(02):144-149.
    [278]李军,王铁辉,陆仁后,等.草鱼出血病病毒的研究进展[J].海洋与湖沼,1999,(04):445-453.
    [279]Kortet R., Vainikka A., Taskinen J. Effect of epidermal papillomatosis on survival of the freshwater fish Rutilus rutilus[J]. Dis Aquat Organ,2003,57(1-2):163-165.
    [280]卓孝磊,梁日深,陈言峰,等.杂交鳢(乌鳢♀×斑鳢♂)及其亲本血液指标的比较分析[J].淡水渔业,2010,v.40;No.287(03):72-75+79.
    [281]李冰,张成锋,朱健,等.黑龙江野鲤和建鲤正反交与自交子代血液学指标比较[J].水产学报,2009,v.33(06):957-963.
    [282]王金龙,杨弘,吴婷婷.奥利亚罗非鱼(♀)×鳜(♂)远缘杂交子代与亲本血液学指标的比较[J].中国水产科学,2008,(05):766-772.
    [283]龙华,邹桂伟,陈建武,等.鲇、大口鲇及其杂交鲇(鲇♀×大口鲇♂)血液生理生化指标比较及转铁蛋白等位基因分析[J].长江大学学报(自科版),2006,(05):161-164+102.
    [284]强俊,杨弘,王辉,等.海豚链球菌感染对不同品系罗非鱼血液生化指标和肝脏HSP70 mRNA表达的影响[J].水产学报,2012,v.36(06):958-968.
    [285]耿波,孙效文,梁利群,等.细菌侵染的两种鲤鱼病生理反应及抗病性分析[J].生物技术通报,2006,(S1):445-449.
    [286]张阳,王庆奎,陈成勋,等.尾部溃烂与健康的半滑舌鳎血液生理生化指标的比较[J].安徽农业科学,2011,v.39;No.335(10):5907-5908+5921.
    [287]徐晓津,徐斌,王军,等.大黄鱼感染哈维氏弧菌后血液生化指标的变化及组织病理学观察[J].水产学报,2010,v.34(04):618-625.
    [288]韩娜娜,史成银.血液指标在鱼类学研究中的应用[J].安徽农业科学,2010,v.38;No.322(33):18877-18878+18880.
    [289]Kim Y. S., Ke F., Zhang Q. Y. Effect of beta-glucan on activity of antioxidant enzymes and Mx gene expression in virus infected grass carp[J]. Fish Shellfish Immunol,2009,27(2):336-340.
    [290]Zurcher T., Pavlovic J., Staeheli P. Mechanism of human MxA protein action:variants with changed antiviral properties[J]. EMBO J,1992,11(4):1657-1661.
    [291]Zurcher T., Pavlovic J., Staeheli P. Nuclear localization of mouse Mxl protein is necessary for inhibition of influenza virus[J]. J Virol,1992,66(8):5059-5066.
    [292]Lee Y. H., Ha Y., Chae C. Expression of interferon-alpha and Mx protein in the livers of pigs experimentally infected with swine hepatitis E virus[J]. J Comp Pathol,2010,142(2-3):187-192.
    [293]Sasaki K.,Yoneda A.,Ninomiya A., et al. Both antiviral activity and intracellular localization of chicken Mx protein depend on a polymorphism at amino acid position 631[J]. Biochem Biophys Res Commun, 2013.430(1):161-166.
    [294]Altmann S. M.,Mellon M. T.,Johnson M. C., et al. Cloning and characterization of an Mx gene and its corresponding promoter from the zebrafish. Danio rerio[J]. Dev Comp Immunol,2004,28(4):295-306.
    [295]Zhang Y.B.. Gui J.F.. Molecular regulation of interferon antiviral response in fish[J].Dev Comp Immunol, 2012,38(2):193-202.
    [296]Arnheiter H.. Haller O. Mx gene control of interferon action:different kinetics of the antiviral state against influenza virus and vesicular stomatitis virus[J].J Virol,1983.47(3):626-630.
    [297]Peng L.. Yang C.,Su J. Protective roles of grass carp Ctenophaiyngodon idellu Mx isoforms against grass carp reovirus[J]. PLoS One,2012.7(12):e52142.
    [298]Su J., Yang C. Zhu Z., et al. Enhanced grass carp reovirus resistance of Mx-transgenic rare minnow (Gobiocypris rams)[J]. Fish Shellfish Immunol,2009.26(6):828-835.
    [299]夏瑞,陆旺金,李奸国.一种改淑良的扩增cDNA5’未端的方法[J].园艺学报,2008.(10):1533-1538.
    [300]Haller O.,Kochs G., Weber F. Interferon. Mx. and viral countermeasures[J]. Cytokine Growth Factor Rev. 2007.18(5-6):425-433.
    [301]Zurcher T.,Pavlovic J., Staeheli P. Mouse Mx2 protein inhibits vesicular stomatitis virus but not influenza virus[J]. Virology 1992,187(2):796-800.
    [302]Altmann S. M.,Mellon M. T.,Distel D. L., et al Molecular and functional analysis of an interferon gene from the zebrafish, Danio rerio[J]. J Virol.2003,77(3):1992-2002.
    [303]Plant K.. P., Thune R. L. Cloning and characterisation of a channel catfish (Ictalurus punctuius)Mx gene[J]. Fish Shellfish Immunol,2004.16(3):391-405.
    [304]Trobridge G.D., Chiou P. P., Leong J. A. Cloning of the rainbow trout (Oncarhynchus mykisx) Mx2 and Mx3 cDNAs and characterization of trout Mx protein expression in salmon cells[J]. J Virol.1997.71(7): 5304-5311.
    [305]Fernandez-Trujillo M. A., Novel P.. Manchado M., el al. Three Mx genes with differential response to VNNV infection have been identified in Gilthead seabream (Sparus aurata)[J]. Mol Immunol, 2011.48(9-10):1216-1223.
    [306]Zenke K., Kim K. H. Molecular cloning and expression analysis of three Mx isoforms of rock bream, Oplegnathm fascialm[J]. Fish Shellfish Immunol.2009.26(4):599-605.
    [307]Robertsen B.. Trobridge G.,Leong J. A. Molecular cloning of double-stranded RNA inducible Mx genes from Atlantic salmon (Salmo salar L.)[J]. Dev Comp Immunol.1997.21(5):397-412.
    [308]Novel P., Fernandez-Trujillo M. A., Gallardo-Galvez J. B.. el al. Two Mx genes identified in European sea bass (Dicentrarchus labrax) respond differently to VNNV infection[J].Vet Immunol Immunopathol. 2013.
    [309]Zhang Y. B., Li Q., Gui J. F. Differential expression of two Carassius auratus Mx genes in cultured CAB cells induced by grass carp hemorrhage virus and interferon[J]. Immunogenetics,2004,56(1):68-75.
    [310]彭丽敏.草鱼Mx基因的克隆及表达特征的研究[D].西北农林科技大学,2012.
    [311]Samanta M., Basu M., Swain B., et al. Molecular cloning and characterization of Toll-like receptor 3, and inductive expression analysis of type I IFN, Mx and pro-inflammatory cytokines in the Indian carp, rohu (Labeo rohita)[J]. Mol Biol Rep,2013,40(1):225-235.
    [312]Das B. K., Ellis A. E., Collet B. Induction and persistence of Mx protein in tissues, blood and plasma of Atlantic salmon parr, Salmo salar, injected with poly Ⅰ:C[J]. Fish Shellfish Immunol,2009,26(1):40-48.
    [313]Tafalla C., Chico V., Perez L., et al. In vitro and in vivo differential expression of rainbow trout (Oncorhynchus mykiss) Mx isoforms in response to viral haemorrhagic septicaemia virus (VHSV) G gene, poly I:C and VHSV[J]. Fish Shellfish Immunol,2007,23(1):210-221.
    [314]Fernandez-Trujillo A., Ferro P., Garcia-Rosado E., et al. Poly Ⅰ:C induces Mx transcription and promotes an antiviral state against sole aquabirnavirus in the flatfish Senegalese sole (Solea senegalensis Kaup)[J]. Fish Shellfish Immunol,2008,24(3):279-285.
    [315]Das B. K., Urquhart K., Ellis A. E., et al. Induction of Mx protein in Atlantic cod with poly 1:C: immuno-cross reactive studies of antibodies to Atlantic salmon Mx with Atlantic cod[J]. Fish Shellfish Immunol,2008,25(3):321-324.
    [316]邵健忠,毛树坚,沈一雨,等.草鱼出血病两种病原病毒的分离和致病性的研究[J].杭州大学学报(自然科学版),1990,(01):74-79.
    [317]Doyle L. A., Wang W. L., Dal Cin P., et al. MUC4 is a sensitive and extremely useful marker for sclerosing epithelioid fibrosarcoma:association with FUS gene rearrangement J]. Am J Surg Pathol, 2012,36(10):1444-1451.
    [318]Chen S. M., Lin W., Liu X., et al. Significance of human telomerase RNA gene amplification detection for cervical cancer screening[J]. Asian Pac J Cancer Prev,2012,13(5):2063-2068.
    [319]Kitao Yoichi, Kono Tomoya, Korenaga Hiroki, et al. Characterization and expression analysis of type I interferon in common carp Cyprinuscarpio L[J]. Mol Immunol,2009,46(13):2548-2556.
    [320]Milev-Milovanovic Ivanka, Majji Sai, Thodima Venkata, et al. Identification and expression analyses of poly [I:C]-stimulated genes in channel catfish (Ictalurus punctatns)[J]. Fish Shellfish Immunol,2009,26(5): 811-820.
    [321]Yu F. F., Zhang Y. B., Liu T. K., et al. Fish virus-induced interferon exerts antiviral function through Statl pathway[J]. Mol Immunol,2010,47(14):2330-2341.
    [322]Li Dongming, Lin Gang, Yu Xinjian, et al. Immunoprotection of grass carp(Ctenopharyngodon idella) with recombinant interferon (rCiIFN) against GCHV infection[J]. Aquaculture,2013,388-391(0):42-48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700