玉米Wrk1基因编码ZmTUBB5蛋白影响姊妹染色单体的分离和胚乳的发育
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米籽粒的大型胚乳不仅是胚发育的重要营养器官,而且还是人类最主要的粮食产量和工业原材料的来源,这些特点使得玉米成为最重要的农作物。人们对玉米胚乳发育的各个时期非常清楚,在双受精之后,受精极核进行一段时间的游离核分裂,随后这些游离核经历细胞化形成正常的胚乳细胞,并通过快速的有丝分裂增殖胚乳细胞,之后分化形成四种不同类型的细胞。然而我们对胚乳发育的分子机制目前还了解得非常少。
     1.本课题分析了Wrinkled kernell(Wrk1)籽粒皱缩突变体的特征。突变体成熟的籽粒表现出胚乳顶部皱缩和籽粒变小,并且这种影响受剂量效应控制;苗期植株虽然相对较小,但是却能正常发育。
     2.对发育过程中10DAP、12DAP和16DAP籽粒的细胞切片观察发现,Wrkl基因对胚乳发育的影响主要体现在淀粉胚乳细胞和转移层细胞的形成。同时,突变体5DAP的胚乳组织小于野生型的,而7DAP的胚乳则远小于野生型,并表现出不规则的胚乳形态和细胞生长发育严重受阻。这一结果暗示Wrkl基因可能参与胚乳细胞有丝分裂。
     3.利用α-tubulir抗体对纺锤体进行免疫染色,发现突变体胚乳细胞的姊妹染色单体在有丝分裂后期的分离过程中出现缺陷,主要表现在染色体桥的形成和染色体滞后。
     4.利用图位克隆法将Wrkl基因定位在3号染色体350-kb的候选区间内,该区间含有三个注释基因,而其中只有编码β-tubulin5蛋白的基因发生突变,该基因的3’端存在一个C到T的改变,这一点突变使该基因提前出现终止密码子。突变体截短的ZmTUBB5蛋白完全缺失了C端尾巴。
     5.转基因结果表明,含有更多突变型ZmTubb5基因的籽粒顶部会出现皱缩。
     以上结果表明Wrk1基因编码ZmTUBB5蛋白,该蛋白是胚乳发育和细胞有丝分裂的重要因子。
The large endosperm of maize is a nutritive tissue for embryo development, but also important for the primary food products and industrial applications, which make maize the central crop of agriculture. It is clear that maize endosperm develops from the fertilized central cell, originates with repeated free-nuclear divisions followed by cellularization and intensive mitosis, and subsequently forms four differential cell types. Yet the regulation of maize endosperm development remains poorly understood.
     1. Here, we report the molecular characterization of a Wrinkled kernell (Wrkl) mutant in maize. The endosperm of the Wrkl mutant is deeply furrowed and impacted by gene dosage, whereas the seedling is small but vigorous.
     2. The section of kernel at10,12and16DAP (day after pollination) showed that the effects of Wrk1mutation are manifest in formation of starch endosperm cells and transfer layer cells. Size of endosperm at5DAP is much smaller than wild type, and the situation is aggravated at7DAP, showing that the endosperm gets defective in morphology and cell growth. The results indicated that Wrk1may be involved in mitosis of endosperm cell.
     3. Immunostaining of spindle by β-tubulin antibody at anaphase of mitosis in endosperm cells revealed that Wrkl mutant is defective in sister chromatid segregation resulting in chromosome bridge and chromosome lagging.
     4. Utilized the positional cloning strategy, we mapped the causative mutation to a350-kb region, which contains three predicted gene models. A gene model encoding β-tubulin5protein shows a C to T transition leading to a premature stop codon at the3'end. The truncated ZmTUBB5completely lacks C-terminal tail of isotype-defining region.
     5. Transformed kernels with exceeded mutation allele of ZmTubb5versus normal allele showed wrinkled crow.
     These results demonstrate that Wrkl encodes the ZmTUBB5which is critical for endosperm development and mitosis in maize.
引文
[1]. Ciferri C, Pasqualato S, Screpanti E et al:Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell 2008,133(3):427-439.
    [2]. Sabelli PA, Larkins BA:The development of endosperm in grasses. Plant Physiol 2009, 149(1):14-26.
    [3]. Cheeseman IM, Desai A:Molecular architecture of the kinetochore-microtubule interface. Nat Rev Mol Cell Bio 2008,9(1):33-46.
    [4]. Becraft PW, Gutierrez-Marcos J:Endosperm development:dynamic processes and cellular innovations underlying sibling altruism. Wiley Interdiscip Rev Dev Biol 2012, 1(4):579-593.
    [5]. Olsen O-A:Endosperm development:cellularization and cell fate specification. Annu Rev Plant Biol 2001,52(1):233-267.
    [6]. Nowack MK, Grini PE, Jakoby MJ et al.:A positive signal from the fertilization of the egg cell sets off endosperm proliferation in angiosperm embryogenesis. Nat Genet 2006,38(1):63-67.
    [7]. Brown R, Lemmon BE, Nguyen H et al.:Development of endosperm in Arabidopsis thaliana. Sex Plant Reprod 1999,12(1):32-42.
    [8]. Brown RC, Lemmon BE, Olsen O-A:Endosperm development in barley:microtubule involvement in the morphogenetic pathway. Plant Cell 1994,6(9):1241-1252.
    [9]. Olsen O-A:Nuclear endosperm development in cereals and Arabidopsis thaliana. Plant Cell 2004, 16(suppl 1):S214-S227.
    [10]. Pignocchi C, Minns GE, Nesi N et al:ENDOSPERM DEFECTIVE1 is a novel microtubule-associated protein essential for seed development in Arabidopsis. Plant Cell 2009, 21(1):90-105.
    [11]. Gutierrez-Marcos JF, Dal Pra M, Giulini A et al.:empty pericarp4 encodes a mitochondrion-targeted pentatricopeptide repeat protein necessary for seed development and plant growth in maize. Plant Cell 2007,19(1):196-210.
    [12]. Liu YJ, Xiu ZH, Meeley R et al.:Empty pericarps encodes a pentatricopeptide repeat protein that is required for mitochondrial RNA editing and seed development in maize. Plant Cell 2013, 25(3):868-883.
    [13]. Kim SR, Yang JI, Moon S et al.:Rice OGR1 encodes a pentatricopeptide repeat-DYW protein and is essential for RNA editing in mitochondria. Plant J 2009,59(5):738-749.
    [14]. Sosso D, Mbelo S, Vernoud V et al.:PPR2263, a DYW-subgroup pentatricopeptide repeat protein, is required for mitochondrial nad5 and cob transcript editing, mitochondrion biogenesis, and maize growth. Plant Cell 2012,24(2):676-691.
    [15]. Manavski N, Guyon V, Meurer J et al:An essential pentatricopeptide repeat protein facilitates 5' maturation and translation initiation of rps3 mRNA in maize mitochondria. Plant Cell 2012, 24(7):3087-3105.
    [16]. Da Costa e Silva O, Lorbiecke R, Garg P et al.:The Etched1 gene of Zea mays (L.) encodes a zinc ribbon protein that belongs to the transcriptionally active chromosome (TAC) of plastids and is similar to the transcription factor TFIIS. Plant J 2004,38(6):923-939.
    [17]. Myers AM, James MG, Lin Q et al.:Maize opaque5 encodes monogalactosyldiacylglycerol synthase and specifically affects galactolipids necessary for amyloplast and chloroplast function. Plant Cell 2011,23(6):2331-2347.
    [18]. Hannah LC, James M:The complexities of starch biosynthesis in cereal endosperms. Curr Opin Biotech 2008,19(2):160-165.
    [19]. Li CY, Li WH, Li C et al:Starch synthesis and programmed cell death during endosperm development in triticale (× Triticosecale Wittmack). JIntegr Plant Biol 2010,52(7):602-615.
    [20]. Kawakatsu T, Takaiwa F:Cereal seed storage protein synthesis:fundamental processes for recombinant protein production in cereal grains. Plant Biotechnol J 2010,8(9):939-953.
    [21]. Boothe J, Nykiforuk C, Shen Y et al:Seed-based expression systems for plant molecular farming. Plant Biotechnol J 2010,8(5):588-606.
    [22]. Reyes FC, Chung T, Holding D et al.:Delivery of prolamins to the protein storage vacuole in maize aleurone cells. Plant Cell 2011,23(2):769-784.
    [23]. Wang Y, Ren Y, Liu X et al:OsRab5a regulates endomembrane organization and storage protein trafficking in rice endosperm cells. Plant.J 2010,64(5):812-824.
    [24]. Arcalis E, Stadlmann J, Marcel S et al.:The changing fate of a secretory glycoprotein in developing maize endosperm. Plant Physiol 2010,153(2):693-702.
    [25]. Coleman CE, Herman EM, Takasaki K et al.:The maize gamma-zein sequesters alpha-zein and stabilizes its accumulation in protein bodies of transgenic tobacco endosperm. Plant Cell 1996, 8(12):2335-2345.
    [26]. Kim CS, Woo Y-m, Clore AM et aL.:Zein protein interactions, rather than the asymmetric distribution of zein mRNAs on endoplasmic reticulum membranes, influence protein body formation in maize endosperm. Plant Cell 2002,14(3):655-672.
    [27]. Wu Y, Holding DR, Messing J:Gamma-zeins are essential for endosperm modification in quality protein maize. Proc Natl Acad Sci USA 2010,107(29):12810-12815.
    [28]. Saito Y, Kishida K, Takata K et al.:A green fluorescent protein fused to rice prolamin forms protein body-like structures in transgenic rice. JExp Bot 2009,60(2):615-627.
    [29]. Doan DN, Linnestad C, Olsen OA:Isolation of molecular markers from the barley endosperm coenocyte and the surrounding nucellus cell layers. Plant Mol Biol 1996,31(4):877-886.
    [30]. Gomez E, Royo J, Guo Y et al.:Establishment of cereal endosperm expression domains: identification and properties of a maize transfer cell-specific transcription factor, ZmMRP-1. Plant Cell 2002,14(3):599-610.
    [31]. Gutierrez-Marcos JF, Costa LM, Biderre-Petit C et al.:maternally expressed genel is a novel maize endosperm transfer cell-specific gene with a maternal parent-of-origin pattern of expression. Plant Cell 2004,16(5):1288-1301.
    [32], Gomez E, Royo J, Guo Y et al.:Establishment of cereal endosperm expression domains: identification and properties of a maize transfer cell-specific transcription factor, ZmMRP-1. Plant Cell 2002,14(3):599-610.
    [33]. Marshall E, Costa LM, Gutierrez-Marcos J:Cysteine-rich peptides (CRPs) mediate diverse aspects of cell-cell communication in plant reproduction and development. J Exp Bot 2011, 62(5):1677-1686.
    [34]. Costa LM, Gutierrez-Marcos JF, Brutnell TP et al.:The globbyl-1 (glol-1) mutation disrupts nuclear and cell division in the developing maize seed causing alterations in endosperm cell fate and tissue differentiation. Development 2003,130(20):5009-5017.
    [35]. Drea S, Leader DJ, Arnold BC et al.:Systematic spatial analysis of gene expression during wheat caryopsis development. Plant Cell 2005,17(8):2172-2185.
    [36]. Gutierrez-Marcos JF, Costa LM, Evans MM:Maternal gametophytic baseless] is required for development of the central cell and early endosperm patterning in maize (Zea mays). Genetics 2006, 174(l):317-329.
    [37]. Magnard JL, Lehouque G, Massonneau A et al.:ZmEBE genes show a novel, continuous expression pattern in the central cell before fertilization and in specific domains of the resulting endosperm after fertilization. Plant Mol Biol 2003,53(6):821-836.
    [38]. Cheng WH, Taliercio EW, Chourey PS:The miniaturel seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell 1996,8(6):971-983.
    [39]. Cheng WH, Taliercio EW, Chourey PS:Sugars modulate an unusual mode of control of the cell-wall invertase gene (Incwl) through its 3'untranslated region in a cell suspension culture of maize. Proc Natl Acad Sci USA 1999,96(18):10512-10517.
    [40]. Maitz M, Santandrea G, Zhang Z et al.:rgfl, a mutation reducing grain filling in maize through effects on basal endosperm and pedicel development. Plant J 2000,23(1):29-42.
    [41]. Forestan C, Meda S, Varotto S:ZmPIN1-mediated auxin transport is related to cellular differentiation during maize embryogenesis and endosperm development. Plant Physiol 2010, 152(3):1373-1390.
    [42]. Le CS, Schmelz EA, Chourey PS:Sugar levels regulate tryptophan-dependent auxin biosynthesis in developing maize kernels. Plant Physiol 2010,153(1):306-318.
    [43]. Guillon F, Bouchet B, Jamme F et al.:Brachypodium distachyon grain:characterization of endosperm cell walls. JExp Bot 2011,62(3):1001-1015.
    [44]. Becraft PW, Li K, Dey N et al.:The maize dekl gene functions in embryonic pattern formation and cell fate specification. Development 2002,129(22):5217-5225.
    [45]. Lid SE, Al RH, Krekling T et al.:The maize disorganized aleurone layer 1 and 2 (dill, dill) mutants lack control of the mitotic division plane in the aleurone layer of developing endosperm. Planta 2004,218(3):370-378.
    [46]. Wisniewski JP, Rogowsky PM:Vacuolar H+ -translocating inorganic pyrophosphatase (Vppl) marks partial aleurone cell fate in cereal endosperm development. Plant Mol Biol 2004,56(3):325-337.
    [47]. Becraft PW, Asuncion-Crabb Y:Positional cues specify and maintain aleurone cell fate in maize endosperm development. Development 2000,127(18):4039-4048.
    [48]. Becraft PW, Stinard PS, McCarty DR:CRINKLY4:A TNFR-like receptor kinase involved in maize epidermal differentiation. Science 1996,273(5280):1406-1409.
    [49]. Lid SE, Gruis D, Jung R et al:The defective kernel 1(dekl) gene required for aleurone cell development in the endosperm of maize grains encodes a membrane protein of the calpain gene superfamily. Proc Natl Acad Sci USA 2002,99(8):5460-5465.
    [50]. Shen B, Li C, Min Z et al:sall determines the number of aleurone cell layers in maize endosperm and encodes a class E vacuolar sorting protein. Proc Natl Acad Sci USA 2003,100(11):6552-6557.
    [51]. Yi G, Lauter AM, Scott MP et al.:The thick aleuronel mutant defines a negative regulation of maize aleurone cell fate that functions downstream of defective kernell. Plant Physiol 2011, 156(4):1826-1836.
    [52]. Kawakatsu T, Yamamoto MP, Touno SM et al.:Compensation and interaction between RISBZ1 and RPBF during grain filling in rice. Plant J 2009,59(6):908-920.
    [53]. Yamamoto MP, Onodera Y, Touno SM et al:Synergism between RPBF Dof and RISBZ1 bZIP activators in the regulation of rice seed expression genes. Plant Physiol 2006,141(4):1694-1707.
    [54]. Becraft PW, Yi G:Regulation of aleurone development in cereal grains. J Exp Bot 2011, 62(5):1669-1675.
    [55]. Costa LM, Gutierrez-Marcos JF, Dickinson HG:More than a yolk:the short life and complex times of the plant endosperm. Trends Plant Sci 2004,9(10):507-514.
    [56]. Cossegal M, Vernoud V, Depege N et al.:The embryo surrounding region. In:Endosperm. Springer; 2007:57-71.
    [57]. Dievart A, Clark SE:LRR-containing receptors regulating plant development and defense. Development 2004,131(2):251-261.
    [58], Gish LA, Clark SE:The RLK/Pelle family of kinases. Plant 72011,66(1):117-127.
    [59]. Balandin M, Royo J, Gomez E et al.:A protective role for the embryo surrounding region of the maize endosperm, as evidenced by the characterisation of ZmESR-6, a defensin gene specifically expressed in this region. Plant Mol Biol 2005,58(2):269-282.
    [60]. Bate NJ, Niu X, Wang Y et al.:An invertase inhibitor from maize localizes to the embryo surrounding region during early kernel development. Plant Physiol 2004,134(1):246-254.
    [61]. Inze D, De Veylder L:Cell cycle regulation in plant development. Annu Rev Genet 2006,40:77-105.
    [62]. Dante RA, Sabelli PA, Nguyen HN et al.:Cyclin-dependent kinase complexes in developing maize endosperm:evidence for differential expression and functional specialization. Planta 2014, 239(2):493-509.
    [63]. Peters JM:The anaphase promoting complex/cyclosome:a machine designed to destroy. Nat Rev Mol Cell Biol 2006,7(9):644-656.
    [64]. Sabelli PA, Larkins BA:Regulation and function of retinoblastoma-related plant genes. Plant Sci 2009,177(6):540-548.
    [65]. Sabelli PA, Liu Y, Dante RA et al.:Control of cell proliferation, endoreduplication, cell size, and cell death by the retinoblastoma-related pathway in maize endosperm. Proc Natl Acad Sci U S A 2013,110(19):E1827-1836.
    [66]. Steinborn K, Maulbetsch C, Priester B et al:The Arabidopsis PILZ group genes encode tubulin-folding cofactor orthologs required for cell division but not cell growth. Gene Dev 2002, 16(8):959-971.
    [67]. Tzafrir I, McElver JA, Liu Cm CM et al:Diversity of TITAN functions in Arabidopsis seed development. Plant Physiol 2002,128(1):38-51.
    [68]. De Veylder L, Larkin JC, Schnittger A:Molecular control and function of endoreplication in development and physiology. Trends Plant Sci 2011,16(11):624-634.
    [69]. Chevalier C, Nafati M, Mathieu-Rivet E et al:Elucidating the functional role of endoreduplication in tomato fruit development. Ann Bot 2011,107(7):1159-1169.
    [70]. Grafi G, Larkins BA:Endoreduplication in maize endosperm:involvement of M phase-promoting factor inhibition and induction of S phase-related kinases. Science 1995,269(5228):1262-1264.
    [71]. Leiva-Neto JT, Grafi G, Sabelli PA et al:A dominant negative mutant of cyclin-dependent kinase A reduces endoreduplication but not cell size or gene expression in maize endosperm. Plant Cell 2004, 16(7):1854-1869.
    [72]. Coelho CM, Dante RA, Sabelli PA et al:Cyclin-dependent kinase inhibitors in maize endosperm and their potential role in endoreduplication. Plant Physiol 2005,138(4):2323-2336.
    [73]. Zhang H, Dawe RK:Mechanisms of plant spindle formation. Chromosome Res 2011, 19(3):335-344.
    [74]. Caudron M, Bunt G, Bastiaens P et al.:Spatial coordination of spindle assembly by chromosome-mediated signaling gradients. Science 2005,309(5739):1373-1376.
    [75]. Kalab P, Pralle A, Isacoff EY et al:Analysis of a RanGTP-regulated gradient in mitotic somatic cells. Nature 2006,440(7084):697-701.
    [76]. Kalab P, Heald R:The RanGTP gradient-a GPS for the mitotic spindle. J Cell Sci 2008,121(Pt 10):1577-1586.
    [77]. Vos JW, Pieuchot L, Evrard JL et al.:The plant TPX2 protein regulates prospindle assembly before nuclear envelope breakdown. Plant Cell 2008,20(10):2783-2797.
    [78]. Lee JY, Lee HS, Wi SJ et al.:Dual functions of Nicotiana benthamiana Rael in interphase and mitosis. Plant J 2009,59(2):278-291.
    [79]. Lloyd C, Chan J:Not so divided:the common basis of plant and animal cell division. Nat Rev Mol Cell Biol 2006,7(2):147-152.
    [80]. Ambrose JC, Cyr R:Mitotic spindle organization by the preprophase band. Mol Plant 2008, 1(6):950-960.
    [81]. Yoneda A, Akatsuka M, Hoshino H et al.:Decision of spindle poles and division plane by double preprophase bands in a BY-2 cell line expressing GFP-tubulin. Plant Cell Physiol 2005, 46(3):531-538.
    [82]. Xu XM, Zhao Q, Rodrigo-Peiris T et al.:RanGAP1 is a continuous marker of the Arabidopsis cell division plane. Proc Natl Acad Sci USA 2008,105(47):18637-18642.
    [83]. Wigge PA, Kilmartin JV:The Ndc80p complex from Saccharomyces cerevisiae contains conserved centromere components and has a function in chromosome segregation. J Cell Biol 2001, 152(2):349-360.
    [84]. Dawe RK, Cande WZ:Induction of centromeric activity in maize by suppressor ofmeiotic drive 1. Proc Natl Acad Sci U S A 1996,93(16):8512-8517.
    [85]. DeLuca JG, Dong Y, Hergert P et al:Hecl and Nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. Mol Biol Cell 2005,16(2):519-531.
    [86]. Akiyoshi B, Sarangapani KK, Powers AF et al.:Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 2010,468(7323):576-579.
    [87]. Du Y, Dawe RK:Maize NDC80 is a constitutive feature of the central kinetochore. Chromosome Res 2007,15(6):767-775.
    [88]. Alushin GM, Ramey VH, Pasqualato S et al.:The Ndc80 kinetochore complex forms oligomeric arrays along microtubules. Nature 2010,467(7317):805-810.
    [89]. Powers AF, Franck AD, Gestaut DR et al.:The Ndc80 kinetochore complex forms load-bearing attachments to dynamic microtubule tips via biased diffusion. Cell 2009,136(5):865-875.
    [90]. Wood KW, Sakowicz R, Goldstein LS et al.:CENP-E is a plus end-directed kinetochore motor required for metaphase chromosome alignment. Cell 1997,91(3):357-366.
    [91]. Schaar BT, Chan GK, Maddox P et al.:CENP-E function at kinetochores is essential for chromosome alignment. J Cell Biol 1997,139(6):1373-1382.
    [92], Yang Z, Tulu US, Wadsworth P et al.:Kinetochore dynein is required for chromosome motion and congression independent of the spindle checkpoint. Curr Biol 2007,17(11):973-980.
    [93]. Cai S, O'Connell CB, Khodjakov A et al.:Chromosome congression in the absence of kinetochore fibres. Nat Cell Biol 2009,11(7):832-838.
    [94]. Gorbsky GJ, Sammak PJ, Borisy GG:Chromosomes move poleward in anaphase along stationary microtubules that coordinately disassemble from their kinetochore ends. J Cell Biol 1987, 104(1):9-18.
    [95]. Wordeman L, Mitchison TJ:Identification and partial characterization of mitotic centromere-associated kinesin, a kinesin-related protein that associates with centromeres during mitosis. J Cell Biol 1995,128(1):95-104.
    [96]. Kline-Smith SL, Khodjakov A, Hergert P et al.:Depletion of centromeric MCAK leads to chromosome congression and segregation defects due to improper kinetochore attachments. Mol Biol Cell 2004,15(3):1146-1159.
    [97]. Rogers GC, Rogers SL, Schwimmer TA et al.:Two mitotic kinesins cooperate to drive sister chromatid separation during anaphase. Nature 2004,427(6972):364-370.
    [98]. Walczak CE, Cai S, Khodjakov A:Mechanisms of chromosome behaviour during mitosis. Nat Rev Mol Cell Biol 2010, 11(2):91-102.
    [99]. Buster DW, Zhang D, Sharp DJ:Poleward tubulin flux in spindles:regulation and function in mitotic cells. Mol Biol Cell 2007,18(8):3094-3104.
    [100]. Ganem NJ, Upton K, Compton DA:Efficient mitosis in human cells lacking poleward microtubule flux. Curr Biol 2005,15(20):1827-1832.
    [101]. Li Y, Fan C, Xing Y et al:Natural variation in GS5 plays an important role in regulating grain size and yield in rice. Nat Genet 2011,43(12):1266-1269.
    [102]. Ishimaru K, Hirotsu N, Madoka Y et al:Loss of function of the IAA-glucose hydrolase gene TGW6 enhances rice grain weight and increases yield. Nat Genet 2013,45(6):707-711.
    [103]. Cheng W-H, Taliercio EW, Chourey PS:The miniaturel seed locus of maize encodes a cell wall invertase required for normal development of endosperm and maternal cells in the pedicel. Plant Cell 1996,8(6):971-983.
    [104]. LeClere S, Schmelz EA, Chourey PS:Sugar levels regulate tryptophan-dependent auxin biosynthesis in developing maize kernels. Plant Physiol 2010,153(1):306-318.
    [105]. Chourey PS, Li Q-B, Kumar D:Sugar-hormone cross-talk in seed development:two redundant pathways of IAA biosynthesis are regulated differentially in the invertase-deficient miniaturel (mnl) seed mutant in maize. Mol Plant 2010,3(6):1026-1036.
    [106]. Maitz M, Santandrea G, Zhang Z et al:rgfl, a mutation reducing grain filling in maize through effects on basal endosperm and pedicel development. Plant J2000,23(1):29-42.
    [107]. 陈威,陈宗良,宋伟彬,等:玉米胚乳突变体Wrkl基因定位及候选基因预测.玉米科学2013,21(1):27-31.
    [108]. Pignatta D, Gehring M:Imprinting meets genomics:new insights and new challenges. Curr Opin Plant Biol 2012,15(5):530-535.
    [109]. Costa LM, Yuan J, Rouster J et al.:Maternal control of nutrient allocation in plant seeds by genomic imprinting. Curr Biol 2012,22(2):160-165.
    [110]. Kim Y, Schumaker KS, Zhu JK:EMS mutagenesis of Arabidopsis. Methods Mol Biol 2006, 323:101-103.
    [111]. Yutin N, Koonin EV:Archaeal origin of tubulin. Biol Direct 2012,7(10).
    [112]. Tamura K, Stecher G, Peterson D et al.:MEGA6:Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013,30(12):2725-2729.
    [113]. Kelley LA, Sternberg MJ:Protein structure prediction on the Web:a case study using the Phyre server. Nat Protoc 2009,4(3):363-371.
    [114]. Tenaillon MI, Sawkins MC, Long AD et al.:Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci U S A 2001, 98(16):9161-9166.
    [115]. Buckler ES, Gaut BS, McMullen MD:Molecular and functional diversity of maize. Curr Opin Plant Biol 2006,9(2):172-176.
    [116]. Chia JM, Song C, Bradbury PJ et al.:Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet 2012,44(7):803-807.
    [117]. Bao Y, Kost B, Chua NH:Reduced expression of α - tubulin genes in Arabidopsis thaliana specifically affects root growth and morphology, root hair development and root gravitropism. Plant J2001,28(2):145-157.
    [118]. Ishida T, Kaneko Y, Iwano M et al.:Helical micro tubule arrays in a collection of twisting tubulin mutants of Arabidopsis thaliana. Proc Natl Acad Sci USA 2007,104(20):8544-8549.
    [119]. Xiong X, Xu D, Yang Z et al:A single amino-acid substitution at lysine 40 of an Arabidopsis thaliana alpha-tubulin causes extensive cell proliferation and expansion defects. J Integr Plant Biol 2013,55(3):209-220.
    [120]. Breviario D, Giani S, Morello L:Multiple tubulins:evolutionary aspects and biological implications. Plant J 2013,75(2):202-218.
    [121]. Duan J, Gorovsky MA:Both carboxy-terminal tails of alpha-and beta-tubulin are essential, but either one will suffice. Curr Biol 2002,12(4):313-316.
    [122]. Umbreit NT, Gestaut DR, Tien JF et al.:The Ndc80 kinetochore complex directly modulates microtubule dynamics. Proc Natl Acad Sci U S A 2012,109(40):16113-16118.
    [123]. Wei RR, Al-Bassam J, Harrison SC:The Ndc80/HEC1 complex is a contact point for kinetochore-microtubule attachment. Nat Struct Mol Biol 2007,14(1):54-59.
    [124]. Pettersen EF, Goddard TD, Huang CC et al.:UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 2004,25(13):1605-1612.
    [125]. Brown PJ, Upadyayula N, Mahone GS et al.:Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet 2011,7(11):e1002383.
    [126]. Song X-J, Huang W, Shi M et al.:A QTL for rice grain width and weight encodes a previously unknown RING-type E3 ubiquitin ligase. Nat Genet 2007,39(5):623-630.
    [127]. Ashikari M, Sakakibara H, Lin S et al:Cytokinin oxidase regulates rice grain production. Science 2005,309(5735):741-745.
    [128]. Mao H, Sun S, Yao J et al:Linking differential domain functions of the GS3 protein to natural variation of grain size in rice. Proc Natl Acad Sci USA 2010,107(45):19579-19584.
    [129]. Bommert P, Nagasawa NS, Jackson D:Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nat Genet 2013,45(3):334-337.
    [130]. Salvi S, Sponza G, Morgante M et al:Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci U S A 2007, 104(27):11376-11381.
    [131]. Hung H-Y, Shannon LM, Tian F et al:ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proc Natl Acad Sci U S A 2012, 109(28):E1913-E1921.
    [132]. Yu H, Xie W, Wang J et al:Gains in QTL detection using an ultra-high density SNP map based on population sequencing relative to traditional RFLP/SSR markers. PloS one 2011,6(3):e17595.
    [133]. Vales M, Schon C, Capettini F et al.:Effect of population size on the estimation of QTL:a test using resistance to barley stripe rust. TheorAppl Genet 2005,111(7):1260-1270.
    [134]. Briggs WH, McMullen MD, Gaut BS et al.:Linkage mapping of domestication loci in a large maize-teosinte backcross resource. Genetics 2007,177(3):1915-1928.
    [135]. Schuster SC:Next-generation sequencing transforms today's biology. Nat Methods 2007, 5(1):16-18.
    [136]. Varshney RK, Nayak SN, May GD et al.:Next-generation sequencing technologies and their implications for crop genetics and breeding. Trends Biotechnol 2009,27(9):522-530.
    [137]. Mardis ER:The impact of next-generation sequencing technology on genetics. Trends Genet 2008, 24(3):133-141.
    [138]. Gore MA, Chia J-M, Elshire RJ et al:A first-generation haplotype map of maize. Science 2009, 326(5956):1115-1117.
    [139]. Schnable PS, Ware D, Fulton RS et al.:The B73 maize genome:complexity, diversity, and dynamics. Science 2009,326(5956):1112-1115.
    [140]. Lai J, Li R, Xu X et al.:Genome-wide patterns of genetic variation among elite maize inbred lines. Nat Genet 2010,42(11):1027-1030.
    [141]. Chia J-M, Song C, Bradbury PJ et al.:Maize HapMap2 identifies extant variation from a genome in flux. Nat Genet 2012,44(7):803-807.
    [142]. Elshire RJ, Glaubitz JC, Sun Q et al.:A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PloS one 2011,6(5):e19379.
    [143]. Poland J, Endelman J, Dawson J et al.:Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome 2012,5(3):103-113.
    [144]. Poland JA, Brown PJ, Sorrells ME et al.:Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PloS one 2012,7(2):e32253.
    [145]. Byrne S, Czaban A, Studer B et al.:Genome wide allele frequency fingerprints (GWAFFs) of populations via genotyping by sequencing. PloS one 2013,8(3):e57438.
    [146]. Sonah H, Bastien M, Iquira E et al:An improved genotyping by sequencing (GBS) approach offering increased versatility and efficiency of SNP discovery and genotyping. PloS one 2013, 8(1):e54603.
    [147]. Spindel J, Wright M, Chen C et al:Bridging the genotyping gap:using genotyping by sequencing (GBS) to add high-density SNP markers and new value to traditional bi-parental mapping and breeding populations. Theor Appl Genet 2013,126(11):2699-2716.
    [148]. Huang X, Feng Q, Qian Q et al:High-throughput genotyping by whole-genome resequencing. Genome Res 2009,19(6):1068-1076.
    [149]. Zou G, Zhai G, Feng Q et al:Identification of QTLs for eight agronomically important traits using an ultra-high-density map based on SNPs generated from high-throughput sequencing in sorghum under contrasting photoperiods. JExp Bot 2012,63(15):5451-5462.
    [150]. Gao Z-Y, Zhao S-C, He W-M et al:Dissecting yield-associated loci in super hybrid rice by resequencing recombinant inbred lines and improving parental genome sequences. Proc Natl Acad Sci USA 2013,110(35):14492-14497.
    [151]. Xu X, Zeng L, Tao Y et al:Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. Proc Natl Acad Sci USA 2013,110(33):13469-13474.
    [152]. Tan B-C, Chen Z, Shen Y et al:Identification of an active new mutator transposable element in maize. G3 (Bethesda) 2011, 1(4):293-302.
    [153]. Li H, Durbin R:Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009,25(14):1754-1760.
    [154], McKenna A, Hanna M, Banks E et al:The Genome Analysis Toolkit:a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 2010,20(9):1297-1303.
    [155]. Broman KW, Wu H, Sen S et al:R/qtl:QTL mapping in experimental crosses. Bioinformatics 2003, 19(7):889-890.
    [156]. Van Os H, Andrzejewski S, Bakker E et al:Construction of a 10,000-marker ultradense genetic recombination map of potato:providing a framework for accelerated gene isolation and a genomewide physical map. Genetics 2006,173(2):1075-1087.
    [157]. Sourdille P, Baud S, Leroy P:Detection of linkage between RFLP markers and genes affecting anthocyanin pigmentation in maize (Zea mays L.). Euphytica 1996,91(1):21-30.
    [158]. Gallavotti A, Zhao Q, Kyozuka J et al.:The role of barren stalkl in the architecture of maize. Nature 2004,432(7017):630-635.
    [159]. Beavis W, Smith O, Grant D et al:Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci 1994,34(4):882-896.
    [160]. Austin D, Lee M: Comparative mapping in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize. TheorAppl Genet 1996,92(7):817-826.
    [161]. Winter CM, Austin RS, Blanvillain-Baufume S et al.:LEAFY Target Genes Reveal Floral Regulatory Logic, cis Motifs, and a Link to Biotic Stimulus Response. Dev Cell 2011, 20(4):430-443.
    [162]. Eveland AL, Goldshmidt A, Pautler M et al:Regulatory modules controlling maize inflorescence architecture. Genome Res 2014,24(3):431-443.
    [163]. Lechner E, Leonhardt N, Eisler H et al.:MATH/BTB CRL3 receptors target the homeodomain-leucine zipper ATHB6 to modulate abscisic acid signaling. Dev Cell 2011, 21(6):1116-1128.
    [164]. Till BJ, Reynolds SH, Weil C et al:Discovery of induced point mutations in maize genes by TILLING. BMC Plant Biol 2004,4(1):12.
    [165]. Brutnell TP, Conrad LJ:Transposon tagging using Activator(Ac) in maize. Methods Mol Biol 2003, 236:157-176.
    [166]. McCarty DR, Mark Settles A, Suzuki M et al:Steady-state transposon mutagenesis in inbred maize. Plant J 2005,44(1):52-61.
    [167]. Bommert P, Nardmann J, Vollbrecht E et al.:thick tassel dwarf1 encodes a putative maize ortholog of the Arabidopsis CLAVATA1 leucine-rich repeat receptor-like kinase. Development 2005, 132(6):1235-1245.
    [168]. Taguchi-Shiobara F, Yuan Z, Hake S et al:The fasciated ear2 gene encodes a leucine-rich repeat receptor-like protein that regulates shoot meristem proliferation in maize. Gene Dev 2001, 15(20):2755-2766.
    [169]. Tian F, Bradbury PJ, Brown PJ et al:Genome-wide association study of leaf architecture in the maize nested association mapping population. Nat Genet 2011,43(2):159-162.
    [170]. Vollbrecht E, Springer PS, Goh L et al:Architecture of floral branch systems in maize and related grasses. Nature 2005,436(7054):1119-1126.
    [171]. Barazesh S, McSteen P:Hormonal control of grass inflorescence development. Trends Plant Sci 2008,13(12):656-662.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700