棉属21个种基于原位杂交的核型分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
恰当判别体细胞同源染色体进而获得更准确的基本数据,是核型分析最关键的环节。经典核型分析难以准确做到同源配对而往往失于偏颇,基于原位杂交的核型分析突破了这个瓶颈问题。澄清多倍体棉花的供体亲本,不仅可解决长期争论的理论问题,而且有助于棉花基因组测序首选棉种的决策,在进入全基因组测序时代,这一点非常重要。因此,利用我院现有材料优势,本人就较全面地开展了现有棉种基于原位杂交的核型分析。本研究收集到了21个棉种,涵盖了棉属除K基因组外的A~G和AD等8个基因组。用基因组DNA和rDNA作探针,获得了荧光原位杂交结果,并重点进行了核型分析,取得了较好的结果。现归纳如下:
     四倍体棉种的GISH,明显区分了两个亚组的染色体、其中一亚组染色体明显大于另外一亚组的,进而证实四倍体棉种的异源二倍体结构、棉属A基因组染色体大于D基因组;按照染色体相对长度由长到短编序时,发现亚组染色体的相对长度有交叉现象,即有的属于较小亚组的染色体比较大亚组的要大,这对于经典核型分析来说是无法回避的难题,说明基于原位杂交的核型分析更加准确可靠。
     核型基本参数比较和核型重合率聚类分析表明,阿非利加棉与亚洲棉及草棉都有很大的差异,可能有独特的进化途径,在棉属分类上应该给一个“种”的地位。澳洲棉和奈尔逊氏棉与C基因组斯特提棉有很大的差异,但与比克氏棉也有明显的差异,所以不支持将前两个棉种归到后者代表的G基因组或三个种归为一个基因组的观点。
     本研究用到的4个四倍体棉种,陆地棉与海岛棉亲缘关系最近,黄褐棉与二者及达尔文氏棉的亲缘关系很远。黄褐棉非常特殊,在四倍体棉种进化途径上是一个独立的分枝。进一步支持四倍体棉种两个亚组来源于A和D基因组的推论。四倍体棉种A亚组可能有共同的供体,即阿非利加棉;D亚组的供体分析不十分明朗,但肯定支持D亚组多系起源学说,且认为可能的供体种是雷蒙德氏棉和三裂棉,但雷蒙德氏棉可能不是陆地棉的父本供体。
     定位了二倍体棉种的45S rDNA,明显提高了对随体的鉴别能力。发现随体或45S rDNA位点在棉种的分布有“主区域”的特点,即集中于某些或某一序号染色体上,比如D基因组以第5、9和13号染色体为中心的3个区域。9个二倍体棉种定位了5S rDNA,其中7个棉种都与45S rDNA在同一染色体上,推测棉属两种rDNA可能有高度的共线性。
     核型资料显示棉属整体的进化程度不高。亚洲棉与绿顶棉为二倍体棉种进化程度最高与最低的两个典型。本研究还分析讨论了各个基因组的起源与演化的可能途径。
It is the most critical technology link in the karyotype analysis to distinguish properly homologous chromosomes in mitotic cells and then obtain the accurate basic data about chromosomes. Non-FISH karyotype analysis is difficult to match accurately homologous chromosomes and often makes mistakes. FISH (fluorescent in situ hybridization) based karyotype analysis breaks through the bottleneck. Clarifying parental donors of polyploid cottons not only resolves the issues of long-term theoretical arguments in Gossypium and but also helps to select the prior cotton species for genome sequencing, which is very important in whole-genome sequencing era. Therefore, taking the advantage of materials in our institute, we carried out a comprehensive karyotype analysis of existing cotton species based on FISH. In this study we collected 21 Gossypium species including A, B, C, D, E, F, G genomes and AD genome except K genome. We used genomic DNA (gDNA) and rDNA as probes and obtained the FISH results. The results were as follows:
     GISHs of the tetraploid species showed clearly and directly the two subgenomes of chromosomes, and the chromosomes in one subgenome were generally bigger than those in another, which confirmed the theories that tetraploid cottons were disomic nature and chromosomes from A genome in Gossypium were bigger than the D genome chromosomes. We found that some chromosomes in smaller subgenome were bigger than some in larger one in all tetraploid GISHs, which was very difficult for non-FISH karyotype analysis method to properly match those chromosomes between the two subgenomes mainly according to the chromosome relative lengths from the longest to the shortest, which indicated FISH-based karyotype analysis was more accurate and reliable. Comparisons of the basic parameters of karyotype and cluster analysis of karyotype overlapping percentages showed that G. herbaceum var.africanum was rather different from G. arboreum and G. herbaceum. G. herbaceum var.africanum may have a unique evolution pathway and should be given a "species" status in genus Gossypium. G. australe and G. nelsonii were rather different from C genome species G. sturtianum, and also much different from G. bickii. Therefore the restults did not support the the suggestion that G. australe and G. nelsonii were classed into G. bickii involved G genome or included in the any other same genome with G. bickii.
     The specific relationships among the four tetraploid cottons tested here in this study showed that G. hirsutum was very closer to G. barbadense, whereas these two species including G. darwinii were very distinct from G. mustelinum. And G. mustelinum was very special as it should be an independent branch in the evolution of tetraploid cottons. Data from this study further supported the theory that the two subgenomes of the tetraploid cottons formed from A and D genome species. Probably, A–subgenome of the tetraploid cottons had a common donor, which was G. herbaceum var.africanum. And the detail donor species of D–subgenome for each tetraploid was not very clear, but it was certain that polyphyletic origination theory was supported. Also the possible donors were G. raimondii and G. trilobum. But G. raimondii may not be the donor species of G. hirsutum D-subgenome.
     The distinguishing ability of identification satellite on chromosome was significantly improved, after locating the 45S rDNAs on the diploid cotton chromosomes. The results showed that the distribution of the satellites and the 45S rDNA loci were characterized with the "cluster region". That is they focused on some or a certain number of chromosomes, such as the D genome species had 3 regions with chromosome 5, 9 and 13 as the region center. Moreover, the 5S rDNAs of 9 diploid cottons were located. The results showed that the loci of 5S and 45S rDNAs from seven species were in the same chromosome, speculating that 45S and 5S rDNAs may have a high degree of collinearity.
     The results about karyotype analysis showed the overall evolution level in Gossypium was low. G. arboreum and G. captis-viridis were the two typical species of the highest and lowest evolutional level among the diploid cottons, respectively. Moreover, the possible ways of origin and evolution of each genome were analyzed and discussed in the dissertation.
引文
1.别墅,王坤波,王春英,等.二倍体栽培棉45S rDNA-FISH作图及核型比较.棉花学报,2004,16(4):223-238.
    2.崔荣霞,胡绍安,王坤波,等.长须棉染色体组型分析.中国棉花,1990,17(4):11-12.
    3.胡绍安,崔荣霞,王坤波.棉属野生棉与栽培棉种间杂交新种质创新研究.棉花学报,1993,6(2):7-13.
    4.李懋学,陈瑞阳.关于植物核型分析的标准化问题.武汉植物学研究,1985,3(4):297-302.
    5.刘三宏.四倍体棉种起源与演化的FISH研究. [硕士论文],中国农业科学院,2004
    6.聂汝芝,李懋学.三种野生种和四个栽培棉种的核型研究.植物学报,1985,27(2):113-121.
    7.聂汝芝,李懋学.二倍体野生棉的核型变异和进化.植物学报1989,31(3):178-184.
    8.聂汝芝,李懋学.陆地棉野生半野生种系的细胞学研究.植物学报1993,31(5):333-342.
    9.聂汝芝,李懋学.棉属植物核型研究.北京:科学出版社,1993.
    10.潘家驹.棉花育种学. ,北京,中国农业出版社, 1998:38-40。
    11.钱思颖等.棉属脂酶同功酶的分析.江苏农业学报,1985,1(4):15-20.
    12.凌键,邹美娟,宋国立,等.四倍体栽培棉与二倍体野生棉杂种PMC-FISH研究.棉花学报, 2009, 21(2): 144-152.
    13.宋国立等.改良CTAB法快速提取棉花DNA.棉花学报,1998,10(5):273-275.
    14.宋平,季道藩,许复华.二倍体栽培棉种草棉和亚洲棉的核型比较研究.作物学报,1991,17 (2):102-106.
    15.王春英,王坤波,宋国立,等.棉花gDNA体细胞染色体FISH技术.棉花学报,1999,11(2):79-83.
    16.王坤波.美国棉花资源现状,中国棉花,2008, 35(6):5-9
    17.王坤波,胡绍安,李懋学.异常棉的核型研究,中国棉花,1989,16(2):9-11.
    18.王坤波,李懋学.棉属D染色体组的核型变异和进化.作物学报,1990,16(3):200-207.
    19.王坤波,陈建华.原产澳大利亚的新棉种,棉花文摘,1993, 8(3):1~3
    20.王坤波,叶武威,朱召勇,等.特纳氏棉核型研究.中国棉花,1993,20(1):14-15.
    21.王坤波.棉属的遗传致死.棉花学报,1994,6(增刊):1-9.
    22.王坤波,黎绍惠,叶武威,等.陆地棉与澳洲2个野生棉杂种细胞学研究.棉花学报,1994,6(1):23-28.
    23.王坤波,宋国立,黎绍惠,等.陆地棉的核型模式.遗传,1995,17(6):1-4.
    24.王坤波,张香娣,王春英,宋国立.棉属A染色体组的核型研究.遗传,1995,17(4)32-34.
    25.王坤波.棉属染色体研究方法及学术进展,中国-中亚三国国际棉花学术讨论会论文集(大会宣读)/农业科技出版社,北京, 1995:107~114.
    26.王坤波,李懋学,张香娣,宋国立.陆地棉与7个野生棉杂种细胞学研究.作物学报,1996,22(1):27-35.
    27.王坤波,王文奎,王春英,等.海岛棉原位杂交及核型比较.遗传学报,2001,28(1):69-75.
    28.王坤波,杜雄明,宋国立.棉花种质创新的现状与发展.植物遗传资源学报,2004,5(增刊)::23-28.
    29.王瑜宁.中棉染色体的Giemsa G-带,遗传学报,1985,12(4):285-288.
    30.王志宁,季道藩,许复华.棉属四个栽培种的核型比较.浙江农业学报,1997,3: 135-139.
    31.吴琼,宋国立,刘三宏,等.黄褐棉45S rDNA的FISH定位及核型分析,植物遗传资源学报, 2008, 9(4):439-442.
    32.吴一民,陈建民.中棉染色体组型模式,中国棉花,1984,11(2):30-32.
    33.杨继.植物多倍体基因组的形成与进化.植物分类学报,2001,39(4):357-371.
    34.应苗成,等.松散棉(Gossypium laxum)核型的研究,江苏农业科学,1989, 5(4):20-25.
    35.祝水金,汪若海.棉属分类及其染色体组研究进展.棉花学报,1995,7(1):1-7.
    36.邹美娟,王坤波,宋国立.棉花原位杂交现状.棉花学报,2002,14(1):52-56.
    37. Bannister AJ, Zegerman P, Partridge JF, et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature, 2001, 410(6824): 120-124.
    38. Beasley JO. The origin of American tetraploid Gossypium species. Am. Nat. 1940, 74: 285-286.
    39. Beasley JO. Hybridization, cytology, and polyploidy of Gossypium. Chronica Botanica 1941, 6: 394-395.
    40. Beasley JO. Meiotic chromosome behavior in species, species hybrids, haploids and induced polyploids of Gossypium. Genetics, 1942, 27:25-54.
    41. Bennett MD. Nucleotypic basis of the spatial ordering of chromosomes in eukaryotes and the implications of the order for genome evolution and phenotypic variation. In: Dover GA..Flavell RB(eds) Genome evolution. London. Academic Press. 1982, pp 239-262.
    42. Bennett,M.D., J.B.Smith and Heslop-Harrison. Nuclear DNA amounts in angiosperms. Proceedings of the Royal Society of London B, 1982, 216:179-199
    43. Bergey DR, Stelly DM, Price HJ, McKnight TD. In situ hybridization of biotinylated DNA probes to cotton meiotic chromosomes. Stain Technol. 1989, 64(1):25-37.
    44. Brubaker CL, Percival E. Genetic diversity in Gossypium hirsutum and the origin of upland cotton. Amer J Bot, 1992, 79: 1291-1310.
    45. Brubaker CL, Wendel JF. Reevaluating the origin of domesticated cotton (Gossypium hirsutum: Malvaceae) using nuclear restriction fragment length polymorphisms (RFLPs). American Journal of Botany, 1994, 81: 1309-1326.
    46. Brubaker CL, Paterson AH, Wendel JF. Comparative genetic mapping of allotetraploid cotton and its diploid progenitors. Genome, 1999, 2: 84-203.
    47. Chen ZJ, Brian ES, Elizabeth D, et al. Toward Sequencing Cotton (Gossypium) Genomes, Plant Physiol, 2007, 145:1304-1310.
    48. Cherry JP, Katterman FRH, Endrizzi JE. Comparative studies of seed proteins of species of Gossypium by gel electrophoresis. Evolution, 1970, 2 4: 431-447.
    49. Cherry, JP, Katterman FRH, and.Endrizzi JE. Seed esterases, leucine aminopeptidases and catalases of species of the genus Gossypium. Theor. Appl. Genet, 1972, 42:218-226.
    50. Crane CF, Price HJ, Stelly DM, Czeshin DG. An identification of a homeologous chromosome pair by in situ DNA hybridization to ribosomal RNA loci in meiotic chromosomes of cotton (Gossypium hirsutum). Genome, 1993, 36: 1015-1022.
    51. Crane CF, Hanson RE, Raska WA, et al. Development and use of chromosomally unbalanced cytogenetic stocks for physical chromosome mapping in cotton (Gossypium hirsutum L.). Plant Genome II Conference Abstract, Town & Country Conference Center, San Diego, CA, 1994.
    52. Cronn RC, Zhao XP, Paterson AH, et al. Polymorphism and concerted evolution in a tandemly repeated gene family: 5S ribosomal DNA in diploid and allopolyploid cottons. Molecular Evolution, 1996, 42: 685-705.
    53. Cronn RC, Small RL, Wendel JF. Duplicated genes evolve independently following polyploid formation in cotton. Proc. Nat. Aca. Sci. USA., 1999, 96: 14406-14411.
    54. Cronn RC, Small RL, Haselborn T, et al. Rapid diversification of the cotton genus (Gossypium: Malvaceae) revaled by analysis of sixteen nuclear and chloroplast genes. American J Botany, 2002, 89: 707-725.
    55. Cronn RC, Adams KL. Quantitative analysis of transcript accumulation from genes duplicated by polyploidy using cDNA-SSCP. Biotechniques, 2003, 34: 726-734.
    56. Cronn RC, Small RL, Haselkorn T, Wendel JF. Cryptic repeated genomic recombination during speciation in Gossypium gossypioides. Evolution, 2003, 57(11): 2475-2489.
    57. Cronn RC, Wendel JF. Cryptic trysts, genomic mergers, and plant speciation. New Phytologist, 2003, 161: 133-142.
    58. DeJoode, D.R. Molecular insights into speciation in the genus Gossypium L (Malvaceae). [MS Thesis], Iowa State University, 1992.
    59. DeJoode DR, Wendel JF. Genetic diversity and origin of the Hawaiian Islands cotton Gossypium tomentosum. Am. J. Bot., 1992, 79: 1311-1319.
    60. Denham HJ. The cytology of the cotton plant. II. Chromosome numbers of old and new world cottons. Ann. Bot., 1924, 38: 433-438.
    61. Edwards GA. The karyotype of Gossypium herbaceum L. Caryologia, 1977, 30: 369-374.
    62. Edwards GA, Endrizzi JE, Stein R. Genomic DNA content and chromosome organization in Gossypium. Chromosoma, 1974, 47: 309-326.
    63. Edwards GA, Mirza MA. Genomes of the Australian wild species of cotton. II. The designation of a new G genome for Gossypium bickii. Can. J. Genet. Cytol., 1979, 21: 367-372.
    64. Endrizzi JE, Turcotte EL, Kohel RJ. Genetics, cytogenetics, and evolution of Gossypium. Adv. Genet, 1985, 23: 271-375.
    65. Feldman M, Liu B, Segal G, Abbo S, Levy AA, Vega JM. Rapid elimination of low copy non coding DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics, 1997, 147: 1381-1387.
    66. Fryxell PA. Stages in the evolution of Gossypium. Adv. Front. Plant Sci.,1965, 10: 31-56.
    67. Fryxell PA. In“The Natural History of the Cotton Tribe”. College Station, TX. Texas A&M University Press, 1979.
    68. Fryxell PA. A revised taxonomic interpretation of Gossypium L (Malvaceae). Rheedea, 1992, 2: 108-165.
    69. Galau, GA. and.Wilkins TA. Alloplasmic male sterility in AD allotetraploid Gossypium hirsutum upon replacement of its resident A cytoplasm with that of D species G. harknessii. THEOR APPL GENET, 1989, 78:23-30.
    70. Gendrel AV, lippman Z, Yordan C, et al. Dependence of heterochromatic histone H3 methylation patterns on the Arabidopsis gene DDM1. Science, 2002, 297: 1871-1873.
    71. Gennur M,N, et al. Karyomorphological studies in Asiatic cotton I. Karyotypic analysis of species and races of Asiatic cottons based on chromatin content. Cytologia, 1988, 53:97-105.
    72. Gennur M,N, et al. Karyomorphological studies in Asiatic cotton II. Karyotypic analysis of species and races of Asiatic cottons based on nucleolar chromosomes and symmetry of karyotype. Cytologia, 1988, 53:107-114.
    73. Gerstel DU. Chromosome translocations in interspecific hybrids of the genus Gossypium. Evolution, 1953, 7: 234-244.
    74. Gerstel DU, Phillips LL. Segregation of synthetic amphiploids in Gossypium and Nicotiana. Cold Spring Harbor Symp. Quantity Biology, 1958, 23: 225-237.
    75. Hanson RE, Islam-Farid MN, Percival EA, et al. Distribution of 5S and 18S-28S rDNA loci in a tetraploid cotton (Gossypium hirsutum L.) and putative diploid ancestors. Chromosoma, 1996, 105: 55-61.
    76. Hutchinson JB, Stephens SG, Dodds, KS. The seed hairs of Gossypium. Ann. Bot, 1945, 9:361-368
    77. Hutchinson JB, Silow RA, Stephens SG. The Evolution of Gossypium and the Differentiation of the Cultivated Cottons , London, Oxford University Press, 1947.
    78. Hutchinson JB. Intra-specific differentiation in Gossypium hirsutum. Heredity, 1951, 5: 161-193.
    79. Hutchinson JB. New evidence on the origin of the Old World cottons. Heredity, 1954, 8: 225-241.
    80. Hutchinson JB, Lee BJS. Notes from the East African Herbarium: IX. A new species of Gossypium from central Tan-ganyika. Kew Bull, 1958, 13: 221-223.
    81. Ji YF, Donato MD, Mcknight TD, et al. Construction of a physical map of major and minor rDNA sites in Gossypium hirsutum L. Plant Genome IV Conference Abstract , Town & Country Conference Center, San Diego, CA, January, 1995.
    82. Ji YF, Zhao XP, Reyes-Valdes MH, et al. Integrative mapping by meiotic fluorescence in situ hybridization . Plant Genome IV Conference Abstract, Town & Country Conference Center, San Diego, CA, January, 1995.
    83. Ji YF, Donato MD, Crane CF, et al. New ribosomal RNA gene locations in Gossypium hirsutum mapped by meiotic FISH. Chromosoma, 1999, 108: 200-207.
    84. Ji YF, Raska DA, Mcknight TD. Use of meiotic FISH for identification of a new monosome in Gossypium hirsutum L. Genome, 1999, 40: 34-40.
    85. Ji YF, Raska WA, Donato MD, et al. Identification and distinction among segmental duplication-deficiencies by fluorescence in situ hybridization (FISH)-adorned multivalent analysis. Genome, 1999, 42: 7 63-771.
    86. Ji Y, Zhao X, Paterson AH, Price HJ, Stelly DM. Integrative Mapping of Gossypium hirsutum L. by Meiotic Fluorescent in Situ Hybridization of a Tandemly Repetitive Sequence (B77). Genetics, 2007, 176: 115-123.
    87. Jiang JM, Gill BS. Nonisotopic in situ hybridization and plant genome mapping: the first 10 years. Genome, 1994, 37: 717-725.
    88. Jiang JM, Gill BS. Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome, 2006, 49: 1057-1068.
    89. Johnson BL, Thein MM. Assessment of evolutionary affinities in Gossypium by protein electrophoresis. Amer. J. Bot., 1970, 57: 1081-1092.
    90. Johnson BL. Gossypium palmeri and a polyphyletic origin of the New World cottons. Bull. Torrey Bot. Club, 1975, 102: 340-349.
    91. Kadir ZBA. DNA evolution in the genus Gossypium. Chromosoma, 1976, 56;85-94.
    92. Katterman FR, Ergle D R. A study of quantitative variations of nucleic acid in Gossypium. Phytochemistry, 1970, 9: 2007-2010.
    93. Lapitan NLV, Brown SE, Kennard W, Stephens JL, Knudson DL. FISH physical mapping with barley BAC clones. Plant J, 1997, 11: 149-156.
    94. Levan A. et al. Nomenclature for centromeric position on chromosome. Hereditas, 1964, 62:201-220.
    95. Liu Q, Brubaker C L, Green A G, et al. Evolution of the FAD2-1 fatty acid desaturase 5’UTR intron and the molecular systematics of Gossypium (Malvaceae). American J Botany, 2001, 88: 92-102.
    96. Liu B, Wendel JF. Intersimple sequence repeat (ISSR) polymorphisms as a genetic marker system in cotton. Molecular Ecology Notes, 2001, 1:205-208.
    97. Liu B, Brubaker CL, Mergeai G, Cronn RC, and Wendel JF. Polyploid formation in cotton is not accompanied by rapid genomic changes. Genome, 2001, 44: 321-330.
    98. Liu B, Wendel JF. Epigenetic phenomena and the evolution of plant allopolyploids. Molecular Phylogenetics and Evolution, 2003, 29: 365-379.
    99. LIU S, WANG K, SONG G, et al. Primary investigation on GISH-NOR in cotton, Chin Sci Bull, 2005, 50(5):425-429.
    100. Maria AB, Marco B, Teresa C. et al. Molecular and cytogenetic characterization of repetitive DNA in the Antarctic polyplacophoran Nuttallochiton mirandus. Chromosome Research, 2008, 16:907–916
    101. Mukai Y, Endo TR, Gill BS. Physical mapping of the 18S, 26S rRNA multigene family in common wheat: Identification of a new locus. Chromosoma, 1991, 100(2): 71-78.
    102. Mukai Y, Gill BS. Detection of barley chromatin added to wheat by genomic in situ hybridization. Genome, 1991, 34: 448-452.
    103. Mukai Y, Nakahara Y, Yamamoto M. Simultaneous discrimination of the three genomes in hexaploid wheat by multicolour fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome, 1993, 36: 489-494.
    104. Percy G, Wendel JF. Allozyme evidence for the origin and diversification of Gossypium barbadense L. Theor Appl Genet, 1990, 79: 529-542.
    105. Percy RG. Allozyme diversity and introgression in the Galapagos endemic Gossypium davwinii and it`s relationship to continental G. barbadense. Biochem. Syst. Ecol., 1990, 18: 517-528.
    106. Phillips LL. The cytogenetics of Gossypium and the origin of new world cotton. Evolution, 1963, 17: 460-496.
    107. Phillips LL. Segregation in new alloploids of GossypiumⅤ. Mutivalent formation in new world×Asiatic and new world×wild American hexaploids. Ameri. Jour.Bot., 1964, 51(3): 324-329.
    108. Phillips LL. The cytology and phylogenetics of the diploid species of Gossypium. Am. J. Bot., 1966, 53: 328-335.
    109. Pikaard CS. Nucleolar dominance: uniparental gene silencing on a multi-megabase scale in genetic hybrids. Plant Mol Biol., 2000, 43(2-3): 163-77.
    110. Parks CR, Ezell WL, Williams DE. Et al. The application of flavonoid distribution to taxonomic problems in the genus Gossypium. Bull. Torrey Bot Club. 1975, 102: 350-361.
    111. Rong J, et al. A 3347-Locus genetic recombination map of sequence-tagged sites reveals features of genome organization, transmission and evolution of cotton (Gossypium). Genetics, 2004, 166: 389-417.
    112. Saha S, Zipf A. Genetic diversity and phylogenetic relationships in cotton based on isozyme markers. Crop Production, 1998, 1: 79-93.
    113. Saha S, Raska DA, Stelly DM. Upland cotton (Gossypium hirsutum L.) x Hawaiian cotton (G. tomentosum Nutt. ex. Seem) F1 hybrid hypoaneuploid chromosome substitution series. J Cotton Sci, 2006, 10: 146-154.
    114. Seelanan T, Schnabel A, Wendel JF. Congruence and consensus in the cotton tribe. Systematic Botany, 1997, 22: 259-290.
    115. Seelanan T, Brubaker CL, Craven JM, and Wendel JF. Molecular systematics of AustralianGossypium section Grandicalyx (Malvaceae). Syst. Bot. 1999,24:183-208.
    116. Skovsted A. Cytological studies in cotton. I. The mitosis and meiosis in diploid and triploid Asiatic cotton. Ann. Bot. 1933, 47: 227-251.
    117. Skovsted A. Cytological studies in cotton. II. Two interspecific hybrids between Asiatic and New World cottons. J. Genet. 1934, 28: 407-424.
    118. Skovsted A. Cytological studies in cotton. IV. Chromosome conjugation in interspecific hybrids. J. Genet. 1937, 34: 5-42.
    119. Small RL, Ryburn JA, Cronn RC, et al. The tortoise and the hare: Choosing between noncoding plastome and nuclear Adh sequences for phylogeny reconstruction in a recently diverged plant group. Am. J. Bot, 1998, 85: 1301-1315.
    120. Small RL, Wendel JF. The mitochondrial genome of allotetraploid cotton (Gossypium L.). Heredity, 1999, 90: 251-253.
    121. Small RL, Wendel J F. Copy number lability and evolutionary dynamics of the Adh gene family in diploid and tetraploid cotton (Gossypium). Genetics, 2000, 155: 1913-1926.
    122. Small RL, Wendel JF. Phylogeny, duplication, and intraspecific variation of Adh sequences in New World diploid cottons (Gossypium L. Malvaceae). Mol. Phyl. Evol, 2000, 16(1): 73-84.
    123. Small RS, Cronn RC, Wendel JF. Use of nuclear genes for phylogeny reconstruction in plants. Australian Systematic Botany, 2004, 7: 145-170.
    124. Reinisch AJ, Dong J, Brubaker CL, et al. A detailed RFLP map of cotton, Gossypium hirsutum×G. barbadense: Chromosome organization and evolution in a disomic polyploid genome. Genetics, 1994, 138: 829-847.
    125. Stebbins G. Chromosomal evolution in higher plants. London, Edwards Aranold, 1971, pp 87-93.
    126. Stelly DM. Status of cotton cytogenetic stocks and techniques. Plant &Animal Genome V Conference Abstract. Town & Country Hotel, San Diego, CA, 1997: 12-16.
    127. Stelly DM, Crane CF, Hodnett GL, et al. Polyploidization and repetitive elements in genome evolution. Plant & Animal Genome VII Abstract , 1999: 17-21.
    128. Stephen WB, Joseph J, Jeffery SS. RNA polymerase I propagates unidirectional spreading of rDNA silent chromatin. Cell, 2002, 111: 1003-1014.
    129. Stephens SG. Phenogenetic evidence for the amphidiploid origin of New World cottons. Nature 1944, 153: 53-54.
    130. Stephens SG. The genetic organization of leaf-shape development in the genus Gossypium. J. Genet. 1944, 46: 28-51.
    131. Stephens SG. Evolution of the gene-“Homologous”genetic loci in Gossypium. Cold Spring Harbor Sympp. Quant. Biol. 1951, 16: 131-140.
    132. Stephens SG. Possible significance of duplication in evolution. Adv. Genet. 1951, 4: 247-265
    133. Stephens SG. Salt water tolerance of seeds of Gossypium species as a possible factor in seed dispersal. Am. Nat. 1958, 92: 83-92.
    134. Stephens SG. The potential for long range oceanic dispersal of cotton seeds. Am. Nat. 1966, 100: 199-210.
    135. Stephens SG. Evolution under domestication of the New World cottons (Gossypium spp.). Cicnc. Cult, 1967, 19: 118-134.
    136. Stewart, JM. Gossypium germplasm from Australia. Plant Genetic Resources Newsletter 1995,(IBPGR/FAO), 1987, 69: 44-47.
    137. Thomas HE, Danna GE. Finely Orchestrated Movements: Evolution of the Ribosomal RNA Genes. Genetics, 2007, 175: 477-485.
    138. Umbeck PF, Stewart JM. Substitution of Cotton Cytoplasms from Wild Diploid Species for Cotton Germplasm Improvement. Crop Sci, 1985, 25: 1015-1019.
    139. Wang K, Song X, Han Z, et al. Complete assignment of the chromosomes of Gossypium hirsutum L. by translocation and fluorescence in situ hybridization mapping. Theor Appl Genet, 2006, 113: 73-80.
    140. Wang K, Guo W, Zhang T, et al. Development of one set of chromosome-specific microsatellite-containing BACs and their physical mapping in Gossypium hirsutum L. Theor Appl Genet, 2007, 115: 675-682.
    141. Wang K, Guan B, Guo W, Zhou B, Hu Y, Zhu Y, Zhang T. Completely distinguishing individual A-genome chromosomes and their karytyping analysis by multiple bacterial artificial chromosome-fluoresence in situ hybridization. Genetics, 2008, 178:1117–1122.
    142. Wang KB, Identification of Karyotype of Gossypium Bickii Proch., Proceedings of World Cotton Research Conference-1(Brisbane, Australia), 1994: 299-302.
    143. WANG KB, LIU S, SONG G, et al. Chromosome painting via FISH to Gossypium hirsutum with gDNA of its putative diploid ancerstors as probes, Chromosome Science, 2004, 8(4):150-154.
    144. WANG KB, SONG G, WANG C, et al. FISH-based karyotype of Gossypium herbaceum generated with 45S rDNA and gDNA of Gossypium raimondii as probes, Cotton Sciences, 2008, 20(4): 264-273.
    145. Webber JM. Interspecific hybridization in Gossypium and the meiotic behavior of F1 plants. J. Agri. Res, 1935, 51:1047-1070.
    146. Wendel JF. New World Tetraploid Cottons Contain Old World Cytoplasm. Proceedings of the National Academy Sciences, USA, 1989, 86: 4132-4236.
    147. Wendel JF. Cotton. In: Evolution of Crop Plants (N. Simmonds and J. Smartt, eds.), London, Longman, 1995, pp. 358-366.
    148. Wendel J F. Genome evolution in polyploids plant. Molecular Biology, 2000, 42: 225-249.
    149. Wendel JF, Weedenn F. Visualization and interpretation of plant isozymes. - In Solitis DE., Solitis PS., (Eds): Isozymes in plant biology, Portland, OR: Dioscorides Press. 1989: 5-45.
    150. Wendel JF, Percy RG. Allozyme diversity and introgression in the Galapagos endemic Gossypium darwinii and its relationship to continental G. barbadense. Biochem. Syst.Ecol. 1990, 18: 517-528.
    151. Wendel JF, Albert VA. Phylogenetics of the cotton genus (Gossypium L.): Character-state weighted parsimony analysis of chloroplast DNA restriction site data and its systematic and biogeographic implications. Systematic Botany, 1992, 17: 115-143.
    152. Wendel JF, Rowley R, Stewart JM. Genetic diversity in and phylogenetic relationships of the Brazilian endemic cotton, Gossypium mustelinum (Malvaceae). Plant. Syst. Evol, 1994, 192: 49-59.
    153. Wendel JF, Schnabel A, and Seelanan T. Bidirectional interlocus concerted evolution following allopolyploid speciation in cotton (Gossypium). Proc. Natl Acad. Sci. USA, 1995, 92: 280-284.
    154. Wendel JF, Schnabel A, Seelanan T. An unusual ribosomal DNA sequence from Gossypium gossypioides reveals ancient, cryptic, intergenomic introgression. Mol. Phyl. Evol, 1995, 4: 298-313.
    155. Wendel JF, Wessler SR. Retrotransposon-mediated genome evolution on a local ecological scale. Proc. Natl. Acad. Sci. USA., 2000, 97: 6250-6252.
    156. Wendel, J.F. and R.C.Cronn. Polyploidy and the evolutionary history of cotton. Advances in Agronomy, 2003, 78: 139-186.
    157. Zhao XP, Wing RA, Paterson AH. Cloning and characterization of the majority of repititive DNA in cotton (Gossypium L.). Genome, 1995, 38: 1177-1188.
    158. Zhao XP, Ji YF, Ding X, et al. Macromolecular organization and genetic mapping of a rapidly evolving chromosome-specific tandem repeat family (B77) in cotton (Gossypium). Plant Mol.Bio, 1998, 38: 1031-1042.
    159. Zhao XP, Si Y, Hanson RE, et al. Dispersed repetitive DNA has spread to new genome since polyploid formation in cotton .Genome Research, 1998, 8(5): 479-492.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700