羟基镁铝复合物形成的影响因子及优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然有机物的广泛存在使得水处理工艺中药剂的消耗增大,更重要的是在氯化消毒过程中可生成消毒副产物。强化混凝是目前控制消毒副产物的最佳可行性技术。在强化混凝过程中形成的羟基镁铝复合物(MgxAly(OH)z·nH2O),使天然有机物的去除效率提高40%以上。本文以实验室配水为主研究了羟基镁铝复合物形成的各种影响因子并对其进行了一定的优化。主要研究结论如下:
     通过烧杯实验来研究镁铝复合物形成的影响因子。研究发现pH是最关键的影响因子。pH不仅决定着镁铝复合物的形成与否而且还影响着生成的镁铝复合物的结构。高pH下镁铝复合的生成量比在低pH条件可提高6倍。提出了生成镁铝复合物的最低pH为9.5,最优pH范围为10.3~10.8。
     烧杯实验还表明水体中可形成CaC03的一些离子与CO32-,HCO3-等一些缓冲体系的离子可影响镁铝复合物形成量;研究还发现温度、投加工艺对镁铝复合物形成影响不明显;高聚合度的铝系混凝剂有利于形成更多的镁铝复合物,在一定pH保证下混凝剂投加量与形成镁铝复合物的数量呈正相关趋势。
     镁铝复合物带正电。不同条件下生成镁铝复合物的Zeta电位都为正值,并且随着pH不断升高而增大;镁铝复合物的形态呈无定形,其具有巨大的比表面积。利用小角度光散射技术研究发现平常条件下形成的镁铝复合物粒径一般在20μm左右。聚合度较高的Al13较AlCl3形成复合物的颗粒要大。在一定pH保证下,混凝剂投加量为0.02~0.16mmol/L时,混凝剂原料投加量越大,形成的镁铝复合物颗粒也就越大。
The presence of Natural Organic Matter (NOM) in various of Water Body make it need more agent in water treatment, what is more important, it can cause Disinfections by Products (DBPs) which are very harmful for peoples' health. At present,enhanced coagulation is the best available technology to control DBPs. And compound Mg-Al hydroxides (MgxAly(OH)z·H2O)which formed during enhanced coagulation can increase 40% organic matter removal. The influencing factors of compound Mg-Al hydroxides and its optimization are studied in the dissertation, using prepared water in laboratory as an example. The main conclusions can be drawn as following:
     The influencing factors of forming compound Mg-Al hydroxides are investigated via Jar Test. From the experiment result, the key influencing factor is pH which not only determines the generation of the compound but also affect its structural formation.As a result, it can improve 6 times the Compound amount at high pH than low pH. And the minimum pH to generate the Compound is 9.5 while the optimal pH is between 10.3 and 10.8.
     It also indicates that the ions such as forming CaCO3 and CO32-, HCO3- buffer system can affect the Compound amounts via Jar Test. However, Some factors like temperature、adding technics had hardly effect on the Compound forming. Highly polymerised aluminum coagulant are favorable for forming more Compound while coagulant dosage are positive-correlation with the forming Compound amount under certain pH.
     The compound is positively charged particles.Its zeta potential are all positive value although it formed under different conditions and the value increases with the pH. The compound is amorphous, which makes it has large ratio surface; It was found that the particle size of the forming compound is about 20μm under general conditions by small-angle light-scattering methods. And the particle size which formed using high degree of polymerization Al13 is big than which using AlCl3. Under certain pH, the particle size increases with the coagulant dosage When the coagulant dosage during 0.02~0.16 mmol/L.
引文
[1]汤鸿霄.无机高分子絮凝理论与絮凝剂.北京:中国建筑工业出版社,2006
    [2]张自杰.废水处理理论与设计.北京:中国建筑出版社,2002
    [3]Keith E Dennett.Coagulation:Its effect on organic matter[J].JAWWA,1996,13(4):129~142
    [4]王东升,刘海龙,晏明全,余剑锋,汤鸿霄.强化混凝与优化混凝:必要性、研究进展和发展方向[J].环境科学学报,2006,(04)
    [5]Yan M.Q., Wang D.S. et al., Enhanced softening with polyaluminum chloride on the typical micro-polluted and high hardness North-China surface waters. Sep. Purif. Technol.
    [6]Kvech S., Edwards M., Water Res.2002,36,4356-4368.
    [7]Tobias Stefan Rotting, et. Environ. Sci. Technol.2006,40,6438-6443
    [8]Miguel Qutntana, Manuel Fco.et.al, Agric. Food Chem.2004,52,294-299
    [9]Black A.P.and Christman R.F., JAWWA.1961.53:737
    [10]谢鲜梅.太原理工大学,博士论文,2007
    [11]中华人民共和国卫生部.生活饮用水卫生标准[S].GB5749-85,1985.
    [12]中华人民共和国卫生部.生活饮用水卫生标准[S].GB5749-06,2006
    [13]环保总局.中国环境公报,北京.2008
    [14]郭如新.氧化镁、氢氧化镁在环保领域中的应用[J].江苏化工,2000,20(2):1-4
    [15]郭如新.氢氧化镁在工业废水处理中的应用[J].工业水处理,2004,32(2):1-4
    [16]Shin H S, et al. Environ Technol,1998,19(3):283-290.
    [17]马学会,黄仁录,张忠远,冯自科,动物必需的矿物元素-镁[J].中国饲养,2003,18
    [18]Dandl H, Emig G. Mechanistic approach for the kinetics of the decomposition of nitrous oxide over calcined hydrotalcites.Applied Catalysis A:General,1998,168(2)
    [19]侯万国,张春光,孙德军等.高等化学学报,16181,1992,(1995)
    [20]崔卫华,董邦真,刘菲.化工进展,2007.08
    [21]姜鹏,候万国,韩书华.Zn-Mg-Al型类水滑石纳米颗粒制备及晶体结构.高等学校化学学报,2002,23(1):78-82
    [22]候万国.氢氧化铝镁正电溶胶制备及性能研究,高等学校化学学报,1995,16(8):1292-1294
    [23]http://www.yzw.cc/info/detail/58-20771.html
    [24]王东升,汤鸿霄,A113形态分离纯化方法的初步研究,环境化学,2000(19):390-394
    [25]Parthasarthy N, Buffle J.Wat.Res.,1985,19:25
    [26]汤鸿霄,栾兆坤,聚合氯化铝的凝聚絮凝特征及作用机理,环境科学学报,1992(2):129-137
    [27]Baoyou Shi, Dongsheng Wang et al. Separation of All 3 from polyaluminum chloride by sulfate precipitation and nitrate metathesis. Separation and Purification Technology,54 (2007) 88-95
    [28]汤鸿霄.无机高分子絮凝剂的基础研究.环境化学,1990(9):1-12
    [29]苟国敬,中科院博士论文,镁铝层状复合氢氧化物微晶的合成与应用基础研究,2005
    [30]石晓波,李春根,汪德先.应用化学[J],2002,19(4):398-400.
    [31]Constantino R.L., Pinnavaia.T.J.Basic properties of MgAl Layered Double Hydroxides Intercalated by Carbonate, Hydroxide, Chloride, and Sulfate Anions. Inorg. Chem. [J],1995,34:883-892.
    [32]Ogawa M, Kaiho H. Homogeneous precipitation of uniform hydrotalcite particles[J]. Langmuir, 2002,18:4240—4242
    [33]Adachi-Pagano M, Forano C, Besse J P. Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction-control of size and morphology[J]. J Mater Chem,2003,13: 1988—1993
    [34]姚铭,杜莉珍,王凯雄等.合成水滑石治理水体阴离子染料污染研究[J].环境科学学报,2005,25(8):1034-1040
    [35]刘志远,杨占红,李昆等.碳酸根型镁铝复合氢氧化物的合成与表征[J].铜业工程,2006
    [36]Fripiat J. J., van Cauwelaert F. and Bosmans H. Structure of aluminum cations in aqueous solutions. J. Phys.Chem.,1965,69(7):2458-2461.
    [37]C.F.Baes, R.E.Mwsmer.The hydrolysis of cations.Wiley New York,1976
    [38]Burrows M.D., Aquatic Aluminum Chemistry, Toxicology and Environmental prevalence. CRC Critical Reviews in Environmental Control,1977,7:167-216
    [39]Nordstrom D.K., May H.M., Aqueous equilibrium data for mononuclear aluminum species. The environmental chemistry of aluminum, Sposito G., Eds., CRC press,
    [40]栾兆坤,汤鸿霄,聚合铝形态分布特征及转化规律,环境化学,1988,68(2):146
    [41]Bertsch P.M., in:G. Sposito (Ed.) The Environmental Chemistry of Aluminum, CRC Press, Boca Raton, FL,1989, p.87.
    [42]Frink C.R, Peech M. Hydrolysis of the aluminum ion in dilute aqueous solutions. Inorg. Chem., 1963,2:473-478
    [43]Johansson, G., On the crystal structure of some basic aluminum salts, Acta Chem. Scand.,1961,14, 771
    [44]Johansson, G., The crystal structure of a basic aluminum salts, Ark. Kemi 1962,20:305-319
    [45]Stumm W., Chemistry of Solid Water Interface, Wiley, New York,1992
    [46]Newcombe G., Donati C., Drikas M., and Hayes R., Water Supply 1994.14:129
    [47]Rausch, W.; Bale, H. D. Small-angle X-ray scattering from hydrolyzed aluminum nitrate solutions J. Chem. Phys.1964,40,3391-3394.
    [48]J.C.GoodWin, S.J.Teat, S.L.Heath.How Do Clusters Grow?The Synthesis and Stucture of Polynuclear Hydroxide Gallium(ⅲ)Clusters*.Angew.Chem.Int.Ed,2004(43):4037-4041
    [49]Akitt J.W. and Farthing A.,27Al NMR studies of the hydrolysis and polymerization of the hexa-aquoaluminium (Ⅲ) cation. J. Chem.Soc.Dalton Trans.,1972,604-610.
    [50]Akitt J.W. and Farthing A., New 27Al NMR studies of the hydrolysis of the aluminium (Ⅲ) cation, J. Magn.Reson.1978,32:345-352.
    [51]Baker L.C.W., Figgis J.S. New fundamental type of inorganic complex:hybrid between heteropoly and conventional coordination complexes. Possibilities for geometrical isomerisms in 11-,12-,17-, and 18-heteropoly derivatives, J. Am. Chem. Soc.1970,92,3794-3797.
    [52]Pope M.T. In ComprehensiVe Coordination Chemistry Ⅱ:From Biology to Nanotechnology; Wedd, A.G., Ed.; Elsevier Ltd.:Oxford, U.K.,2004; Vol.4, p635.
    [53]Akitt J.W.and Farthing A., A aluminum 27 nuclear magnetic resonance studies of the hydrolysis of aluminum (Ⅲ) part 5, slow hydrolysis using aluminum metal., J. Chem. Soc. Dalton Trans.1981,1624
    [54]Bertsch P.M., Thomas G.W., Barnhisel R.I., Characterization of hydroxy-Aluminum solutions by Aluminum-27 nuclear magnetic resonance spectroscopy, Soil Sci. Soc. Am. J.1986,50,825.
    [55]Kloprogge J.T., Seykens D., Geus J.W., and Jansen J.B.H., The effects of concentration and hydrolysis on the oligomerization and polymerization of Al (Ⅲ) as evident from the 27Al NMR chemical shifts and linewidths, J. Non-Crystal. Solids,1993,160:144-151
    [56]Bertsch P.M., in:G. Sposito (Ed.) The Environmental Chemistry of Aluminum, CRC Press, Boca Raton, FL,1989, p.87.
    [57]Akitt J.W.and Farthing A, aluminum 27 nuclear magnetic resonance studies of the the hydrolysis of aluminum (Ⅲ) part 2.Gel permeation chromatography. J. Chem. Soc. Dalton Trans.1981,1606
    [58]Hsu P.H., in:J.B. Dixon, S.B. Weed (Eds.), Minerals in Soil Environment, second ed., Soil Science Society of America, Madison, WI,1988.
    [59]Parker D.R. and Bertsch P.M. Identification and quantification of the Al13 tridecameric polycation using Ferron. Environ. Sci. Technol.,1992,26(5):908-914
    [60]Parker D.R. and Bertsch P.M. Formation of the Al13 tridecameric polycation under diverse synthesis conditions. Environ. Sci. Technol.,1992,26(5):914-921
    [61]Wang S.L., Wang, M.K. Yzou Y.M., Effect of temperatures on formation and transformation of hydrolytic aluminum in aqueous solutions, Colloids and Surfaces A,2003,231:143-157
    [62]Hem J.D. and Roberson C.E., Aluminum hydrolysis reactions and products in mildly acidic aqueous systems, in Chemical Modeling of Aqueous Systems, Vol.2, Melchior, D.C. and Bassett R.L., Eds., ACS Symp.Ser,416, American Chemical Society, Washington, D.C.,1990, chap.3.
    [63]Henry M., Jolivet J.P., Livage J., Aqueous chemistry of metal cations:Hydrolysis, condensation and complexation, Structure and Bonding 1992,77:153-206
    [64]Henry M., Jolivet J.P., Livage J., Aqueous chemistry of metal cations:Hydrolysis, condensation and complexation, Structure and Bonding 1992,77:153-206
    [65]Edzwald J.K.and Tobiason J.E., Enhanced coagulation:US requirements and a broader view.Wat.Sci.Tech.,1999.40(9):63-70
    [66]Sinsabaugh R.L., Hochn R.C., etal.Removal of dissolved organic carbon by coagulation with iron sulfate. JAWWA,1986.78(5):72-82
    [67]O'Melia C R. Coagulation in wastewater treatment, In The Scientific Basis of Flocculation, NATO ASI Series, Ives K J., Ed., Sijthoff and Noordhoff, Aalphen aanden Rijn, Netherlands,1978.
    [68]OMelia C.R., Becker, W.C., Au, K.K., Removal of humic substances by coagulation. Wat. Sci. Technol.1999.40:47-54
    [69]Rowsell J., Nazar L.F., Speciation and thermal transformation in alumina sols:structures of the polyhydroxyoxoaluminum cluster [Al2O8(OH)56(H2O)26]18+ and its 8-Keggin moiete.J. Am. Chem. Soc.,2000,122:3777-3778.
    [70]Matijevic E, Kolak N. Coagulation of lyophobic colloids by metal chelates, J.Colloid Interf. Sci., 1967,24:441-450
    [71]James R.O, Healy T.W. Adsorption of hydrolyzable metal ions at the oxide-water interface, (Ⅰ,Ⅱ). J. Colloid Interf. Sci.,1972,40:42-64
    [72]Lamer V K, Healy T W. Adsorption-flocculation reactions of macro-molecules at the solid-liquid interface. Rev. Pure Appl. Chem.,1963,13:112-133.
    [73]Lyklema J. Colloidal stability as a dynamic phenomena, Pure Appl. Chem.,1980,52:1221-1227
    [74]Packham R F. Some studies of the coagulation of dispersed clays with hydrolyzed salts. J. Colloid interf, Sci.,1965,20:81-92
    [75]姜鹏.Zn-Mg-Al混合金属氢氧化物的性能及其纳米级粉体材料制备的研究,山东大学硕士论文,2006
    [76]王书瑞.多元层状金属氢氧化物的制备、表征及胶化性能研究,山东大学硕士论文,2001
    [77]苏延磊.镁铁型层状双氢氧化物胶化性能的研究,山东大学硕士论文,1999
    [78]黄宝晟.纳米双羟基复合金属氧化物的制备及其在PVC中的应用性能研究,北京化工大学硕士论文,1999
    [79]Reichle, W. T. Anionic caly minerals.Chemtech.[J],1986,16(1):58-63.
    [80]Tagaya, H.; Sato, S.; Kuwahara, T.; Chiba, K., Photoisomerization of Indolinespirobenzopyran in Anionic caly Matrices of Layered Double Hydroxide.J.Mter.Chem.[J],1994,4(12):1907-1912
    [81]Toshiyuki Hibino, Atsumu Tsunashima.Charaeterization of Repeatedly Reconstructed Mg-Al Hydrotalcite-like compounds, Gradual segregation of Aluminum from the Structure..Japan Chem Mater,1998,10:4055-4061
    [82]Tsveta Stanimirova, Toshiyuki Hibino.Ethylene glycol intercalation in MgAlCC3 hydrotalcite and its low-temperature intermediate phasea. Applied Clay Science,2005,31:65-75
    [87]Booehm H P.Steinlem J, Viewger C.[Zn2Cr(OH)6X2H2O], New layer compounds capable of anion exchange.Angew.Chem.Int.Engl,1977,16:265-268
    [88]宁寻安,李凯等.聚氯化铝溶液形态的透射电镜研究,广东工业大学学报,2008,25(2):9-12
    [89]吴建鹏,杨长安等.X射线衍射物相定量分析,陕西科技大学学报,2005,23(5):55-58
    [90]张小辉.X射线衍射在材料分析中的应用,沈阳工程学院学报,2006,2(3):281-282
    [91]马淑波.透射电子显微镜样品制备技术(二)复兴样品制备技术,物理测试,1995,3:46-48
    [92]马颖颖,衣守志.氢氧化镁在水处理中应用研究新进展, 皮革化工,2007,24(1):
    [93]Marcelin G., Stockhausen N. J. et al, J. Phys. Chem.1989,93:4646
    [94]You Y., Zhao H., Vance G.F., Colloid Surface A 2002,205,161-172.
    [95]Newman S.P., Williams S.J., J. Phys. Chem. B.,1998,102,6710
    [96]Stumm W. and Morgan J.J., Aquatic Chemistry,2nd ed., John Wiley & Sons, New York,1981
    [97]Miguel Quintaan, Manuel Fco et al.Use of byproduct of Magnesium Oxide production to precipitate phosphorus and Nitrogen as struvite from Wastewater treatment liquors, Agric Food Chem,2004, 52,294-299
    [98]Jack M.Sulllvan et al.Effect of Aluminum, Iron, and Magnesium upon the Solubility of a-Calcium sulfate Hemihydrate in 40%,45%,50%, and55%P2O5 phosphoric acid solutions at 80,90,100, and110℃:Correlations with water concentration,1991,36(1):77-80
    [99]石文扬,盛力,姜志飞.加药量与pH值对强化混凝去除有机物的影响研究,2008
    [100]刘海龙,王东升,王敏,汤鸿霄.强化混凝对水力条件的要求,中国给水排水,2006,22(5):1-4
    [101]Wang dnng sheng,Tang Hongxiao,John Gregory.Relative importance of charge neutralization and precipitation on coagulation of kaalin with PACl:effect of sulfate ion[J].Environ Sci Technol,2002,36:1815-1820
    [102]孙忠,赵东海,杨秀双,朱范洙.“类龟式”Al13盐酸盐的制备及絮凝性能,环境化学,2007,26(1):31-33
    [102]Tang H X, Luan Z K.Features and Mechanism for Coagulation-Flocculation Processes of Polyaluminum Chloride [J]. J. Environmental Sciences,1995,7 (2):204—211
    [103]Kok-Hui Goh,Teik-Lim,Zhili Dong.Application of layered double hy droxides for removal of oxyanions:A review,Water research,2008,42:1343-1368

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700