多元醇溶液化学胶体墨水法CuInSe_2纳米晶、薄膜制备与光伏应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
CuInSe_2(CIS)材料以其优越的光电性能,做为光吸收层材料在薄膜太阳能电池领域有着重要的地位和广阔的发展前景。纳米晶墨水法是近年来迅速发展的一种低成本、非真空环境下沉积CIS薄膜的技术。本文首次选择多元醇做为反应热溶剂,采用热注入工艺,成功制备出单相、近单分散、符合化学计量比的CIS纳米粒子、纳米片晶、纳米粒子和纳米片晶的混晶形态。将CIS纳米晶超声分散在乙醇中,制备出稳定的胶体墨水,采用浸渍-提拉成膜工艺,制备出高质量的CIS薄膜。进一步在Ar气中退火热处理,制备出高结晶性、高致密度、强烈(112)晶面取向的黄铜矿CIS薄膜。将墨水薄膜做为吸收层材料组装了Mo/CIS/CdS/i–ZnO, n–ZnO/Ag, Al型试验光伏器,得到了一定的光电转换效率。
     实验结果表明,以乙二醇(EG)、二乙二醇(DEG)和三乙二醇(TEG)做为反应
     热溶剂,水合肼(N_2H_4·H_2O)为还原剂制备的CIS纳米粒子的分散性会随着多元醇碳链的增加得到明显改善,TEG为反应热溶剂时制备的黄铜矿CIS纳米粒子的分散性最好,粒子呈现近球多变形形状,平均粒径约为10.5nm,且符合1/1/2相的化学计量比。TEG体系下,提高反应温度能增加CIS纳米粒子的平均尺寸和尺寸分布的均匀性。实验表明此体系是一个快速爆发、一步生成三元CIS晶核,迅速生长的过程,反应在1min左右就基本结束,进一步延长反应时间对于晶粒的长大影响不大,后期的奥斯瓦尔德熟化能促使晶粒略有长大,且粒径分布更窄,接近单分散。
     TEG体系下,以乙二胺(En)为还原剂时,改变热注入工艺程序能制备出直径为100~600nm的表面粗糙的多晶闪锌矿CIS纳米片和200~400nm之间、径厚比约为10的表面光滑的单晶闪锌矿CIS纳米片,且该纳米片具有闪锌矿(111)晶面取向。通过对不同反应时间产物的XRD、EDS、TEM和HRTEM的研究表明,CIS纳米片晶是先生成二元的CuSe纳米片,随后发生相变转变为CIS纳米片晶的。PVP的存在能明显改善CIS纳米片晶的分散性,机理是通过PVP强极性的酰基官能团与CIS纳米晶表面配位,利用空间位阻作用达到稳定分散的目的。溶液中同时加入N_2H_4·H_2O和En时,产物为CIS纳米粒子和纳米片的混晶,粒子和片晶的相对含量可以通过调节N_2H_4·H_2O和En的相对比例进行控制,增加En的相对含量能增加片晶的比例。
     CIS纳米晶墨水的分散性对于最终的成膜质量影响较大,分散性好的纳米晶通过浸渍-提拉成膜后较为平整、致密且无多孔现象,在Ar气热处理后致密度和结晶性都有一定提高。CIS纳米混晶薄膜的(112)择优取向会随着片晶含量比例的增加而加大,(112)方向择优取向因子能从1.2增加至14.5。闪锌矿CIS片晶薄膜580°C退火后会发生相变转化为热力学更稳定的黄铜矿CIS薄膜,同时薄膜的致密性和晶粒大小都有着明显的增加,且(112)晶面方向择优取向因子高达270.9。
     将CIS纳米粒子和纳米片混晶构成的薄膜热处理后做吸收层,组装Mo/CIS/CdS/i–ZnO/n–ZnO/Ag,Al薄膜试验电池,AM1.5光照下开路电压V_(OC)为255mV,短路电流J_(SC)为2.1mA·cm~(-2),填充因子FF为0.29,光电转换效率达到0.16%。以580oC热处理后的CIS片晶薄膜组装的电池AM1.5光照下开路电压和短路电流能达到了249mV和1.97mA·cm~(-2),填充因子达到了0.36,光电转换效率为0.18%。
CuInSe_2(CIS) chalcopyrite compound is an important photo-absorbingsemiconductor in the development field of thin film solar cells due to its uniquephotoelectric property. In recent years, there have been increasing efforts indeveloping low-cost, non-vacuum solution process to fabricate CIS-based thin filmsolar cells, in which nanocrystals colloidal ink technique has been proposed. In thisdissertation, single-phase, well-dispersed and stoichiometric CuInSe_2nanoparticles,nanoplates and the mixed nanocrystals with near-granular polyhedral shape and flakeshape were synthesized by novel and facile hot-injection synthesis using polylol assolvents. The synthesized CIS nanocrystals were used to prepare stable colloidal inkswith ethanol solvent, and high-quality CIS thin films were deposited on glasssubstrates by dip-coating method using its colloidal inks. Well crystallized, dense andhighly (112) oriented chalcopyrite CIS thin films were obtained after annealing in Aratmosphere. The CIS thin films were used as light-absorbing layers to assemblephotovoltaic test devices with configuration of Mo/CIS/CdS/i–ZnO, n–ZnO/Ag, Alelectrode and photoelectric performances were measured.
     The research results showed that the dispersity of CIS nanoparticles synthesized byN2H4H2O-assisted hot-solvent process could be improved by using relatively largemolecule polyol such as triethylene glycol (TEG) when compared with ethylene (EG)and diethylene glycol (DEG). Well-dispersed chalcopyrite CIS nanoparticles with112phase stoichiometry could be synthesized through TEG solvent process. The averagesize of CIS nanoparticles with polygonal morphology were about10.5nm. Highsynthetic temperature led to large average size and narrow size distribution. Thereaction analysis showed that nucleation of ternary CIS compound was rapid and thenuclei directly grew into CIS nanoparticles with a very fast growth duration within1min. Extending reaction time obviously unchanged the average size of the CISnanocrystals but the Ostwald ripening could lead to slight size increase and narrowsize distribution.
     Well-dispersed, polycrystalline sphalerite CIS nanoplates with rough plate surfaceand diameter ranged from100to600nm and well-despersed, hexagonal orhexagonal-like, monocrystalline,(111) oritened sphalerite CIS nanoplates withdiameter ranged from200to400nm and diameter-thickness-ratio of about10couldbe synthesized by using TEG as solvent and ethylenediamine (En) as reducing agent under different injection style. The products at different reaction stages wereinvestigated by XRD, TEM, HRTEM, SAED, XPS and EDX analysis. The resultsshowed binary CuSe nanoplates were firstly formed and then transformed to ternaryCIS nanoplates by gradual reduction of cupric Cu~(2+) to cuprous Cu~+, In~(3+) and activeSe~(2-)participation at growing lattice sites. The PVP molecule can obviously improvethe dispersity of CIS nanocrystals by coordinating acly group on the surface ofnanocrystals. Well-dispersed sphalerite CIS nanocrystals with granular-andflaky-shaped mixed morphology were synthesized by both adding N_2H_4·H_2O and Enin TEG solvent. The relative ratio of granular-shaped CIS nanocrystals andflaky-shaped CIS nanocrystals could be tuned by the relative adding proportion ofN_2H_4·H_2O and En.
     The flat, dense and crack-free CIS thin films were prepared by dip-coating processusing well-dispersed CIS nanocrystals inks. Annealed in Ar atmosphere, the densityand crystallinity of the CIS thin films were enhanced. The (112) oriented factor of CISthin films rose from1.2to4.5by using the nanocrystals inks with nanoparticles andnanoplates mixed morphology. The sphalerite CIS phase would transformed to thechalcopyrite CIS phase which was more stable in thermodynamics after annealing at580°C in Ar atmosphere. The density and crystalline size of CIS thin films wereobviously enhanced and the (112) oriented factor reached270.9by using thenanocrystals inks with single nanoplates morphology after annealing at580°C.
     The CIS colloidal inks were used to deposit light-absorbing layers forphotovoltaic test devices with cell structure of Mo/CIS/CdS/i–ZnO, n–ZnO/Ag, Alelectrode. The V_(OC), J_(SC), FF and conversion efficience of the PV devices derived fromgranular-and flaky-shaped mixed nanocrystals inks were255mV,2.1mA·cm~(-2),0.29and0.16%, respectively, under AM1.5irradiation. The V_(OC), J_(SC), FF and conversionefficience of PV cells from single CIS nanoplates inks were249mV,1.97mA·cm~(-2),0.36and0.177%, respectively.
引文
[1]王立敏,从动荡与结构变化中认知世界能源市场——《BP世界能源统计2009》解析,国际石油经济,2009,(7),44~52.
    [2]吴治坚,叶枝全,沈辉,新能源和可再生能源的利用,北京:机械工业出版社,2006.2.
    [3]M. A. Green, K. Emery, D. L. King et al., Solar cell efficiency tables (version27).Process in Photovoltaice: Research and Applications,2006,14,49~54.
    [4]熊绍珍,朱美芳,太阳能电池基础与应用,北京:科学出版社,2009.10.
    [5]M. Gr tzel et al., Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–BasedRedox Electrolyte Exceed12Percent Efficiency, Science,2011,334(6056):629~634.
    [6]J. Zhao, A. Wang, M. A. Green,24.5%Efficiency silicon PERT cells on MCZsubstrates and24.7%efficiency PERL cells on FZ substrates, Progress inphotovoltaics,1999,7(6):471~474.
    [7]D. A. Jenny, J. J. Loferski, P. Rappaport, Photovoltaic effect in GaAs pn junctionsand solar energy conversion, Physical Review,1955,101(3):108~109.
    [8]X. Wu, High-efficiency polycrystalline CdTe thin-film solar cells, Solar Energy2004,77(6):803~814.
    [9]J. Hedstrom, J. Kessler, M. Ruckh, K. O. Velthaus, H. W. Schock,ZnO/CdS/CuInSe2thin-film solar cells with improved performance, Progress inPhotovoltaics,1993,62(6):579~599
    [10]J. S. Ward, K. Ramanathan, F. S. Hasoon, T. J. Coutts, J. Keane, M. A. Contreras,T. Moriarty, R. Noufi, A21.5%efficient Cu(In,Ga)Se2thin-film concentrator solarcell, Progress in Photovoltaics,2002,10(1):41~46.
    [11]A. N. Tiwari, M. Krejci, F. J. Haug, H. Zogg,12.8%Efficiency Cu(In,Ga)Se2solar cell on a flexible polymer sheet, Progress in Photovoltaics,1999,7(5):393~397.
    [12]R. Noufi, High-efficiency CdTe and CIGS thin-film solar cells: highlights andchallenges, Photovoltaic Energy Conversion, Conference Record of the2006IEEE4th World Conference on,2006,1:317~320.
    [13]H. W. Schock, R. Noufi, CIGS-based solar cells for the next millennium, Progressin Photovoltaics,2000,8(1):151~160.
    [14]M. A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D. L. Young, B.Egaas, R. Noufi, SHORT COMMUNICATION: ACCELERATED PUBLICATION:Diode characteristics in state-of-the-art ZnO/CdS/Cu(In1xGax)Se2solar cells,Progress in Photovoltaics,2005,13(3):209~216.
    [15]I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B.Toand R. Noufi,19.9%-efficient ZnO/CdS/CuInGaSe2solar cell with81.2%fillfactor, Progress in Photovoltaics,2008,16(3):235~239.
    [16]T. Wade, N. Kohara, S. Nishiwaki et al., Characterization of the Cu(In,Ga)Se2/Mo interface in CIGS solar cells, Thin Solid Films,2001,387:118~122.
    [17]K. Orgasses, H. W. Schock, J. H. Werner, Alternative back contact materials forthin film Cu(ln,Ga)Se2solar cells, Thin Solid Films,2003,431-432:387~391.
    [18]S. A. Kuhaim, Influence of preparation technique on the structural, optical andelectrical properties of polycrystalline CdS films, Vacuum,1998,51(3):349~355.
    [19]M. Rusu, A. Rumberg, S. Schuler et al., Optimisation of the CBD CdS depositionparameters for ZnO/CdS/CuGaSe2/Mo solar cells, Journal of Physics andChemistry of Solids,2003,64(9-10):1849~1853.
    [20]M. A. Contreras, M. J. Romero, B. To, F. Hasoon, R. Noufi, S. Ward, K.Ramanathan, Optimization of CBD CdS process in high-efficiencyCu(In,Ga)Se2-based solar cells, Thin Solid Films,2002,403-404:204~211.
    [21]H. El Malikia, J.C. Bernèdea, S. Marsillaca, J. Pinelb, X. Castelb, J. Pouzeta,Study of the influence of annealing on the properties of CBD-CdS thin films,Applied Surface Science,2003,205(1-4):65~79.
    [22]J. B. Webb, D. F. Williams, M. Buchanan, Transparent and highly conductivefilms of ZnO prepared by rf reactive magnetron sputtering, Applied Physics Letters,1981,39(8):640-642.
    [23]T. Minami, H. Nanto, S. Takata, Highly, Conductive and transparent zinc oxidefilms prepared by rf magnetron sputtering under an applied external magnetic field,Applied Physics Letters,1982,41(10):958~960.
    [24]林鹏,张志峰,有机太阳能电池研究进展,光电子技术,2004,24:55~60.
    [25]A. Hagfeldt, S.-E. Lindquist, M. Gr tzel, Charge carrier separation and chargetransport in nanocrystalline junctions, Solar Energy Materials and Solar Cells,1994,32(3):245~257.
    [26]B. O. Regan, M. Gr tzel, A low-cost, high-efficiency solar cell based ondye-sensitized colloidal TiO2films, Nature,1991,353:737~740.
    [27]M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska,N. Vlachopoulos, M. Graetzel, Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X=Cl-,Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, Journal ofthe American Chemical Society,1993,115(14):6382~6390.
    [28]M. K. Nazeeruddin, P. Pechy, M. Gr tzel, Efficient panchromatic sensitization ofnanocrystalline TiO2films by a black dye based on a trithiocyanato-rutheniumcomplex, Chemical Communications,1997,10:1705~1706.
    [29]U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer,M. Gratzel, Solid-state dye-sensitized mesoporous TiO2solar cells with highphoton-to-electron conversion efficiencies, Nature,1998,395:583-585.
    [30]J. M. Nunzi, Organicphotovoltaic materials and devices, Comptes RendusPhysique,2002,3(4):523~542.
    [31]Sean E. Shaheen, Christoph J. Brabec, N. Serdar Sariciftci,2.5%efficient organicplastic solar cells, Applied physics letters,2001,7:841~843.
    [32]C. W. Tang, Two-layer organic photovoltaic cell, Applied physics letters,1986,48(2):183~185.
    [33]D. Kearns, M. Calvin, Photovoltaic effect and photoconductivity in laminatedorganic systems, The Journal of Chemical Physics,1958,29(4):2.
    [34]J. Nelson, Organic photovoltaic films, Current Opinion in Solid State andMaterials Science,2002,6(1):87~95.
    [35]B. J. Stanbery, Copper indium selenides and related materials for photovoltaicdevices Critical Reviews in Solid State Materials Sciences,2002,27(2):73~117.
    [36]K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J.Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward and A. Duda,Properties of19.2%efficiency ZnO/CdS/CuInGaSe2thin-film solar cells, Progressin Photovoltaics,2003,11(4):225~230.
    [37]J. F. Guillemoles, L. Kronik, D. Cahen, U. Rau, A. Jasenek, H. W. Schock,Stability Issues of Cu(In,Ga)Se2-Based Solar Cells, Journal of Physical ChemistryB,2000,104(20):4849~4862.
    [38]K. L. Chopra, P. D. Paulson, V. Dutta, Thin-film solar cells: an overview, Progressin Photovoltaics,2004,12(2-3):69~92.
    [39]A. Venkatarathnam, G. V. S. Rao, Photoelectrochemical studies on single crystalCuInS2/In-system, Materials Chemistry and Physics,1987,16:145~155.
    [40]T. Nakada, Nano-structural investigations on Cd-doping into Cu(In,Ga)Se2thinfilms by chemical bath deposition process, Thin Solid Films,2000,361-362:346~352.
    [41]M. A. Contreras, B. Egaas, K. Ramanathan, J. Hiltner, A. Swartzlander, F. Hasoon,R. Noufi, Progress toward20%efficiency in Cu(In,Ga)Se2polycrystalline thin-filmsolar cells, Progress in Photovoltaics,1999,7(4):311~316.
    [42]N. Ott, G. Hanna, U. Rau, J. H. Werner, H. P. Strunk, Texture of Cu(In,Ga)Se2thinfilms and nanoscale cathodoluminescence, Journal of Physics Condensed Matter,16:S85~S89.
    [43]T. Anderson, Processing of CuInSe2-Based Solar Cells: Characterization ofDeposition Processes in Terms of Chemical Reaction Analyses, University ofFlorida, Gainesville, FL,1999, pp.1-56.
    [44]G. Masse, Concerning lattice defects and defect levels in CuInSe2and theI-III-VI2compounds, Journal of Applied Physics,1990,68(5):2206~2210.
    [45]D. Schmid, M Ruckh, F Grunwald, Chalcopyrite/defect chalcopyriteheterojunctions on the basis of CuInSe2, Journal of Applied Physics,1993,73(6):2902~2909.
    [46]J. Piekoszewski, J. J. Loferski, R. Beaulieu, J. Beall, B. Roessler, J. Shewchun,RF-sputtered CuInSe2thin films, Solar Energy Materials,1980,2(3):363~372.
    [47]C. Su, W. Ho, H. Lin, C. Nieh, S. Liang, The effects of the morphology on theCIGS thin films prepared by CuInGa single precursor, Solar Energy Materials andSolar Cells,2011,95(1):261~263.
    [48]G. P. Vassilev, P. Docheva, N. Nancheva, B. Arnaudov, I. Dermendjiev,Technology and properties of magnetron sputtered CuInSe2layers, MaterialsChemistry and Physics,2003,82(3):905~910.
    [49]J. Muller, J. Nowoczin, H. Schmitt, Composition, structure and optical propertiesof sputtered thin films of CuInSe2, Thin Solid Films,2006,496(2):364~370.
    [50]L. C. Yang, Sputtered epitaxial chalcopyrite CuInSe2films grown on GaAssubstrates, Journal of Crystal Growth,2006,294(2):202-208.
    [51]S. Karthikeyan, A. E. Hill, R. D. Pilkington, J. S. Cowpe, J. Hisek, D. M. Bagnall,Single step deposition method for nearly stoichiometric CuInSe2thin films, ThinSolid Films,2011,519(10):3107~3112.
    [52]F. O. Adurodija, M. J. Carter, and R. Hill, Synthesis and characterization ofCuInSe2thin films from Cu, In and Se stacked layers using a closed graphite box.Proceeding of IEEE PVSC, Hawaii,1994.
    [53] S. F. Chichibu, M. Sugiyama, M. Ohbasami, et al. Use of diethylselenide as aless-hazardous source for preparation of CuInSe2photo-absorbers by selenizationof metal precursors, Journal of Crystal Growth,2002,243(3-4):404–409.
    [54]L. Thouin, S. Massaccesi, S. Sanchez, J. Vedel, Formation of copper indiumdiselenide by electrodeposition, Journal of Electroanalytical Chemistry,1994,374(1-2)81~88.
    [55]G. Sasikala, S. M. Badu, R. Dhanasekaran, Electrodeposition and characterisationof CuInSe2thin films, Materials Chemistry and Physics,1995,42(3):210-213.
    [56]J. F. Guillemoles, P. Cowache, A. Lusson, K. Fezzaa, F. Boisivon, J. Vedel, D.Lincot, One step electrodeposition of CuInSe2: improved structural, electronic, andphotovoltaic properties by annealing under high selenium pressure, Journal ofApplied Physics,1996,79(9):7293~7302.
    [57]L. Zhang, F. D. Jiang, J.Y. Feng, Formation of CuInSe2and Cu(In,Ga)Se2filmsby electrodeposition and vacuum annealing treatment, Solar Energy Materials andSolar Cells,2003,80(4):483~490.
    [58]J. Kois, S. Bereznev, E. Mellikov, A. pik, Electrodeposition of CuInSe2thinfilms onto Mo-glass substrates,2006,511-512:420~424.
    [59]J. X. Yang et al., Electrodeposition of CuInSe2films by an alternatingdouble-potentiostatic method using nearly neutral electrolytes, ElectrochemistryCommunications,2009,11(3):711~714.
    [60]Y. Shi, et al., Effects of post-heat treatment on the characteristics of chalcopyriteCuInSe2film deposited by successive ionic layer absorption and reaction method,Thin Solid Films,2007,515(7-8):3339~3343.
    [61]J. X. Yang, et al., An investigation into effect of cationic precursor solutions onformation of CuInSe2thin films by SILAR method, Solar Energy Materials andSolar Cells,2008,92(6):621~627.
    [62]H. Takenoshita, Liquid phase epitaxial growth and electrical characterization ofCuInSe2, Solar Cells,1986,16(1-2):65~89.
    [63]B. Li, Y. Xie, J. Huang et al., Synthesis by a solvothermal route andcharacterization of CuInSe2nanowhiskers and nanoparticles, Advanced Materials,1999,11(17):1456~1459.
    [64]M. A. Malik, P. O'Brien, N. Revaprasadu, A novel route for the preparation ofCuSe and CuInSe2nanoparticles, Advanced Materials,1999,11(17):1441~1447.
    [65]H. Grisaru, O. Palchik, A Gedanken, et al., Microwave-assisted polyol synthesisof CulnTe2and CulnSe2nanoparticles, Inorganic Chemistry,2003,42(22):7148~7155.
    [66]S. L. Castro, S. G. Bailey, R. P. Raffaelle, et al., Nanocrystalline chalcopyritematerials (CuInS2and CuInSe2) via low-temperature pyrolysis of molecularsingle-source precursors, Chemistry of Materials,2003,15(16):3142~3147.
    [67]K. H. Kim, Y. G. Chun, B. O. Park, et al., Synthesis of CuInSe2and CulnGaSe2nanoparticles by solvothermal route, Materials Science Forum,2004,449-452:273~276.
    [68]M. G. Panthani, V. Akhavan, B. Goodfellow, et al. Synthesis of CuInS2, CuInSe2,and Cu(InxGa1-x)Se2(CIGS) nanocrystal “Inks” for printable photovoltaics, Journalof the American Chemical Society,2008,130(49):16770~16777.
    [69]Q. Guo, S. J. Kim, Mahaprasad Kar et al., Development of CuInSe2nanocrystaland nanoring inks for low-cost solar cells, Nano Letters,2008,8(9):2982~2987.
    [70]B. Koo, R. N. Patel, B. A, Korgel, Synthesis of CuInSe2Nanocrystals withTrigonal Pyramidal Shape, Journal of the American Chemical Society,2009,131(9),3134~3135.
    [71]J. Tang, S. Hinds, S. O. Kelley, E. H. Sargent, Synthesis of Colloidal CuGaSe2,CuInSe2, and Cu(InGa)Se2nanoparticles, Chemistry of Materials,2008,20(22)6906~6910.
    [72]Q. Guo, G. M. Ford, H. W. Hillhouse et al., Sulfide nanocrystal inks for denseCu(In1-xGax)(S1-ySey)2absorber films and their photovoltaic performance, NanoLetters,2009,9(8):3060~3065.
    [73]A. J. Wooten, D. J. Werder, D. J. Williams et al., Solution-Liquid-Solid growth ofternary Cu-In-Se semiconductor nanowires from multiple-and single-SourcePrecursors, Journal of the American Chemical Society,2009,131(44):16177~16188.
    [74]M. E. Norako, R. L. Brutchey, Synthesis of Metastable Wurtzite CuInSe2Nanocrystals, Chemistry of Materials,2010,22(5):1613~1615.
    [75]C. C. Wu, C. Y. Shiau, D. W. Ayele et al., Rapid microwave-enhancedsolvothermal process for synthesis of CuInSe2Particles and its morphologicmanipulation. Chemistry of Materials,2010,22(14):4185~4190.
    [76]L. Stolt, J. Hedstr m, J. Kessler, M. Ruckh, K. O. Velthaus, H. W. Schock,ZnO/CdS/CuInSe2thin-film solar cells with improved performance, AppliedPhysics Letters,62(6):597~599.
    [77]J. AbuShama, S. Johnston, T. Moriarty, G. Teeter, K. Ramanathan, R. Noufi,Properties of ZnO/CdS/CuInSe2solar cells with improved performance, Progress inPhotovoltaics,2004,12(1):39-45.
    [78]孙小玲,马鸿文, CuInSe2太阳电池薄膜的制备技术及研究进,地质科技情报,1996,15:99~104.
    [79]R. P. Singh, S. L. Singh, S. Chandra, Electrodeposited semiconducting copperindium selenide (CuInSe2) films. I. Preparation, structural and electricalcharacterization, Journal of Physics D: Applied Physics,1986,19:1299~1309.
    [80]F. J. Pern, J. Goral, R. J. Matson et al., Device quality thin films of copper indiumselenide (CuInSe2) by a one-step electrodeposition process, Thin Solid Films,1988,157:159~168.
    [81]靳正国,刘晓新,步绍静,程志捷, SILAR法制备无机化合物薄膜,材料导报,2003,17:66~68.
    [82]J. L. Yang et al., Effects of post-heat treatment on performance of chalcopyriteCuInSe2film prepared by SILAR method, WujiHuaxueXuebao,2005,21:1701~1704.
    [83]W. Liu, D. B. Mitzi, M. Yuan, A. J. Kellock, S. J. Chey, O. Gunawan,12%efficiency CuIn(Se,S)2photovoltaic device prepared using a hydrazine solutionprocess, Chemistry of Materials,2010,22(3):1010~1014.
    [84]D. B. Mitzi, M. Yuan, W. Liu, A. J. Kellock, S. J. Chey, V. Deline, A. G. Schrott,A high-efficiency solution-deposited thin-film photovoltaic device, AdvancedMaterials,2008,20(19):3657~3662.
    [85]C. Kind, C. Feldmann, A. Quintilla, E. Ahlswede, Citrate-Capped Cu11In9nanoparticles and its use for thin-film manufacturing of CIS solar cells, Chemistryof Materials,2011,23(23):5269~5274.
    [86]G. M. Ford, Q. Guo, R. Agrawal, H. W. Hillhouse, Earth Abundant ElementCu2Zn(Sn1xGex)S4Nanocrystals for Tunable Band Gap Solar Cells:6.8%EfficientDevice Fabrication, Chemistry of Materials,2011,23(10):2626~2629.
    [87]Q. Guo, G. M. Ford, W. Yang et al., Fabrication of7.2%Efficient CZTSSe SolarCells Using CZTS Nanocrystals, Journal of the American Chemical Society,2010,132(49):17384~17386.
    [88]B. Krishnamachari, J. McLean, B. Cooper et al., Gibbs-Thomson formula forsmall island sizes: Corrections for high vapor densities, Physical Review B,1996,54(12):8899~8907
    [89]P. W. Voorhees, The theory of Ostwald ripening, Journal of Statistical Physics,1985,38(1~2):231~252.
    [90]R.L. Penn, G. Oskam, T. J. Strathmann et al., Epitaxial Assembly in AgedColloids, Journal of Physical Chemistry B,2001,105(11):2177~2182
    [91]R.L Penn., J.F. Banfield, Oriented attachment and growth, twinning, polytypism,and formation of metastable phases; insights from nanocrystalline TiO2, AmericanMineralogist,1998,83(9~10):1077~1082
    [92]C. Pacholski, A. Kornowski, H. Weller, Self-assembly of ZnO: from nanodots tonanorods, Angewandte Chemie,2002,41(7):1188~1191
    [93]Y. Cheng, Y. Wang, D. Chen et al., Evolution of single crystalline dendrites fromnanoparticles through oriented attachment, Journal of Physical Chemistry B,2005,109(2):794~798
    [94]R. L. Penn, A. T. Stone, D. R. Veblen, Defects and disorder: Probing the surfacechemistry of heterogenite (CoOOH) by dissolution using hydroquinone andiminodiacetic acid, Journal of Physical Chemistry B,2001,105(20):4690~4697
    [95]F. Huang, H. Zhang, J. F. Banfield, Two-Stage crystal-growth kinetics observedduring hydrothermal coarsening of nanocrystalline ZnS, Nano Letters,2003,3(3):373~378.
    [96]F. Huang, H. Zhang, J. F. Banfield, The role of oriented attachment crystal growthin hydrothermal coarsening of nanocrystalline ZnS, Journal of Physical ChemistryB,2003,107(38):10470~10475
    [97]N. Du, H. Zhang, B. Chen et al., Ligand-free self-assembly of ceria nanocrystalsinto nanorods by oriented attachment at low temperature, The Journal of PhysicalChemistry C,2007,111(34):12677~12680
    [98]W. Lee, P. Shen, On the coalescence and twinning of cubo-octahedral CeO2condensates, Journal of Crystal Growth,1999,202(1):169~176
    [99]P. Shen, W. Lee,(111)-Specific coalescence twinning and martensitictransformation of tetragonal ZrO2condensates, Nano Letters,2001,1(12):707~711
    [100]L. Kuo, P. Shen, On the condensation and preferred orientation of TiCnanocrystals-effects of electric field, substrate temperature and second phase,Materials Science and Engineering A,2000,276(1~2):99~107
    [101]G. H. Bolt, Analysis of the validity of the Gouy-Chapman theory of the electricdouble layer, Journal of Colloid Science,1955,10(2):206~218.
    [102]K. B. Oldham, A Gouy–Chapman–Stern model of the double layer at a(metal)/(ionic liquid) interface, Journal of Electroanalytical Chemistry,2008,613(2):131~138.
    [103]M. E. Mackay, A. Tuteja, P. M. Duxbury et al., General strategies fornanoparticle dispersion, Science,2006,311(5768):1740~1743
    [104]H. Zhong, Y. Li, M. Y, et al., A facile route to synthesize chalcopyrite CuInSe2nanocrystals in non-coordinating solvent, Nanotechnology,2007,18:025602~025608.
    [105]A. I. Ekimov, A. L. Efros, A. A. Onushchenko, Quantumsize effect insemiconductor microcrystals, Solid State Communications,1985,56(11),921~924.
    [106]C. B. Murray, D. J. Norris, M. G. Bawendi, Synthesis and characterization ofnearly monodisperse CdE (E=sulfur, selenium, tellurium) semiconductornanocrystallites, Journal of the American Ceramic Society,1993,115(19):8706~8715.
    [107]C. M. Donega, P. Liljeroth, D Vanmaekelbergh, Physicochemical evaluation ofthe hot-injection method, a Synthesis route for monodisperse nanocrystals, Small,2005,1(12):1152~1162.
    [108]B. Wiley, Y. G. Sun, B. Mayers, Y. N. Xia, Shape-Controlled synthesis of metalnanostructures: the case of silver, Chemistry-A European journal,2005,11(2),454~463.
    [109]M. Tsuji, M. Hashimoto, Y. Nishizawa, T. Tsuji, Synthesis of gold nanorods andnanowires by a microwave-polyol method, Material Letters,2004,58:2326~30.
    [110]X. C. Jiang, Y. L. Wang, T. Herricks, Y. N. Xia, Ethylene glycol-mediatedsynthesis of metal oxide nanowires, Journal of Materials Chemistry,2004,14,695~703.
    [111]C. Feldmann, H. O. Jungk, Polyol-mediated preparation of nanoscale oxideparticles, Angewandte Chemie International Edition,2001,40:359~62.
    [112]Z. P. Peng, Y. S. Jiang, Y. H. Song, C. Wang, H. J. Zhang, Morphology control ofnanoscale PbS particles in a polyol process, Chemistry of materials,2008,20(9):3153~3162.
    [113]E. P. Domashevskaya, V. V. Gorbachev, V. A. Terekhov, et al., XPS and XESEmission Investigations of d–p Resonance in some Copper Chalcogenides, Journalof Electron Spectroscopy and Related Phenomena,2001,114:901~908.
    [114]K. Bindu, C. S. Kartha, K. P. Vijayakumar et al., CuInSe2thin film preparationthrough a new selenisation process using chemical bath deposited selenium, SolarEnergy Materials and Solar Cells,2003,79(1),67~79.
    [115]Z. Quan, P. Yang, C. Li, X. Zhang, J. Yang, J. Lin, A novel and efficient route toSe nano/microstructures with controllable phase and shape, Crystal Growth&Design,2008,8(10),3834~3839.
    [116]T. Wang et al., Nanosized CdSe particles synthesized by an air pressure solutionprocess using ethylene-glycol-based solvent, Journal of the American CeramicSociety,2010,93(7):1927~1933.
    [117]W. Wang et al., A green and air pressure solution synthesis of CuInSe2nanocrystals using1-methyl-2-Pyrrolidinone as hot solvent, Journal of theAmerican Ceramic,2011,94(8):2571~2577.
    [118]张立德,牟季美,纳米材料与纳米结构,北京:科学出版社.2002.
    [119]嵇天浩,孙家悦,杜海燕,分散性无机纳米粒子—制备、组装和应用.北京:科学出版社.2009.1.
    [120]J. Xiao, Y. Xie, Y. Xiong, R. Tang and Y. Qian, A mild solvothermal route tochalcopyrite quaternary semiconductor CuIn(SexS1-x)2nanocrystallites, Journal ofMaterials Chemistry,2001,11:1417~1420.
    [121]Y. Jiang, Y. Wu, X. Mo, W. Yu, Y. Xie, Y. Qian, Elemental solvothermal reactionto produce ternary semiconductor CuInE2(E)S, Se) nanorods, Inorganic Chemistry,2000,39(14),2964~2965.
    [122]J. J. Wang, Y. Q. Wang, F. F. Cao, Y. G. Guo, L. J. Wan, Synthesis ofmonodispersed wurtzite structure CuInSe2nanocrystals and their application inhigh-performance organic-inorganic hybrid photodetectors, Journal of theAmerican Chemical Society,2010,132(35):12218~12221.
    [123]J. Lu, Y. Xie, F. Xu, L. Zhu, Study of the dissolution behavior of selenium andtellurium in different solvents—a novel route to Se, Te tubular bulk single crystals,Journal of Materials Chemistry,2002,12:2755~2716.
    [124]F. Bonet, K. Tekaia-Elhsissen, K. V. Sarathy, Study of interaction of ethyleneglycol/PVP phase on noble metal powders prepared by polyol process, Bulletin ofMaterials Science,2000,23:165~168.
    [125]Z. Zhang, Z. Zhao, B. Zhao, L. J. Hu, Solid State Chemistry,1996,121,105.
    [126]敖建平,CIGS薄膜、缓冲层材料及太阳电池的研究:[博士学位论文],天津;南开大学,2007.
    [127]Y. Wang, Z. Jin, H. Liu et al., CuInSe2, CuGaSe2and Cu(In, Ga)Se2nanocrystalssynthesized by ambient pressure diethylene glycol based solution process, PowderTechnology,2012,232:93-98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700