毛细管电泳—化学修饰电极电化学检测方法研究及其在四溴双酚A神经毒性分析中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着人类生产生活的发展,溴系阻燃剂(BFRs)作为目前产量最大、应用最广泛的阻燃剂之一,近年来发展迅速并被广泛应用到国民经济的各个部门及人们的生产生活中。由于其具有难降解性、环境稳定性、高脂溶性等特点,能够通过食物链的转移,使处于高位营养级的生物受到毒害,最终导致对人体健康的危害。在过去的十多年中,溴系阻燃剂的环境安全性问题,特别是多溴联苯醚(PBDEs)、四溴双酚-A(TBBPA)和六溴环十二烷(HBCD)等对环境的影响问题,引起了科学家们的极大关注。然而,对于BFRs神经毒性方面的研究,尚处于起步阶段。
     毛细管电泳(capillary electrophoresis,CE)具有分离效率高、分析速度快、检测灵敏度高、样品用量少、能直接进样及易于自动化操作等优点,在生命科学、农业、食品、临床医学、化学等各得到广泛应用。其中,毛细管电泳-安培检测方法具有灵敏度高、选择性好、线性范围宽等特点。随着检测方法的不断完善,不同的电极材料如铂电极金电极等被选做工作电极,毛细管电泳安培检测的对象不断扩大。此外,还可以通过化学修饰的方法在电极表面连接上具有特定活性的化学功能团,赋予电极某种特定的性质,在高选择性和灵敏度方面具有独特的优越性,从而进一步扩大安培检测的范围和适用性。
     根据上述研究现状,本论文以重要的生命信息分子为研究对象,建立了用于快速、灵敏、准确检测单胺类神经递质、神经肽类和谷胱甘肽等物质的毛细管电泳-安培检测方法;同时,与化学修饰电极技术相结合,通过对其电催化性质研究和应用,极大地提高毛细管电泳的检测灵敏度。在此基础上,结合国内外溴系阻燃剂研究现状,本论文建立了SD大鼠TBBPA损伤模型,采用毛细管电泳-安培检测方法对上述生物分子水平在受到TBBPA损伤后含量水平的变化进行了一系列的研究工作。
     全文共分以下五个部分:
     第一章、概述
     首先,对溴系阻燃剂的污染现状及其毒性效应进行了综述;其次,分别阐述单胺类神经递质、神经肽类和谷胱甘肽等生物活性分子在生命活动中和疾病诊断治疗中的重要意义;再次,概述了毛细管电泳的发展、现状及前景,对毛细管电泳在环境科学以及生物分析等领域的应用作了较为详尽的论述;最后,以方法的建立、完善和应用领域的拓宽为出发点,提出了本论文的研究内容。
     第二章、毛细管电泳-铂纳米修饰电极分离检测单胺类递质的研究及其在TBBPA暴露动物模型中的应用
     单胺类神经递质是一类具有广泛生物学活性的物质,作为人体内一类非常重要的神经递质,在神经系统支配体内各个器官,调节各个系统的多种生理功能中处于关键地位,同时单胺类递质也是重要的激素物质,它们和神经冲动、行为及大脑皮质的觉醒和睡眠节律等都有关系,在神经系统中起重要调节作用。
     该部分以TBBPA损伤大鼠为模型,应用毛细管电泳电化学检测方法,以铂纳米颗粒修饰电极为工作电极建立了5-羟色胺(serotonin,5-HT)、多巴胺(dopamine,DA)、去甲肾上腺素(norepinephrine,NE)和肾上腺素(epinephrine,E)的分离检测方法。在最佳实验条件下,各物质的浓度在0.01~10 nmol/L内与电流响应呈良好线性关系(相关系数大于0.9997),经铂纳米颗粒修饰的电极灵敏度显著提高,检出限分别可达2.3、2.7、3.1和3.3 pmol/L(S/N=3)。在此基础上,我们按毒性-时间效应、毒性-剂量效应和毒性-时间累积效应三部分分别进行了动物实验,并测定SD大鼠受TBBPA损伤后下丘脑、皮层、海马和小脑四个脑区中5-羟色胺、多巴胺、去甲肾上腺素和肾上腺素的含量的变化,初步探讨了溴系阻燃剂对动物神经毒性的影响。为从分子水平深入研究溴系阻燃剂对动物神经毒性的影响及其毒性的准确评价提供了一种快速、灵敏、有效的方法。
     三、毛细管电泳-多壁碳纳米管修饰电极在线衍生法对TBBPA暴露下TRH水平影响的研究
     促甲状腺激素释放激素(thyrotropin-releasing hormone,TRH)是一种小分子肽类,主要作用于腺垂体促进促甲状腺激素(thyroid stimulating hormone,TSH)释放,也作为神经递质或调质参与心血管、呼吸、体温等多种生理功能的调节。TRH以神经递质或神经调节物的形式在中枢神经内产生广泛的生理效应,并与阿片肽之间存在一定的相互作用。
     该部分以促甲状腺素释放素(TRH)为研究对象,采用毛细管电泳—Cu~(2+)在线衍生电化学检测法,以多壁碳纳米管修饰碳电极为工作电极,建立了促甲状腺激素释放激素(TRH)的测定方法。在含有0.5mmol/L Cu~(2+)的硼酸盐缓冲体系中(pH=10.1),TRH与Cu~(2+)结合形成具有良好电活性的化合物,可以在电化学检测器上被检出。论文对分离和检测的各种影响因素进行了试验,在优化的实验条件下,促甲状腺激素释放激素在浓度1.0×10~(-7)mmol/L到1.0×10~(-9)mol/L范围内,与峰电流呈良好的线性关系,相关系数为0.9992。经多壁碳纳米管修饰的电极灵敏度可提高10倍,检测限为3.0×10_(-10)mol/L(S/N=3)。同时,通过对大鼠腹腔注射TBBPA后脑部TRH含量的变化,初步探讨了四溴双酚A(TBBPA)的神经毒性。结果表明,受TBBPA损伤后,大鼠各个脑区TRH的含量呈现一定的变化规律。该方法灵敏、简单、快速、重现性好,为开展TBBPA对中枢神经系统损伤的研究提供了一个有效的手段。
     第四章、毛细管电泳-铂纳米修饰电极在线衍生法对TBBPA暴露下脑啡肽水平影响的研究
     脑啡肽物质可作为神经递质或激素单独发挥作用,亦可与其他神经递质共存于同一神经元中而作为神经调制素发挥作用。
     该部分建立了四溴双酚A(TBBPA)损伤动物模型,以亮氨酸脑啡肽(L-ENK)和甲硫氨酸脑啡肽(M-ENK)为研究对象,研究了SD大鼠下丘脑,皮层,海马和小脑四个脑区中L-ENK和M-ENK损伤前后水平变化,初步探讨了TBBPA的神经毒性效应。通过电化学聚合法制备了PtNPs修饰电极并作为工作电极,建立了毛细管电化学检测的分离检测上述两种脑啡肽的方法。在优化的分离、检测条件下,L-ENK和M-ENK的电流响应与其浓度在0.1~50 nmol/L的范围内呈良好的线性关系(相关系数为0.999),检出限分别为7和8 pmol/L(S/N=3)。分别按毒性-时间效应,毒性-剂量效应和毒性-时间累积效应三部分进行动物实验,测定L-ENK和M-ENK在受损伤前后的浓度变化。该方法简单、快速、灵敏,为进一步开展溴系阻燃剂对动物神经系统损伤的研究提供了一个有效的手段。
     第五章、毛细管电泳-MWCNTs/Mv RuO/RuCN修饰电极对TBBPA暴露下谷胱甘肽的快速测定
     谷胱甘肽广泛存在于生物体内,是由谷氨酸、半胱氨酸和甘氨酸组成的含硫醇三肽化合物,半胱氨酸上的巯基为活性基团。谷胱甘肽以还原型(GSH)和氧化型(GSSG)两种形式存在。GSH作为细胞的一种还原剂,参与多种重要的生理过程,可保护细胞免遭氧化损伤,解除药物代谢产物的毒性,调节基因表达和细胞凋亡,并与物质的跨膜转运相关。
     该部分以多壁碳纳米管(MWCNTs)、RuCl_3和K_4Ru(CN)_6构筑的MWCNTs-Mv RuO/RuCN修饰电极为工作电极,建立了GSH和GSSG的毛细管电泳电化学检测方法。在最佳实验条件下,各组分的浓度在0.01~10μmol/L内与电流响应成良好线性关系,检出限分别为2.8和1.2 nmol/L(S/N=3)。按毒性-时间效应、毒性-剂量效应和毒性-时间累积效应三部分分别进行了动物实验,建立了TBBPA损伤大鼠模型,并测定了SD大鼠损伤后血清中GSH(还原型谷胱甘肽)和GSSG(氧化型谷胱甘肽)含量,为深入研究溴系阻燃剂的毒性及准确评价提供了一种快速、灵敏、有效的方法。
Brominated flame retardants(BFRs)have been widely used in plastics,textiles,electronic circuitry and other materials to prevent fires.They can accumulate in the environment and biont,and have been proved to be harmful to mammals,birds and fish.Because of their wide spread,stable structures and uncertain risk to human health,great concern has been aroused. Their effects on the hepatic enzyme activities,thyroid gland,nerve system,and immune system have been studied.Recent studies have shown that neonaltal exposure to some of the BFRs produce persisitent aberrations in spontaneous behaviour and affect learning and memory function in the adult mice.These findings suggest that several of the BFRs must be neurotoxic.In order to investigate the neurotoxicity of TBBPA on molecular level,monitoring monoamines,neuropeptide in brain,plasma,urine,and tissue is useful for studying the role of them in neurophysiology,behavioral effects,pathology,disease diagnosis and control.Since the concentrations of these molecules in brain are extremely low,it is important to develop highly sensitive analytical techniques with high resolution for their detections.
     Recently,capillary electrophoresis(CE)has exhibited powerful capability for the analysis of complex samples with many advantages,such as the high separation speed and efficiency,low volume sample for analysis,the relatively simple instrumentation and very low running costs.Amperometric detection is an important detection method due to its sensitivity.It has been successfully coupled to CE to detect electroactive analytes.Common amperometric detectors,based on glassy carbon or carbon paste electrodes,exhibit no response for many analytes because of a high overpotential.The benefits of using chemically modified electrodes(CMEs)in these systems include acceleration of electron transfer reactions,permselective transport,reduction in fouling,and preferential accumulation of analyte.
     In this dissertation,we laid our emphasis on the research of novel methods of sample analysis in neuroscience by CE-AD couple with chemically modified electrodes(CMEs).To our knowledge,it was the first time by using CE-AD couple with CMEs to determine the monoamine neurotransmitters,neuropeptides in rats' brain after exposure to TBBPA.The dissertation includes five chapters:
     Chapter 1.Introduction
     In this chapter,it introduced the characteristics of TBBPA,neurotransmitters and CE.The goal and significance of this dissertation are introduced too.
     Chapter 2.Determination of monoamine neurotransmitters in rats' brain after exposure to TBBPA by CE-AD with Platinum Nanoparticles(PtNPs)modified electrode
     Several studies have shown that BFRs affect the dopaminergic system in CNS,especially the synaptosomal and vesicular uptake.It is suggested that such toxins may influence the level of monoamines neurotransmitters.In this chapter,the fabrication and application of CE-AD with the platinum nanoparticles modified electrode were described.The chemically modified electrode had a good catalytic effect on monoamines neurotransmitters.In CE-AD with dopamine(DA),epinephrine(E),norepinephrine(NE)and 5-hydroxytryptamine(5-HT) in rat brain were separated and determined effectively at CMEs.The electrophoresis conditions followed as running voltage was 15 kV,working potential was 1.0 V,running buffer was 160 mmol/L Na_2HPO_4~NaH_2PO_4(pH=5.8)and the injection time was 10 s.A good linear relation was observed in 0.01~10 nmol/L.The detection limits of them was 2.3,2.7,3.1 and 3.3 pmol/L(S/N=3),respectively.The method can be applied directly to the determination the four monoamines neurotransmitters in brain sample with satisfactory results.
     Chapter 3.Determination of TRH in rats' brain after exposure to TBBPA by CE-AD with Multiwalled Carbon Nanotubes modified electrode
     Studies have shown that neonatal exposure to some brominated flame retardants(BFRs) produces neurobehavioral aberrations.In our study,thyrotropin-releasing hormone(TRH) was used to explore the neurotoxicity of BFRs.Tetrabromobiaphenol-A(TBBPA)was administered intraperitoneally(i.p.)to investigate its effect on TRH levels in rat brain.CE with electrochemical detection(ED)using a carbon nanotubes(CNTs)-modified carbon electrode in conjunction with on-capillary copper complexation was developed for the determination of TRH.TRH forms an electroactive Cu(Ⅱ)complex thus is detectable with the above method.Carbon nanotubes have excellent electrocatalytic activity,so the CNTs-modified carbon electrode was used to improve the sensitivity to at least 10-fold.The detection limit for TRH was 0.3 nmol/L(S/N=3)with the linear calibration curves ranging from 1~100 nmol/L,which enables the possibility for the determination of TRH in biological samples.An increase TRH concentration in different regions of rat brain was observed 24 h after administration of TBBPA in a single dose of 1000 mg/kg body weight.The highest TRH concentration was detected in hippocampus.It was also found that the higher dose of TBBPA affects the TRH level in brain much more.The present study shows that neuropeptides could be used as targets to evaluate the neurotoxicity of BFRs.This rapid,effective and sensitive method can be used to study the neurotoxicity of BFRs via detection of TRH in rat brain.
     Chapter 4.Determination of enkephalins in rats' brain after exposure to TBBPA by CE-AD with Platinum Nanoparticles(PtNPs)modified electrode
     To observe the changes of M-ENK and L-ENK concentration in the brain regions such as hypothalamus;hippocampus;cerebellum and cortex to explore the neurotoxicity of TBBPA, CE-AD applied with a platinum nanoparticles(PtNPs)modified electrode was developed. This work on M-ENK and L-ENK assays has been established based on the reversible electrochemistry of the Cu(Ⅱ)/Cu(Ⅲ)coupled with M-ENK and L-ENK.Under the optimum condition,M-ENK and L-ENK could be separated in 75 mmol/L Na_2B_4O_7~NaOH(pH=9.8) containing 1.0 mmol/L Cu~(2+).A good linear relation was observed in 0.1~50 nmol/L.The detection limits of them was 7 and 8 pmol/L(S/N=3),respectively.This rapid,effective and sensitive method can be used to study the neurotoxicity of BFRs via detection of enkephalines in rat brain.
     Chapter 5.Determination of GSH and GSSG in rats' brain after exposure to TBBPA by CE-AD with Multiwalled Carbon Nanotubes/Mv RuO-RuCN Films modified electrode
     Glutathione(GSH)is often involved in protective and detoxifying functions of the cell. Glutathione disulfide(GSSG)is known to be formed in biological systems because of the function of GSH as antioxidant.Analysis of GSH and GSSG is of continuous interest because of their biological significance.To determine concentration of GSH and GSSG,a glassy carbon electrode doped multiwalled carbon nanotube was deposited from a solution containing micromolar concentrations of RuCl_3 and K_4Ru(CN)_6 to fabricate the GC/MWCNTs/mv RuO-RuCN as a working electrode.It was found that the CMEs exhibited efficiently electrocatalytic effect on GSH and GSSG.A good linear relation was observed in 0.01~10μmol/L.The detection limits of them was 2.8 and 1.2nmoI/L(S/N=3),respectively. This rapid,effective and sensitive method can be used to study the toxicity of BFRs via detection of GSH and GSSG in rat serum.
引文
1 Sellstrom U,Kierkegaard A,de Wit C,Jansson B.Environ.Toxicol.Chem.,1998,17:1065-1072.
    2 Hale R.C,la Guardia M J,Harvey E,Mainor T M.Chemosphere,2002,46:729-735.
    3 Tamade Y,Shibukawa S,Osaki H,Kashimoto S,Yagi Y,SakalS,Takasuga T.Organohalog.Compd.,2002,56:189-192.
    4 Leonards P.E.G,Santillo D,Brigden K,van der Veen I,Hesselingen J,de Boer J,Johnston P.The Second International Workshop on Brominated Flame Retardants.Stockholm,2001:233-236.
    5 Meneses M.,Wingfors H.,Schumacher M.,et al.Polybrominated diphenyl ethers detected in human adipose tissue from Spain[J].Chemosphere,1999,39:2271-2278.
    6 KlassonWehler E.,Hovander L.,Bergman.New organohalogens in human plasma identification and quantification[J].Organohalogen Compounds,1997,33:420-425.
    7 Kr(u|¨)ger C.,Polybrominated biphenyls and polybrominated diphenyl ethers detection and quantitation in selected foods[D].Ph.D.Thesis,University of Munster,Germany(in German),1988.
    8 Ohta S,Ishizuka D,Nishimura H,et al.Comparison of polybrominated diphenyl ethers in fish,vegetables,and meats and levels in human milk of nursing women in Japan[J].Chemosphere,2002,46(5):689-696.
    9 Meironyté D,Nor(?)n K,Bergman.J.Toxicol.Environ.Health:Part A,1999,58:329-341.
    10 Viberg H,Fredriksson A,Eriksson P.Investigations of strain and/or gender differences in dev-elopmental neurotoxic effects of polybrominated diphenyl ethers in mice[J].Toxicol Sci,2004,81(2):344-353.
    11 Meironyt(?) D,Nor(?)n K,Bergman J.Toxicol.Environ.Health:Part A,1999,58:329-341.
    12 Noren K,Meironyte D.Chemosphere,2000,40:1111-1123.
    13 Wijesekera R,Halliwell C,Hunter S,Harrad S.Organohalog.Compd.,2002,55:239-242.
    14 Knoth W,Mann W,Meyer R,Nebhuth J.Organohalog.Compd.,2002,58:213-216.
    15 Sj din A,Hagmar L,Klasson-Wehler E,Diab K,Jakobsson E,Bergman.Environ.Health.Perspect,1999,107:643-648.
    16 Jakobsson K,Thuresson K,Rylander L,Sj din A,Hagmar L,Bergman.Chemosph-ere,2002,46:709-716.
    17 Thuresson K,Jakobsson K,Hagmar L,Sj din A,Bergman A.Organohalog.Compd.,2002,58:165-168.
    18 Johnson A,Olson N,Arch.Environ.Contain.Toxicol.2001,41:339.
    19 Ohta S,Ishizuka D,Nishimura H,et al.Chemosphere,2002,46:689-696.
    20 Darnerud P.O,Thuvander A.Effects of polybrominated diphenyl ether(PBDE) and polychlorinated biphenyl(PCB)on some immunological parameters after oral exposu-re in rats and mice[J].Toxicol.Environ.Chem.,1999,70:229-242.
    21 Cynthia A,De Wit.An overview of brominated flame retardants in the environme-nt[J].Chemosphere,2002,46(5):583-624.
    22 Darnerud P.O,Eriksen G.S.Polybrominated diphenyl ethers:Occurrence,dietary exposure,and toxicology.Endron.Health.Persp.,2001,109:49-68.
    23 Alaee M.Recommendation for monitoring of polybrominated diphenyl ethers in the Canadian environment.Environ.Mon.Assmt.,2003,88:327-341.
    24 Mazdai A,Dodder N.G,Abemathy M.P,et al.Polybrominated diphenyl ethers in maternal and fetal blood samples.Environ HealthPersp,2003,111(9):1249-1252.
    25 Zhou Q.X,Kong F.X,Zhu L.Ecotoxicology.2004.Beijing:SciencePress.
    26 Zhou T, Ross D.G, Devito M.J, et al. Effects of short-term in vivo exposure to polybrominated diphenyl ethers on thyroid hormones and hepatic enzyme activities in weanling rat. Toxicological Sciences, 2001,61:76-82.
    27 Canton RF, Sanderson J.T, Letcher R.J, et al. Inhibition and induction of aromatase (CYP19) activityby brominated flame retardants in H295R human adre-nocortical carcinoma cells. Toxicological Sciences, 2005, 88: 447-455.
    28 Stoker T.E, Cooper R.L, Lambright C.S, et al. Invivo and in vitro anti-androgenic effects of DE-71, a commercial polybrominated diphenyl ether (PBDE) mixture. Toxicology and Applied Pharmacology, 2005, 207: 78-88.
    29 Stoker T.E, Laws S.C, CroftonK.M, et al. Assessment of DE-71, a commercial polybrominated diphenylether (PBDE) mixture, in the EDSP male and female pubertal protocols. Toxicological Sciences, 2004, 78: 144-155.
    30 Kuriyama S.N, Talsness C.E, Grote K, et al. Developmental exposure to low dose PBDE 99: Effects on male fertility and neurobehavior in rat offspring. Environmental Health Perspectives, 2005,113:149-154.
    31 Geneva, Environmental health criteriabrominated diphenyl ethers [R]. lnternational Program on Chemical Safety. 1994,162.
    32 National Toxicology Program. NTP toxicology and carcinogenesis studies of polybrominated biphenyls in F344/N rats and B6C3F1 mice (feed studies) [J]. Natl Toxicol Program Tech Rep Ser. 1993, 398:1-235.
    33 McDonald T.A. A perspective on the potentialhealth risks of PBDEs. Chemosphere, 2002, 46: 745-755.
    34 Cynthia A de Wit. An overview of brominated flame retardants in the environment. Chemosphere, 2002, 46:583-624.
    35 Chan S, Kilby M.D. Thyroid hormone and central nervous system development. Journal of Endocrinology, 2002, 165: 1-8.
    36 Zoeller R.T, Crofton K.M. Thyroid hormone action in fetal brain development and potential for disruption by environmental chemicals. Neurotoxicology, 2000, 21: 935 -945.
    37 De Escobar M, Obregon G.M.J, del Rey E.F. Clinical perspective: Is neuropsychol- ogical development related to maternal hypothyroidism or to maternal hypothyroxine- mia? Journal of Clinical Endocrinology and Metabolism, 2000, 85: 3975-3987.
    38 Darnerud P, Eriksen G, Johannesson T, et al. Polybrominated diphenyl ethers: Occurrence, dietaryexposure, and toxicology. Environmental Health Perspectives, 2001, 109: 49-68.
    39 Hooper K, McDonald T.A. The PBDEs: An emerging environmental challenge and another reason for breastmilk monitoring programs. Environmental Health Perspectiv- es, 2002, 108: 387-392.
    40 Darnerud P.O, Sinjari T. Effects of polybrominated diphenyl ethers (PBDEs) and polybrominated biphenyls (PCBs) on thyroxine and TSH blood levels in rats and mice. Organohalogen Compounds, 1996,29: 316-319.
    41 Fowles J.R, Fairbrother A, Baecher-Steppan L, et al. Immunologic and endocrine effects of the flame-retardant pentabromodiphenyl ether (DE-71) in C57BL/6Jmice. Toxicology, 1994, 86: 49-61.
    42 Fowles J.R, Fairbrother A, Baher S.L, et al. Immunologicand endocrine effects of the flame-retardant pentabromodiphenyl ether(DE-71) in C57BL/6J mice [J]. Toxico- logy, 1994, 86: 49-61.
    43 Zhou T, Taylor M.M, de Vito M.J. et al. Developmental exposure to brominated diphenyl ethers results in thyroid hormone disruption [J]. Toxicol. Sci. 2002, 66: 105-116.
    44 Fernie K.J, Mayne G, Shutt J.L, et al. Evidence of immunomodulation in nestling American kestrels (Falco sparverius) exposed to environmentally relevant PBDE. Environmental Pollution, 2005,138:485-493.
    45 Darnerud P.O,Aune M,Larsson L,et al.Plasma PBDE and thyroxine levels in rats exposed to Bromkal or BDE-47.Chemosphere,2007,67:386-392.
    46 Fowles J.R,Fairbrother A,Baecher-Steppan L,et al.Immunologic and endocrine effects of the flame-retardant pentabromodiphenyl ether(DE-71) in C57BL/6J mice.Toxicology,1994,86:49-61.
    47 Boecker R.H,Schwind B,Kraus V,et al.Cellular disturbances by various brominated flame retardants[A].In:Abstract 2001,Part 3:Effects and metabolism[M].the second international workshop on brominated flame retardants in Stockholm,Stockholm University,2001:138-139.
    48 Pullen S,Boecker R,Tiegs G.The flame retardants tetrabromobisphenol-A and tetrabromobisphenol-A-bisallylether suppress the induction of interleukin-2 receptor alpha chain(CD25) in muri-ne splenocytes[J].Toxicology,2003,184:11-22.
    49 Abeliovich A,Paylor R,Chen C,et al.PKC gamma mutant mice exhibit mild deficits in spatial and contextual learning.Cell,1993,75:1263-1271.
    50 Jakobsson K,Thuresson K,Rylander L,et al.2002.Exposure to polybrominated diphenyl ethers and tetrabromobisphenol A among computer technicians.Chemosphe-rs,46:709-716.
    51 Eriksson P,Jakobsson E,FredrikssonA.Brominated flame retardants:A novel class of developmental neurotoxicants in our environment?Environmental Health Perspectives.2001,109:903-908.
    52 Branchi I,Capone F,Vitalone A,et al.Early developmental exposure to BDE 99 or Aroclor 1254 affects neurobehavioural profile:Interference from the administration route.Neurotoxicology,2005,26:183-192.
    53 Viberg H,Fredriksson A,Eriksson P.Neonatal exposure to the brominated flame retardant 2,2',4,4',5-pentabromodiphenyl ether causes altered susceptibility in the cholinergic transmitter system in the adult mouse.Toxicological Sciences,2003,67:104-107.
    54 Stapleton H.M,Doddern G,Offenberg JH,et al.Polybrominated diphenyl ethers in house dust and clothes dryer lint[J].Environ.Sci.Technol,2005,39(4):925-931.
    55 Branchi I,Capone F,Alleva E,et al.Polybrominated diphenyl ethers:neurobehavioral effects following developmental exposure[J].Neurotoxicology,2003,24:449-462.
    56 Eriksson P,Ankarberg E,Viberg H,et al.The developing cholinergic system as target for environmental toxicants,nicotine and polychlorinated biphenyls(PCBs):implications for neurotoxicological processes in mice[J].Neurotox Res,2001,3(1):7-51.
    57 Hokfelt T,et al.Neuropharmacol,2000,39:1337.
    58 萧正伦,黄海鹭,徐远达,等.低剂量内毒素对低血容量性休克兔前炎症细胞因子的影响[J].中国危重病急救医学.2000.12(6):346-349.
    59 Duntas L,Nelson D.K.,Grab B.M.,Rosenthal J.,et al.A fast protein liquid chromatography (FPLC) method for study of thyrotropin-releasing hormone(TRH) and its metabolite histidyl-proline diketopiperazine(CHP) in human blood:Degradati-on in liver and pancreatic diseases.Neuropeptides,1993,25:357-361.
    60 Meng R,Xia W.L.,Sandberg M.,Weber S.G.,et al.Online preconcentration of thyrotropin-releasing hormone(TRH) by SDS-modified reversed phase column for microbore and capillary high-performance liquid chromatography(HPLC).J.Chromtography A,2005,1071:179-184.
    61 Graham E.S.,Webster C.A.,Hazlerigg D.G.,et al.Evidence for the biosynthesis of a prolactin-releasing factor from the Ovine Pars Tuberalis,which is distinct from thyrotropin-releasing hormone.J.Neuroendocrinol.2002,14:945-954.
    62 Guti(?)rrez M.C.,Quintanar J.L.,et al.The application of NIR Raman spectroscopy in the assessment of serum thyroid-stimulating hormone in rats.Spectochimica Acta A.,2005,61:87-91.
    63 Visich J.E.,Byron P.R.,High-pressure liquid chromatographic assay for the deter-mination of thyrotropin-releasing hormone and its common metabolites in a physiolo-gical salt solution circulated through the isolated perfused rat lung.J.Pharm.Biomed.Anal.,1996,15:105-110.
    64 Elias A.N,Vaziri N.D,et al.Endogenous optioids and TSH secretion in azotemic male rats.Neuroendorindogy.1988,47:181.
    65 刘良明,陈惠孙,胡德耀,等.TRH对失血性休克大鼠心脏肾上腺素能受体及多巴胺受体的影响[J].上海免疫学杂志,1996,12(3):294-297.
    66 Hughes J,et al.Identification of two related pentapeptides from the brain with potentopiate agonist activity.Nature,1975:258-577.
    67 Clement-Jones V,Lowry P.L,Rees L.H,et al.Met-enkephalin circulates in human plasma.Nature,1980,283:295-301.
    68 Hideko M,Michiko M.Determination of peptides by high-performance liquid chromatography with laser-induced fluorescence detection[J].J.Chromatogr.A,1997,763:23-29.
    69 Frtsmatei A,Li J.J.Micellar electrokinetic chromatographic study of the interaction between enkephalin peptide analogs and charged micelles[J].Chromatogr.B,1997,695:39-47.
    70 Yi D,Xiu Y J,et al.Separation and determination of enkephalin-related peptides using capillary electrophoresis[J].J.Sep.Sci.,2005,28(18):2534-2539.
    71 Frtsmatei A,Day R,Stpierre S.A,et al.Micellar electrokinetic chromatography separations of dynorphin peptide analogs[J].Electrophoresis,2000,21(4):715-723.
    72 Chen C.P,Jeffery D,Jorgenson J.W,et al.Sensitive analysis of enkephalin in rat serum by capilary electrophoresis and laser-induced fluorecence detection[J].J Chromatogr B,1997,697:149-162.
    73 刘明杰,朱业湘.儿茶酚胺类神经递质检测技术及其研究进展[J].中国卫生检验杂志,2002,12(4):501-503.
    74 叶章群.上腺疾病[M].人民卫生出版社,1997:48-53.
    75 Matsumoto M,Weickert C.S,Akil M,et al.Catechol omethyl transfer ase mRNA expression in human and rat brain;evidence for a role in cortical neuronal function[J].Neuroscience,2003,116:127-137.
    76 Nohta H,Yukizawa T,Ohkura Y,et al.Aromatic glycinonitriles and methylamines as precolumn fluorescence derivatization reagents for catecholamines[J].Anal Chim Acta,1997,344(3):233-240.
    77 石一鸣.第二军医大学学报,1989,10(6):567-570.
    78 Vicente-Torren M.A,Gil-Loyzaga P,Carricondo F,et al.Simultaneous HPLE quantification of monoamines and metabolites in the blood-free rat cochlea[J].J Neuros Meth,2002,219(1):31-36.
    79 Studer E,Rhyner C,Luthy J,et al.Quantitative competitive PCR for the detction of genetically modified slybean and maize.Z Lebenuam UnteraForsch.1998,207:207-213.
    80 Zhang W,Wan F.L,Xie Y.F,et al.Amperometric determination of(R)-salsolinol,(R)-N-methylsalsolinol and monoamine neurotransmitters with liquid chromatograp-hy using functionalized multi-wall carbon nanotube modified electrode in Parkinson's patients'cerebrospinal fluid.Analytica Chimica Acta,2004,512:207-214.
    81 张华,罗荣城,崔彦芝,伍婧.还原型谷胱甘肽预防草酸铂慢性神经毒性16例疗效观察.新医学.2008,39:159-161.
    82 林万隆.奥沙利铂的药理作用及临床应用[J].中国肿瘤临床.2000,27(11):872-874.
    83 王颖杰,张文霞,陈友山.谷胱甘肽对长春地辛周围神经毒性防治作用的初步研究.实用癌症杂志.2008,23:79-82.
    84 Cotgreave I.A,Moldeus P.J.Biochem.Biophys.Methods,1986,13(4-5):231.
    85 Cereser C,Guichard J,Drai J,et al.Journal of Chromatography B.2001,752:123.
    86 王义明,罗国安,魏伟,关燕华.细管电泳的原理及应用.色谱.1997,15(6):494.
    87 Jandik P,Bonn G,Capillary electrophoresis of small molecules and ions.NewYork:VCH Publishers,Inc.,1993:118.
    88 邓延倬,何金兰.高效毛细管电泳,科学出版社,1996:29.
    89 Jorgenson J.W,Lukacs K.D,Anal.Chem.,1981,53:1298.
    90 竺安,陈义.电泳.科学出版社,1990,179.
    91 Hjerten S.,Chromatogr.Rev.,1967,9:122.
    92 Jorgenson J.W,Lukacs K.D,Anal Chem.1981,52:1298.
    93 赵新颖,任占军,孙杰,谷学新.上海工程技术大学学报,2006,20(2):140.
    94 张利,王燕等.化学研究与应用,2003,15(5):607.
    95 刘绛光,张海鸿.小分子肽分离方法研究进展[J].中国生化药物杂志,2005,26(4):244-246.
    96 Ye M,Zou H,Liu Z,et al.Separation of peptides by strong catiorr-exchange capillary electrochromatography [J].J Chromatogr A,2000,869(1-2):385-394.
    97 Fu H,Jin W.Peptides separation in hydrophilic interaction capillary electrochromatography[J].Electrohoresis,2003,24(12-13):2084-2091.
    98 张桂森,陈胜,徐友志等.毛细管电泳-多光子激发荧光检测分析生物胺.光子学报.2008,37:1006-1009.
    99 Ewing A.G.,Sandra P,Neurosci.Methods.,1993,48:215.
    100 Hoyt M,Beale S.C.,Larmann J.P,et al.J.Microcolumn Sep.,1993,5:325.
    101 Swnek F.D.,Chen G.,Ewing A.G.Eighth International Symposium High Performance Capillary Electrophoresis,Orlanda,Florida,USA,1996:502.
    102 高乐怡,方禹之.理化检验-化学分册,2002,38(1):1.
    103 Chen Y,Xu L.J,Lin J.M,et al.Electrophoresis,2008,29:1302.
    104 Chevret J.P,Van Soest R.E.J.Chromatogr.,1991,550:831.
    105 Chen D.C.,Zhang D.Z.,Chen C.H.,et al.J.Chromatogr.B,2001,750:33.
    106 Chen D.C.,Chang S.S.,Chen C.H.,Anal.Chem.,1999,71:3200.
    107 Hilmi A.,Luong J.H.T.,Anal.Chem.,2000,72:4677.
    108 Khim J.S,Lee K.T,Karman K,et al.Trace organic contaminantsin sediment and water from Ulsan Bay and its vicinity,Korea[J].Arch.Environ.Contain.Toxicol.,2001,40:141-150.
    109 Staples C.A,Dorn PB,Klecka G.M,et al.A review of the environmental fate,effects and exposures of bisphenol-A.Chemosphere,1998,36:2149-2173.
    110 Sellstmm U,Jansson B.Analysis of tetrabromobisphenol a in aproduct and environmental samples[J].Chemosphere,1995,31(4):3085-3092.
    111 Heemken 0.P,Reincke H,Stachel B,et al.The occurrence ofxenoe strogens in the Elbe River and the North Sea.Chemosphere,2001,45:245-259.
    112 Moms S,Allchin C.R,Zegers B.N,et al.Distribution and fate of HBCD and TBBPA brominated flame retardants in North Seaestuaries and aquatic food webs[J].Environ.Sci.Technol.,2004,38(21):5497-5504.
    113 Meerts A.T.M,Assink Y,Cenjin RH,et al.Distribution of the flamemtardant tetrabrombisphenol-A in pregnant and fetal rats and effect on thyroid hormonehomeostasis[J].Organohalog.Campd.,1999,40:375-378.
    114 Meerts I.A.T.M,Van Zanden J.J,Luijks E.A.C,et al.Potent competitive interactions of some brominated flame retardants and mled compounds with human transthyretin in vitro[J],Toxieol.Sci.2000,56:95-104.
    115 Tada Y,Fujitani T,Yano N,et al.Effects of tetrabromobisphenol A.brominated flame rotardant in ICR mice after prenatal and postnatal exposure[J],Food Chem.Toxicol.,2006,44:1408-1413.
    116 Frydrych B,Szymanska J.A.N.Phrotoxicity of tetrabromobisphenol A in rats after repeated exposure[J].BromatolChemilbksykol.2001,34:1-5.
    117 IPCS.Tetrabromobisphenol-A and derivatives.Environmental Health Criteria 172.1995,WHO,Geneva.
    118 Sain-Louis R,Pelletier E.LC-ESLMS-MS method for the analysis of tetrabromobisphenol-A in sediment and sewage sludge[J].Analyst,2004,129:724-730.
    119 Dewit C.A.An overview of brominated flame retardants in the environment.Chemosphere,2002,46:583-624.
    120 Tomsen C,LundanesE,BecherG.Brominated flame retardant in plasma samples from three different occupational groups in Norway[J].J.Environ.Monit,2001,3:366-370.
    121 Hagmar L,Jakobsson K,TuressonK,et al.Computer technicians are occupationally exposed to polybrominated diphenyl ethers and tetrabromobisphenol-A[J].Organohalogen.Comp.,2000,47:202-205.
    122 Koizumi M,Yamamoto Y,Ito Y,et al.Comparative study of toxicity of 4-nitrophenol and 2,4-dinitrophenol in newborn and young rats[J].J.Toxicol.Sci,2001,26:299-311.
    123 Oana J,Robert O,Ilka L.Effects of tetrabromobisphenol-A on larval development and thyroid hormone-regulated biomarkers of the amphibian Xenopus laevis[J].Environmental Research,2006,101:340-348.
    124 Pullen S,Boecker R,Tiegs G.The flame retardants tetrabromobisphenol-A and tetrabromobisphenol-A-bisallylether suppress the induction of interleukin-2 receptor alphachain (CD25) in murine splenocytes[J].Toxicology,2003,184:11-22.
    125 Yasusada K,Susumu U,Kohtaro A,et al.Stimulation of catecholamine synthesis by orexin-A in bovine adrenal medullary cells through orexin receptor.Biochemical Pharmacology,2003,66:141-147.
    126 Chen J.S.Cloning after cloning knock out mice and physiological functions of MAOA and B [J].Neurotoxicology.2004.25:21-30.
    127 Francesca R.Monica P.Massimo G,et al.Chromic nicotine causes functional upregulation of ionotropic glutamate receptors mediating hippocampal noradrenaline and striatal dopamine release [J].Neurochem.Int.2004,44:293-301.
    128 刘明杰,朱业湘.儿茶酚胺类神经递质检测技术及其研究进展[J].中国卫生检验杂志,2002,12(4):501-503.
    129 Yamaguchi M,Ishida J,Yoshimura M.Analyst[J],1998,123:307.
    130 Kubo H,Umiguchi Y,Kinoshita T.Chromatographia[J],1994,38:591.
    131 王莉莉,郭治安,赵德化,梅其炳.(色谱),1999,17(2):223
    132 Nohta H,Yukizawa T,Ohkura Y,etal.Aromatic glycinonitriles and methylamines as precolumn fluorescence derivatization reagents for catecholamines[J].Anal.Chim.Acta.,1997,344:233-240.
    133 张文珠,赵亮,刘霞,等.生物样品中神经递质含量的测定[J].分析科学,2003,19:117-120.
    134 Chan E.C,Ho RC.Rapid Commun.Mass Spectrom.2000,14:1959-1964.
    135 Olefirowicz T.M,Ewing A.G.Anal.Chem.,1990,62(17):1872.
    136 Olefirowicz T.M,Ewing A.G.J.Neurosci.Meth.,1990,34(1):11.
    137 Radja C.,Bencsik K.,V(?)csei L.,Bergquist J.Neuroimmunol.2002,124:93.
    138 Joshii J.G.Comp.Biochem.Physiol.,1991,100:103-110.
    139 Mariussen E,Fonnum F The effect of brominated flame retardants on neurotransmitter uptake into rat brain synaptosomes and vesicles.Neurochemistry International,2003,43:533-542.
    140 Morley S,et al.Eur.J.Pharamacol.1981,70:363.
    141 Zheng G.J,Martin M,Richardson B.J,et al.Concentrations of polybrominated diphenyl ethers(PBDEs) in Pearl River Delta sediments[J].Marine Pollution Bulletin,2004,49(5-6):520-524.
    142 Xie Z. Y, Ebinghaus R, Lohmann R, et al. Trace determination of the flame retardant tetrabromobisphenol-A in the atmosphere by gas chromatography-mass spectrometry [J]. Analytica Chimica Acta, 2007, 584 (2): 333-342.
    143 Vom Saal F. S, Hughes C. An extensive new literature concerning low-dose effects of bisphenol A shows the need for a new risk assessment [J]. Environmental Health Perspectives, 2005,113 (8): 926-933.
    144 Nieminen P, Lindstrom S. P, Juntunen M, et al. In vivo effents of bisphenol-A on the polecat [J]. J Toxicol Environ Health, 2002,65: 933-945.
    145 Szymanska J. A, Piotrowski J. K. Hepatotoxicity of tetrabromobisphenol-A in rats [J]. Toxicology letters, 1998, 95 (Supplement): 163.
    146 Naemi F., Yoshihiko I., Makiko Y, et al. Unexpected nephrotoxicity induced by tetrabromobisphenol A in newborn rats [J]. Toxicology letters, 2004,150: 145-155.
    147 Kitamura S., Jinno N., Ohta S., et al. Thyroid hormonal activity of the flame retardants tetrabromobisphenol A and tetrachlorobisphenol A [J]. Biochemical and Biophysical Research Communications, 2002,293(1): 554-559.
    148 US Department of Health and Human Services. NationalToxicology Program, 1986.
    149 WHO. Environmental Health. Criteria: Brominated DiphenylEthers. World Health Organization, 1994. 16.
    150 Jaekson I.M.D. N. Engl. J. Med. 1982, 306: 45.
    151 Oliver C, Eskay R.L, En-Jonathan N, et al, Distribution and concentration of TRH in the rat brain. Endocrinology, 1974, 95, 540-546.
    152 Reichlin S. Acta Endocrinologica. 1986, 112:21.
    153 Metcalf G, Dettmar PW. Lancet 1981,1: 586.
    154 Holaday J.W, et al. Life Sci. 1978,22: 1537.
    155 Duntas L, Nelson D.K., Grab B.M., Rosenthal J., et al. A fast protein liquid chromatography (FPLC) method for study of thyrotropin-releasing hormone (TRH) and its metabolite histidyl-proline diketopiperazine (CHP) in human blood: Degradation in liver and pancreatic diseases. Neuropeptides, 1993, 25: 357-361.
    156 Meng R, Xia W.L., Sandberg M., Weber S.G., et al. Online preconcentration of thyrotropin-releasing hormone(TRH) by SDS-modified reversed phase column for microbore and capillary high-performance liquid chromatography (HPLC). J. Chromtography A, 2005, 1071: 179-184.
    157 Graham E.S., Webster C.A., Hazlerigg D.G., et al. Evidence for the biosynthesis of a prolactin- releasing factor from the Ovine Pars Tuberalis, which is distinct from thyrotropin-releasing hormone. J. Neuroendocrinol. 2002, 14: 945-954.
    158 Gutierrez M.C., Quintanar J.L., et al. The application of NIR Raman spectroscopy in the assessment of serum thyroid-stimulating hormone in rats. Spectochimica Acta A. , 2005, 61: 87-91.
    159 Visich J.E., Byron P.R., High-pressure liquid chromatographic assay for the determination of thyrotropin-releasing hormone and its common metabolites in a physiological salt solution circulated through the isolated perfused rat lung. J. Pharm. Biomed. Anal., 1996,15: 105-110.
    160 Hjerten S. J. Chromatogr., 1985, 347: 191.
    161 Kubr W.G., Yeung E.S., Anal. Chem., 1989, 60: 2642.
    162 Sweedler J.V., Shear J.B., Fishman H.A., Anal. Chem., 1991, 63:496.
    163 Meng R, Weber S.G.. The rotating ring-disk electrochemistry of the copper(Ⅱ) complex of thyrotropin-releasing hormone. Journal of Electroanalytical Chemistry, 2007, 600: 325-334.
    164 Szymanska J.A., Sapota A., Frydrych B. The disposition and metabolism of tetrabromobisphenol-A after a single i.p. dose in the rat. Chemosphere 2001,45, 693-700.
    165 SjodinA, Carlsson H, Thuresson K, et al. Flame retardants in indoor air at an electronics recycling plant and at other work environments.Environmental Science and Technology,2001,35:448-454.
    166 Jakobsson K,Thuresson K,Rylander L,et al.Exposure to polybrominated diphenyl ethers and tetrabromobisphenol-A among computer technicians.Chemosphere.2002,46:709-716.
    167 Reistad T,Mariussen E,Fonnum F.The effect of a brominated flame retardant,tetrabromobisphenol-A,on free radical formation in human neutrophilgranulocytes:The involvement of the MAP kinase pathway and protein kinase C.Toxicological Sciences,2005,83:89-100.
    168 Mariussen E.Fonnum F The effect of brominated flame retardants on neurotrans-mitter uptake into ratbrain synaptosomes and vesicles.Neurochemistry International,2003,43:533-542.
    169 Hughes J.et al.Indentification of two related pentapeptides from the brain with potentopiate agonist activity.Nature,1975,258:577.
    170 Goldberg R,et al.The effect of methionine enkephalin on prolactin and luteini-zing hormone levels in intact and castrated rats.Horm.Metab.Res.,1982,14:89.
    171 高娜,王阿敬,杨渝珍.阿片受体介导大鼠海马内脑啡肽对细胞免疫功能的调节[J].生理学报,1999,51(5):106-109.
    172 Malendowicz L.K,Rebuffat P,Tortorella C,et al.Effects of met-enkephalin on cellproliferation in different models of adrenocortical-cellgrowth[J].Int.Mol.Med.,2005,15(5):841-845.
    173 Rocha L,Maidment NT.Opioid peptide release in the rat hippocampus after kainic acid-induced status epilepticus[J].Hippocampus,2003,13(4):472-480.
    174 Richard J,Kwen C,Barret C,et al.Radioimmunoassay and Characterization of Enkephalins in Rat Tissues.Journal of Biochemistry.1978,253(2):531-538.
    175 Hidekc K,Tomomi N,Michiko M,et al.Determination of peptides by high-perfor-mance liquid chromatography with laser-induced fluorescence detection[J].J.Chro-matogr.A,1997,763:23-29.
    176 Ying H,Jian P.D.,Xiu Y.J.,et al.Separation and determination of enkephalin-related peptides using capillaryelectrophoresis[J].J.Sep.Sci.,2005,2:2534-2539.
    177 董标,吴胜明,梁月琴.毛细管电泳-激光诱导荧光检测测定脑啡肽方法的建立及其应用.化学试剂.2008,30:753-755.
    178 Giraud P,et al.Regional distribution of Met-Enkephalin argpheintherat brain:eomiparative study with distribution of other opioid peptides.J.Neurochem.1983,41:154.
    179 Meek J.K.L.,et al.Enkephaline astabolism invitro & invivo.Neuropbarmaeology,1977,16:151.
    180 Hakk H,Larsen G,Bergman A,et al.Metabolism,excretion,and distribution of the flame retardant tetrabromobisphenolA in conventional and bileduct cannulated rats.Xenobiotica,2000,30:881-890.
    181 George S.R.et al.Met-enkephaiin concentration in striatum respond reciprocally to alterations in dopamine neurotramstmission.Peptides.1987,8:487.
    182 范谨之.脑啡肽与去甲肾上腺素在突触传递中的相互作用.生理科学进展.1985,16:158.
    183 Jakobsson K,Thuresson K,Rylander L,et al.Exposure to polybrominated diphenyl ethers and tetrabromobisphenol-A among computer technicians.Chemosphere.2002,46:709-716.
    184 Saint L.R,Pelletier E.LC-ESI-MS-MS method for the analysis of tetrabromobisphenol-A in sediment and sewage sludge[J].Analyst,2004,129:724-730.
    185 WHO.Environmental Health Criteria 172:tetrabromobisphenol-A and Derivatives[S].Geneva,Switzerland,1995:72.
    186 Sjadin A,Carlsson H,Thuresson K,et al.Flame retardants in indoor air at an electronics recycling plant and other work environments[J].Environ.Sci.Technol.,2001,35:448-454.
    187 Berger U,Herzke D,Sandanger T.M.Two trace analytical methods for determination of hydroxylated PCBs and other halogenated phenolic compounds in eggs from Norwegian birds of prey[J].Anal.Chem.,2004,76:441-452.
    188 Stevenmorris,Colinr A,Bartn Z.Distribution and fate of HBCD and TBBPA brominated flame retardants in North Sea Estuaries and aquatic food webs[J].Environ.Sci.Technol.,2004,38:5497-5504.
    189 Tadashi H,Hideyuki Y,Suzuko O,et al.Determination of tetrabromobisphenol-A in human serum by liquid chromatography-electrospray ionization tandem mass spectrometry[J].J.Chromatogr.B,2004,809:131-136.
    190 Thomsen C,Lundanes E,Becher G.Brominated flame retardants in plasma samples from three different occupational groups in Norway[J].J.Environ Monit,2001,3:366-370.
    191 Hagmar L,Jakobsson K,Thuresson K,et al.Computer technicians are occupa-tionally exposed to polybrominated diphenyl ethers and tetrabromobisphenol-A[J].Organohalogen Comp.,2000,47:202-205.
    192 Ronan C,Jean P.A,Philippe M,et al.Newmultiresidue analytical method dedicated to trace level measurement of brominated flame retardants in human biological matrices[J].J.Chromatogr.A,2005,1100:144-152.
    193 Pullen S,Boecker R,Tiegs G.The flame retardants tetrabromobisphenol-A and tetrabromobisphenol-A-bisallylether suppress the inductionof interleukin-2 receptor alpha chain (CD25) in murine splenocytes[J].Toxicology,2003,184:11-22.
    194 Kitamura S,JinnoN,Ohta S,et al.Thyroid hormonal activityoftheflame retardan-ts tetrabrom bisphenol-A and tetrachlorobisphenol-A[J].Biochem Biophys Res.commun.,2002,93:54-559.
    195 Kester M.H,Bulduk S,et al.Potent inhibition of estrogen sulfotransferase by hydroxylated metabolites of polyhalogenatedaromatic hydrocarbons reveals alternati-ve mechanism for estrogenic activity of endocrine disrupters[J].J.Clin Endocrinol.Metab.,2002,87:1142-1150.
    196 US Department of Health and Human Services.NationalToxicology Program,1986.
    197 Smith C.V,Jones D.P,Guenthner T.M,et al.Tox.Appl.Pharmacol.,1996,140:1.
    198 Toshimasa T,Junko T,Yumi K.Determination of intracellular glutathione in rat hepatocytes after treatment of environmental pollutant by CE with lair-induced fluore-nce detection[J].Anal.Chim.Acta,2001,433(1):1-12.
    199 Tietze F.J.Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione[J].Anal Biochem.1969,27(3):502-511.
    200 Chen X.P,Reginald F,Alan G,et al.Analysis of Reduced Glutathione using a tre-action with 2,4'-Dichloro-1-(Naphthyl-4-Ethoxy)-S-Triazine(EDTN)[J].Mikrochim.Acta,1999,130:225-231.
    201 Griffith O.W.Determination of glutathione and glutathione disulfide using glutathione reduce and 2-vinylpyindine[J].Anal Biochem,1980,106(1):207-213.
    202 Tietze F.J.,Hifl R.A fluorometric method for determination of oxidized and reduced glutathione in tissues[J].Anal Biochem,1969,74(1):214-226.
    203 Kevin J.L.,Helene T,Richard J.W.Analysis of glutathione and glutathione disulfide in whole cells and mitochondria by postcolumn derivatization HPLC with ortho-Phthalaadehyde[J].Anal Biochem,1999,274(2):125-130.
    204 Moring S.E,Reel R.T,van Soest R.E.J.Anal.Chem.,1993,65:3454-3459.
    205 Ross G,Kaltenbach P,Heilger D.Today's Chemist at Work,1997,6:31-32.
    206 Djordjevic N.M,Widder M,Kuhn R.J.High Resolut.Chromatogr.,1997,20:189-192.
    207 Eggertson M.J.,Craig D.B.Biomed.Chromatogr.,1999,13:516-519.
    208 Shihabi Z.K.Chromatogr.A[J],1996,744:231-240.
    209 Shihabi Z.K.,Friedberg M.A..J.Chromatogr.A[J],1998,807:129-133.
    210 Kong Y.,Zheng N.,Zhang Z.C.,et al.J.Chromatogr.B,2003,795:9-15.
    211Schafer F. Q., Buettner G. R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Bio. Med. 2001, 30: 1191-1212.
    212Fernie K.J., Laird S.J., Mayne G, et al. Exposure to polybrominated diphenylethers (PBDEs): changes in thyroid, vitamin A, glutathione, homeostais, and oxidative stress in Ameiraca Kestrels (Falco sparverius) [J]. Toxicological Science, 2005, 88: 375-383.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700