光纤矢量水听器海底地层结构高分辨率探测关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国家海洋新能源资源开发战略的展开以及对领海权益的日益重视,发展先进的海底地层结构探测技术显得极为迫切。高分辨率的应用需求对海底地层探测系统的性能提出越来越高的要求,光纤矢量水听器的发展为其提供了新的技术途径。目前利用大规模矢量阵进行海底地层探测已经成为该领域的技术发展前沿。
     论文根据高分辨率海底地层探测的特点,深入分析了光纤矢量水听器在动态范围、本底噪声、灵敏度、工作频带等方面在应用中需要满足的要求,围绕这几个要求,展开了对光纤矢量水听器阵列的关键技术研究;根据灵敏度和工作频带的设计要求,建立了圆柱薄壳型光纤加速度传感器的理论模型,基于这种模型试制了同振式三分量光纤矢量水听器;利用偏重心结构的支撑骨架实现了对光纤矢量水听器拖曳阵的姿态控制问题,并组装了光纤矢量水听器拖曳阵列;在解决动态范围和本底噪声要求问题上,提出高频光频调制的PGC调制解调方案,研制了能够实时解调的PGC调制解调系统;为提高光纤矢量水听器的光学检测性能,同时也为发展先进的光纤加速度传感器提供多种选择。设计了基于多光束干涉的双耦合器环形腔光纤传感器,对其响应特性进行分析和测试,并提出了相应的PGC调制解调方案;对矢量地震信号处理方法进行了研究,利用矢量信号融合处理提高了光纤矢量水听器阵列地震数据的质量,提出了最优化拟合方法来修正地震数据的同相轴抖动问题,在实际数据处理中取得了较好的效果;对光纤矢量水听器拖曳阵海底地层探测进行了湖上验证性试验。
     论文的主要研究结果和创新点如下:
     1.提出同振型光纤矢量水听器水面拖曳的海底地层探测方案,为解决高分辨率探测下拖曳阵深度控制和抗海面反射叠加衰落提供了一种新的技术途径。
     2.建立了圆柱薄壳型光纤加速度传感器的理论模型,分析了材料、结构参数的影响,为新型海底地层结构探测光纤矢量水听器的研制提供理论基础。
     3.提出了将环形腔光学检测方案应用于矢量水听器的信号解调,分析了其响应特性,并提出了与其对应的PGC调制解调算法,通过实验验证了算法的可行性,为提高光纤矢量水听器的性能提供了新的选择。
     4.提出了适合光纤矢量水听器海底地层探测的PGC调制解调方案,并研制了可实现实时解调的硬件和软件系统,满足了高分辨率地层探测对动态范围和系统噪声水平的需求。
     5.提出平方拼接矢量信号融合的方法,提高了地震数据的信号质量;提出了修正地震信号同相轴抖动的最优化拟合的方法,在实际数据处理中取得了较好的效果。
     6.试制了外直径为56mm三分量光纤矢量水听器,设计了偏重心的姿态控制结构,组装了直径为68mm的光纤矢量水听器拖曳阵,并进行了湖上静态和动态拖曳试验,验证了光纤矢量水听器水面拖曳探测方案的正确性和技术可行性。
With the commencement of the new energy and resources development strategyand the increasing emphasis on the territorial rights of our country, the development ofadvanced seafloor strata detection technology is extremely urgent. The high resolutionapplication requirements are ever-increasing demands on the seafloor strata detectionsystem. The development of fiber optic vector hydrophone provides a new technicalway. At present, survey with large-scale vector array has become the forefront of thedevelopment of seafloor strata detection technology.
     This thesis studied the key technologies of the fiber optic vector hydrophone arrayfor the seafloor strata detection application based on the requirement in dynamic range,noise floor, sensitivity, working frequency band and other aspects of the fiber opticvector hydrophone system, which are analyzed according to the characteristics of theseafloor strata detection. To satisfy the design requirements to the sensitivity andworking band, a theoretical model of the cylindrical thin-shell fiber optic accelerometeris established, and a co-vibrating three-component fiber optic vector hydrophone isproduced based on this model. A partial gravity structure supporting skeleton isdesigned to solve the attitude control problem of the towed array. To reach therequirement to the dynamic range and the noise floor, a PGC scheme with highmodulation frequency on the light is put out, and a real-time PGC modulation anddemodulation system is developed. To offer a variety of options to the development ofadvanced fiber optic accelerometer, a dual-coupler fiber ring resonater sensor, which hasthe feature of multi-beam interferernce, is designed, and its response characteristics areanalyzed and tested, and the PGC scheme for this type sensor is also put forward. Vectorseismic signal processing method is investigated, vector signal fusion method isproposed to improve the quality of the seismic data from the fiber optic vectorhydrophone, optimization fitting method is put out to correct the seismic data phase axisjitter, good result has been achieved with actual data. Lake trial is conducted to examinethe effect of the submarine strata detection using the towed fiber optic vectorhydrophone array we developed.
     The main research results and innovations are as follows:
     1. The detection scheme using the co-vibrating fiber optic vector hydrophonetowed on the sea surface is proposed, which provides a new technical way to sovle theproblems of depth contral and the anti surface reflection superimposed fading of thetowed array.
     2. A theoretical model of the cylindrical thin-shell fiber optic accelerometer isestablished, and the effect of the materials and structural parameters are analyzed. Thismodel provides a theoretical basis for the development of new type fiber optic vector hydrophone for seabed strata detection.
     3. To improve the detection performance of the fiber optic vector hydrophone, theoptical detection scheme using fiber ring cavity based on the multi-beam interference isproposed, and the response characteristics of the fiber ring cavity are analyzed, and itsmoudlaiton and demodulation algorithm are also put forward with some experiments toveritfy the feasibility.
     4. Signal modulation and demodulation scheme of the fiber optic vectorhydrophone system which is suitable for the underwater stratum detection is put out,and a real-time demodulation hardware and software systems is developed, which canmeet the demand of dynamic range and noise levels from the high resolution seafloorstrata detection.
     5. Square mosaic vector signal fusion method is proposed, which can improve thequality of seismic data, and the optimization fitting method put out to correct theseismic data phase axis jitter and good results are achieved in the actual data processing.
     6. A co-vibrating three-component fiber optic vector hydrophone with the outerdiamter of56mm is developed, partial gravity structure supporting skeleton is designedfor attitude contral, and a towed fiber optic vector hydrophone array with the diameterof68mm is assembled. The static and lake dynamic towed test carry out, the resultsverify correctness and technical feasibilityof the surface towed detection using fiberoptic vector hydrophone.
引文
[1]金翔龙.海洋地球物理研究与海底探测声学技术的发展[J].地球物理学进展,2007,22(4):1243-1249.
    [2]赵政璋,赵贤正.国外海洋深水油气勘探发展趋势及启示[J].勘探论坛,2005,10(6):71-75.
    [3]陶维祥,丁放,何仕斌等.国外深水油气勘探述评及中国深水油气勘探前景[J].地质科技情报.2006,25(6):59-66.
    [4]天然气水化合物. http://baike.baidu.com/view/32145.htm.
    [5]可燃冰或纳入能源十二五规划. http://finance.sina.com.cn/chanjing/cyxw/20110316/02359537580.shtml
    [6] Claerbout J F.地震成像理论及方法.北京:石油工业出版社,1991.
    [7]陆基孟.地震勘探原理.北京:中国石油大学出版社,2006
    [8]汪德昭,尚尔昌.水声学[M].北京:科学出版社,1981.
    [9]尤立克.水声原理[M].哈尔滨:哈尔滨船舶工程学院出版社,1990.
    [10] PGS. The Ghost. http://www.pgs.com/en/Geophysical-Services/GeoStreamer-GS/The-Technology/The-Ghost/.
    [11] Brittan J, Starr J G. Method for processing dual-sensor seismic data to attenuatenoise [P]. US:6894948,2005
    [12] Tabti H, Day A, Schade T. Conventional versus dual-sensor streamer datade-ghosting: A case study from the Haltenbanken dual-streamer acquisition [R].USA: PGS Geophysical,2009
    [13] Semb P H, Fr myr E, Caselitz B, et.al. Comparison of deep tow conventionalhydrophone and dual sensor streamer seismic offshore Egypt [C]. SEG AnnualMeeting,2010:16-20.
    [14] Cambois G, Long A, Parkes G. Multi-level airgun array: a simple and effectiveway to enhance the low frequency content of marine seismic data [C]. SEGInternational Exposition and Annual Meeting. Houston,2009.
    [15] Hawkes M, Nehorai A. Effects of sensor placement on acoustic vector-sensorarray performance [J]. IEEE Journal of Oceanic Engineering,1999,24(1):33~40.
    [16] Hawkes M, Nehorai A. Acoustic vector-sensor processing in the presence of areflecting boundary [J]. IEEE Transaction on Signal Processing,2000,48(11):2981~2993.
    [17] Hawkes M, Nehorai A. Wideband source localization using a distributedacoustic vector-sensor array [J]. IEEE Transaction on Signal Processing,2003,51(6):1479~1491.
    [18]周发祥,宁鹏鹏,刘斌等.吸收衰减对地震分辨率的影响[J].石油地球物理勘探.2008,43(增刊2):84-87.
    [19]凌云.大地吸收衰减分析[J].石油地球物理勘探.2001,36(1):1-8.
    [20]孔令纲,傅朝奎.大地对地震信号的吸收衰减规律研究[J].油气田地面工程.2005,24(5):12-13.
    [21]曹立斌,梁波,欧阳明华等.利用VSP资料分析地层衰减特性[J].天然气工业.2008,28(5):41-43.
    [22]曹广华,袁子龙,田景文.地层吸收衰减效应的理论研究与计算机模拟[J].大庆石油学院学报.1999.23(2):5-8.
    [23]裴彦良,刘保华,王揆洋等.智能控制复合相干电火花震源技术研究[J].2006,16(7):697-700.
    [24]裴彦良,王揆洋,刘晨光等.电火花震源系统充电技术研究[J].海洋技术.2007,26(3):73-76.
    [25]裴彦良,王揆洋,李官保.海洋工程地震勘探震源及其应用研究[J].石油仪器.2007.04(2):20-23.
    [26] Cambois G. Osnes B, Long A. A Multi-level Source Design Improves SeismicImaging Below Highly Reflective Layers [C]. Marine Seismic: Focus onMiddle East&North Africa.2009.
    [27] Fromyr E, Cambois G. Towards a method for ghost-free marine acquisition.Eleventh International Congress of the Brazilian Geophysical Society.2009.
    [28]裴彦良,刘保华,赵月霞等.脉冲等离子体震源及其在海洋地震勘探方面的应用[J].科技导报.2007,25(19):48-52.
    [29] PGS.3D GeoStreamer Processing: Methods and Results [R]. TechLink.2009,9(10).
    [30] Dhelie P E, Miller L R.3D seismic acquisition among Icebergs in a VolcanicProvenance: A successful project Offshore West Greenland using3Ddual-sensor streamers.72nd EAGE Conference&Exhibition incorporatingSPE EUROPEC.2010.
    [31] PGS. HD3D Acquisition Yields Outstanding4D Results [R]. TechLink.2005,3(1): appendix.
    [32] PGS. Optimal3D Seismic Acquisition with High-Density3D (HD3D)[R].TechLink.2003,3(2).
    [33] PGS. Continuous Long Offset (CLO) Acquisition Technology [R]. TechLink.2006,6(4).
    [34] PGS. Multi-Azimuth Seismic [R]. TechLink.2005,5(3).
    [35] Fromyr E, Brittan J, Dhelie E. How processing and imaging improve the wideazimuth view [J]. First Break2011,29.
    [36]徐文君,於文辉,胡中平.广角反射波的特征及正演模拟[J].石油地球物理勘探.2006,41(4):390-395.
    [37]王志,贺振华,黄德济等.广角反射波场特征研究及正演模拟分析[J].地球物理学进展.2003,18(1):116-121.
    [38]吴志强,童思友,闫桂京等.广角地震勘探技术及在南黄海古近系油气勘探中的应用前景[J].海洋地质动态.2006,22(4):26-30.
    [39] Long A. Evolutions in seismic azimuth: past, present and future [J].GEOHORIZONS. July2009:4-14.
    [40] Amundsen L, Landr M.4D seismic-status and Future Challenges PART II:Future Challenges [J]. GEO ExPro.2007,4(6):52-56.
    [41] PGS.4D GeoStreamer: The New Standard [R]. TechLink.2010,10(1).
    [42] PGS. A Towed EM Test at the Peon Discovery in the North Sea [R]. TechLink.2010,10(3).
    [43] PGS. A Prototype Electromagnetic Streamer–latest advances [R]. TechLink.2010,10(8).
    [44] Lawyer L C, Bates C C, Rice R B. Geophysics in the Affairs of Mankind: APersonalized History of Exploration Geophysics [M]. USA: Society ofExploration Geophysists,2001.
    [45] Tenghamn S R L. System for reducing towing noise in marine seismic surveystreamers [P]. US:7548486,2009
    [46] Stenzel A, Hillesund Q, Lunde N, et.al. Marine seismic streamer cable withnoise suppressing sensor support [P]. US:2010/0165792,2010.
    [47] Kinkead J D. Method for noise suppression in seismic signals using spatialtransforms [P]. US:7869303,2011
    [48] Ferguson B G. Comparison of sharpness and eigenvector methods for towedarray shape estimation [J]. Journal of the Acoustical Society of America.1992,91(3):1565-1570.
    [49] Wahl D E. Towed array shape estimation using frequency-wavenumber data [J].IEEE. Journal of Oceanic Engineering.1993,18(4):582-590.
    [50] Smith J J, Leung Y H., Cantoni A. The partitioned eigenvector method fortowed array shape estimation[J]. IEEE Transaction on Single Processing199644(9):2273-2283.
    [51] Musser J A, Ridyard D. Streamer positioning for advanced3D and4Dapplications [R]. USA: Input/Output Inc.2005:1-4
    [52]饶伟.水听器拖曳阵阵形估计方法研究[D].长沙:国防科学技术大学,2007.
    [53] Lemon S G, Towed Array History,1917-2003, IEEE Journal of OceanicEngineering.2004,29(2):365-373.
    [54] Giallornzi T G, Bucaro J A, Dandridge A, et.al. Optical fiber sensor technology[J]. IEEE Transactions on Microwave Theory and Techniques.1982,MTT-30(4):472-511
    [55]惠俊英,惠娟.矢量声信号处理基础[M].北京:国防工业出版社,2009.
    [56] Shchurov V A. Vector acoustics of the ocean [M]. Vladivostok:Dalnauka,2006.
    [57]吴艳群.拖线阵用光纤矢量水听器关键技术研究[D].长沙:国防科技大学博士学位论文,2003.
    [58]杨德森,洪连进.矢量传感器原理及应用引论[M].北京:科学出版社,2009.
    [59] Tveten A B, Dandridge A, Davis C M, et.al. Fiber optic accelerometer.Electronics Letters,1980,16(22):854~856
    [60] Kersey A D, Jackson D A, Corke M. High sensitivity fiber optic accelerometer.Electronics Letters,1982,18(13):559~561
    [61] Gardner D L, Hofler T, Baker S R, et.al. A fiber-optic interferometricseismometer [J]. Journal of Lightwave Technology,1987, LT-5(7):953~960.
    [62] Pechstedt R D, Jackson D A. Design of a compliant-cylinder-type fiber opticaccelerometer: theory and experiment [J]. Applied Optics,1995,34(16):3009~3017.
    [63] Pechstedt R D, Jackson D A. Performance analysis of a fiber opticaccelerometer based on a compliant cylinder design [J]. Review of ScienceInstrument.1995,66(1):207-214.
    [64] Brown D A, Garrett S L. An interferometric fiber optic accelerometer [C]. Proc.SPIE,1990,1367:282~288.
    [65] Vohra S T, Danver B, Tveten A, et.al. High performance fibre opticaccelerometers [J]. IEE Electronic Letters,1997,19970087:155~157.
    [66] Vohra S T, Danver B, Tveten A, et.al. Performance of a multichannel fiberoptic accelerometer array during a undersea structural monitoring test [C].12thInternational Conference on Optical Fiber Sensor.1997, OFA3-1/604~OFA3-4/607.
    [67] Todd M D, Nau G M, Danver B A, et.al. A low-frequency fiber opticaccelerometer array for mechanical motion detection [C].12thInternationalConference on Optical Fiber Sensor.1997, OTud3-1/75~OTuD3-4/78.
    [68] Brown D A. Fiber optic accelerometers and seismometers [C]. Proc. Acoust.Particle Vel. Sensors: Design, Perform. Applications, AIP1996,368:260~273.
    [69] Cranch G A, Nash P J. High-responsivity fiber-optic flexural diskaccelerometers [J]. Journal of Lightwave Techechnology,2000,18(9):1233~1243.
    [70] Rines G A. Fiber-optic accelerometer with hydrophone applications [J].Applied Optics.1981,20(19):3453-3459.
    [71] Farah J. Interferometric fiber optic accelerometer [C]. Fiber Optic and LaserSenor XI.1993,2070:528-537.
    [72] Dinev P D. Two dimensional fiber-optical accelerometer [J]. Review ofScience and Instrument.1996,67(1):288-290.
    [73] Gerges A S, Newson T P, Jones J D C, et.al. High-sensitivity fiber-opticaccelerometer [J]. Optics Letters.1989,14(4):251-253.
    [74] Gerges A S, Newson T P, Jackson D A. Practical fiber-optic-based submicro-gaccelerometer free from source and environmental perturbations [J]. OpticsLetters.1989,14(20):1155-1157.
    [75] Berkoff T A, Kersey A D. Experimental Demonstration of a Fiber BraggGrating Accelerometer [J]. IEEE Photonics Technology Letters.1996,8(12):1177-1179.
    [76] Todd M D, Johnson G A, Althouse B A. Flexural Beam-Based Fiber BraggGrating Accelerometers [J]. IEEE Photonics Technology Letters.1998,10(11):1605-1607.
    [77] Mita A, Yokoi Isamu. Fiber Bragg grating accelerometer for buildings and civilinfrastructures [C]. Proceedings of SPIE.2001,4330:479-486.
    [78] Abushagur O M, Abushagur M AG, Narayanan K. Novel three-axes fiberBragg grating accelerometer [C]. Proceedings of SPIE.2005,5877:0Z-1~0Z-4.
    [79] Ames G H, Maguire J M. Erbium Fiber Laser Accelerometer [J]. IEEE SensorsJournal,2007,4(7):557~561.
    [80] Steven J M, lain Buchan. Fiber optic4C seabed cable for permanent reservoirmonitoring [C]. SSC07,2007.
    [81] Nash P, Strudley A, Crickmore R, et.al. High efficiency TDM-WDMarchitectures for seismic reservoir monitoring [C]. Proc. of SPIE,2009,7503:75037T-1~75037T-4.
    [82] Kringlebotn J T, Nakstad H, Eriksrud M. Fibre optic ocean bottom seismiccable system: from innovation to commercial success [C]. Proc. of SPIE,2009,7503:75037U-1~75037U-4.
    [83]熊水东.光纤矢量水听器研究[D].长沙:国防科技大学博士学位论文,2003.
    [84]刘洋,陈才和,丁桂兰等.空心顺变柱体型三分量全光纤加速度地震检波器.光电子·激光,2003,14(11):1138~1141.
    [85]王金海,陈才和,唐东林等.基于光弹效应的三分量光弹光纤地震加速度传感器[J].传感技术学报,2006,19(3):804~806.
    [86] Zeng N, Shi Z C, Zhang M, et.al. A3-component fiber-optic accelerometer forwell logging [J]. Optics Communications,2004,234:153~162.
    [87] Wang Yongjie, Xiao Hao, Zhang Songwei, et.al. Design of a fibre-optic discaccelerometer: theory and experiment [J]. Measurement Science andTechnology,2007,18:1763~1767.
    [88]康崇,张敏,陈洪娟等.薄壁圆柱壳体压差式光纤矢量水听器[J].中国激光,2008,35(8):1214~1219.
    [89]康崇,刘佳杰等. F-P型同振式光纤矢量水听器相位载波解调算法[J].光电子·激光,2011,22(1):51~55.
    [90]王兵.高分辨率地震勘探仪器设计研究[D].合肥:中国科技大学博士学位论文,2008.
    [91]李庆忠.走向精确勘探的道路[M].北京:石油工业出版社,1993
    [92]陈敬原.海洋油气勘探仪器参数设计研究[D].合肥:中国科技大学博士学位论文,2007.
    [93]郁专.石油勘探中的惯性传感器研究[D].合肥:中国科技大学博士学位论文,2009.
    [94]裴彦良,王揆洋,李官保等.海洋工程地震勘探震源及其应用研究[J].石油仪器,2007,4:20~23.
    [95]许肖梅.声学基础[M].北京:科学出版社,2003.
    [96] Waite A D.实用声纳工程[M].北京:电子工业出版社,2004.
    [97] Knight A. Flow noise calculations for extended hydrophones in fluid and solidfilled towed arrays [J]. Journal of the Acoustical Society of America.1996,100(1):245-251.
    [98]杨秀庭,孙贵青,李敏,李启虎.矢量拖曳式线列阵声呐流噪声影响初探[J].声学技术.2007,26(7):775-780.
    [99]杨建国,张兆营,鞠晓丽等.工程流体力学.北京:北京大学出版社,2010.
    [100]罗洪,熊水东,胡永明,倪明.三分量全保偏光纤加速度传感器的研究[J].中国激光.2005,32(10):1382-1386
    [101]胡曦文.基于光纤加速度计的矢量水听器研究[D].长沙:国防科技大学,2007.
    [102]Amundsen A L, Landr M. Marine Seismic Sources Part III, Recent Advancesin Technology,2010,7(4).
    [103]杨德森,洪连进.矢量传感器原理及应用引论[M].北京:科学出版社,2009.
    [104]梁迅.光纤水听器系统噪声分析及抑制技术研究[D].长沙:国防科技大学,2008.
    [105]徐芝纶.弹性力学[M].北京:高等教育出版社,1990.
    [106]翁智远,王远功.弹性薄壳理论[M].北京:高等教育出版社,1986.
    [107]GB/T17251—1998声学水听器加速度灵敏校准方法[Z]
    [108]Lee C E. Interferometric optical fibre sensors using internal mirrors.Electronics Letters [J],1988,24(4):193-194.
    [109]Inci M N, Barton J S, Jones J D C, Fabrication of single-mode fibre opticFabry-Perot interferometers using fusion spliced titanium dioxide opticalcoatings [J]. Measurement Science Technology.,1992,3:678-684.
    [110]Seraji F E. Dynamic response of a fiber-optic ring resonator: analysis withinfluences of light-source parameters [J]. Progress in Quantum Electronics.2009,33:110-125
    [111]Seraji F E. Steady-state performance analysis of fiber-optic ring resonator [J].Progress in Quantum Electronics.2009,33:1-16.
    [112]Paschotta R, Brinck D J B, Farwell S G, Hanna D C. Resonant loop mirror withnarrowband reflections and its application in single frequency fiber lasers [J].Applied Optics.1997,36:593-596.
    [113]X. X. Yang, L. Zhan, Q. S. Shen. High-power single-longitudinal-mode fiberlaser with a ring fabry-perot resonator and a saturable absorber [J]. IEEEPhotonics Technology Letter.2008,20(11):879-881.
    [114]D. Li, S. Zhang. The ring-type all-fiber Fabry-Perot interferometer hydrophonesystem [J]. Journal of the Acoustical Society of America.1998,104:2798-2806.
    [115]Hotate K, Tanaka Y. Analysis on state of polarization of stimulated brillouinscattering in an optical fiber ring-resonator [J], Journal of LightwaveTechnology.1995,13(3):384-390.
    [116]D. Ying, H. Ma, Z. Jin. Dynamic resonance characteristic analysis of fiber ringresonator. Optic Fiber Technology.2009,15:15-20.
    [117]Merrer P H, Llopis O, Cibiel G. Laser stabilization on a fiber ring resonatorand application of RF filtering [J]. IEEE Potonics Technology Letter.2008,20(16):1399-1401.
    [118]Schwelb O, All-optical tunable filters built with discontinuity-assisted ringresonators [J]. Journal of Lightwave Technology.2001,19(3):380-386.
    [119]W. Li, J. Sun. Optical vernier filter with cascaded double-coupler compoundfiber loop resonators [J]. Optik,2010,121:1370-1375.
    [120]Andres M V, Foulds K W, Optical-fiber resonant rings based onpolarization-dependent couplers [J]. Journal of Lightwave Technology.1990,8(8):1212-1220.
    [121]L. Yuan, W. Jin, M. S. Demokan. Multiplexing of fiber-optic white lightinterferometric sensors using a ring resonator [J]. Journal of LightwaveTechnology.2002,20(8):1471-1477.
    [122]Srivastava S, Srinivasan K. Coupled-cavity analysis of the resonant loop mirror:closed form expressions and simulations for enhanced performance lasing [J].Applied Optics.2005,44:572-581.
    [123]D.P. Zhou, L. Wei, W. K. Liu. Simultaneous measurement of strain andtemperature based on a fiber Bragg grating combined with a high-birefringencefiber loop mirror [J]. Optic Communication.2008,281:4640-4643.
    [124]Tang D, Yang D, Jiang Y, et.al. Fiber loop ring-down optical fiber grating gaspressure sensor [J]. Optic Laser Engineering.2010,48:1262-1265.
    [125]H. Chen. Fiber optic pressure sensor based on a single-mode fiber F–P cavity[J]. Measurement.2010,43:370-374.
    [126]Kersey D, Dandridge A, Tveten A B. Time-division multiplexing ofinterferometric fiber sensors using passive phase-generated carrierinterrogation [J]. Optics Letters,1987,12(10):775~777.
    [127]Huang S C, Lin W W, Chen M H. Time-division multiplexing ofpolarization-insensitive fiber-optic Michelson interferometric sensors[J].Optics Letters,1995,20(11):1244~1246.
    [128]Nash P, Cranch G, Cheng L K et al. A32element TDM optical hydrophonearray[C]. Proc. of SPIE,1998,3483:238~242.
    [129]曹春燕.多路光纤相干检测信号的时分复用技术研究[D].长沙:国防科技大学,2003.
    [130]Yu Francs T S, Yin Shizhuo. Fiber Optic Sensors [D]. New York: MarcelDekker, Inc.2002,430~436.
    [131]Cranch G A, Nash P J. Large-scale multiplexing of interferometric fiber-opticsensors using TDM and DWDM [J]. Journal of Lightwave Techechnology,2001,19(5):687~699.
    [132]王振宝.多路光纤相干检测信号的波分复用技术研究[D].长沙:国防科技大学,2004.
    [133]Santos J L, Farahi F, Newson T P, et al., Frequency multiplexing of remoteall-fiber Michelson interferometers with lead insensitivity [J], Journal ofLightwave Technology.1992,10(6):853-863.
    [134]沈震强,赵建林,张晓娟.光纤光栅法布里-珀罗传感器频分复用技术[J].光学学报.2007,27(7):1173-1177.
    [135]Priest R G. Analysis of fiber interferometer utilizing3x3fiber coupler [J].IEEE Transactions on Microwave Theory and Techniques.1982, MTT-30(10):1589-1591
    [136]Brown D A, Cameron C B, Keolian R M, et.al. A symmetric3x3coupler baseddemodulator for fiber optic interferometric sensors [C]. SPIE Fiber Optic andLaser Sensors IX,1991,1584:328~335.
    [137]Dandridge A, Wang C C, Tveten A B, et.al. Performanceof3x3Couplers inFiber Optic Sensor Systems [C]. Optical Fibre Sensors Conference.10:549~552
    [138]Dandridge A, Tveten A B, Giallorenzi T G. Homodyne demodulation schemefor fiber optic sensors using phase generated carrier [J]. IEEE Transactions onMicrowave Theory and Techniques.1982, MTT-30(10):1635~1641.
    [139]Zhu J, He P K, Huang C Z,2004_A design of digital demodulation systemusing phase generated carrier in fiber hydrophones based on DSP [C].3rdInternational Conference on Coputational Electomagnetics and Its ApplicationProceedings.2004,473~476
    [140]孟洲.基于光频调制PGC解调的光纤水听器阵列技术研究[D].长沙:国防科技大学,2004.
    [141]Dakin J, Wade CA, Henning M L. Novel optical fiber hydrophone array usinga single laser source and detector [J], Electronic Letter,1984,20:53-54.
    [142]Havsgard G B, Wang G, Skagen P, Hordvik A. Four channel fiber optichydrophone system [C]. SPIE.2000,4185:122.
    [143]Farsund Q, Erbeia C, Lachaize C, et.al. Design and field test of a32-elementfiber optic hydrophone System [C]. IEEE.2002.
    [144]Cranch G A, Nash P J, Kirkendall C K, Large-scale remotely interrogatedarrays of fiber-optic interferometric sensors for underwater acousticapplications [J]. IEEE Sensors Journal,2003,3(1):19-30.
    [145]Cranch G A, Crickmore R, Kirkendall C K, et.al. Acoustic performance of alarge-aperture, seabed, fiber-optic hydrophone array [J], Journal of theAcoustical Society of America.2004,115(6):2848-2858.
    [146]张楠.大规模光纤水听器阵列光学外差及时分复用技术研究[D].长沙:国防科技大学,2007.
    [147]SEG技术标准委员会. SEGY Rev1数据转换格式[Z],2002
    [148]倪明.光纤水听器关键技术技术研究[D].北京:中国科学院研究生院,2003.
    [149]张楠,孟洲,饶伟,熊水东.干涉型光纤水听器数字化外差检测方法动态范围上限分析[J].光学学报.2011,31(8):080611-1~080611-7
    [150]Coldren L A, Corzine S W. Diode Lasers and Photonic Integrated Circuits [M].USA: John Wiley&Sons, Inc.1995
    [151]Zhang J., Yue C., Gregory W.S, etal. Stable single-mode compound-ringErbium-doped fiber laser [J]. Journal of lightwave technology.1996,14(1):104-109
    [152]Chang C, Sirkis J. Multiplexed optical fiber sensors using a single fabry-perotresonator for phase modulation [J], Journal of Lightwave Technology.1996,4(7):1653-1663.
    [153]Y. Lo, H. Lai, W. Wang. Developing stable optical fiber refractometers usingPMDI with two-parallel Fabry-Perots [J]. Sensors and Actuators2000, B62:49-54.
    [154]MacPherson W, Kidd S, Barton J, Jones J. Phase demodulation in optical fiberFabry-Perot sensors with inexact phase steps [J]. IEEE Proc. Optoelectron.1997,144(3):130-133.
    [155]S. Kim, J. Lee, D. Lee, and I. Kwon. A study on the development oftransmission-type extrinsic Fabry-Perot interferometric optical fiber sensor [J].Journal of Lightwave Technology.1999,7(10):1869-1874.
    [156]Dahlem M, Santos J, Ferreira L, Araujo F. Passive Interrogation ofLow-Finesse Fabry-Perot Cavities using fiber bragg gratings [J]. IEEEPhotonics Technology Letter.2001,13(9):990-992.
    [157]Chtcherbakov A, Swart P. Phase tracker for low-finesse fibre bragg gratingfabry-perot interferometers [J]. Electronic Letter.2006,42(1).
    [158]Promax2D-Advanced Techniques User Training Manual [Z]. USA: LandmarkGraphics Corporation.1998.
    [159]龚旭东,陈继宗,庄祖银等.深水地震资料处理关键技术浅析[J].勘探地球物理进展.2010,33(5):336-341.
    [160]庄祖银,陈继宗,王征.深水地震资料特性及相关处理技术探析[J].中国海上油气.2011,23(1):26-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700