新型Ca~(2+)荧光探针的设计、合成及胞内信使作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ca~(2+)作为细胞内的信息传递物质,它起着调节许多重要细胞功能的作用。作为第二信使,Ca~(2+)参与生物信号的跨膜传递,介导细胞对外界刺激的应答等等,因此,准确测定活体细胞内游离Ca~(2+)的浓度及其动态变化已成为化学、生命科学及基础临床医学研究中的一个非常重要的研究领域。
     80年代以来Tsien等人合成的具有EGTA、BAPTA螫合母体的Ca~(2+)荧光探针,广泛地应用于细胞内游离Ca~(2+)浓度的测定。这种方法灵敏性高,响应时间短,并且可以通过显微镜成像来提高空间解析度,从而为细胞内Ca~(2+)的研究提供一条简便、高效的途径。因此,Ca~(2+)荧光探针的设计、合成也成为有机合成化学的热点问题。目前广泛应用的Ca~(2+)荧光探针上要以荧光素类和吲哚型为主。其中,荧光素类Ca~(2+)荧光探针属于可见光激发的荧光探针,主要通过荧光强度的变化来测定胞内Ca~(2+)的浓度:吲哚型Ca~(2+)荧光探针属于紫外光激发的荧光探针,在结合了Ca~(2+)后,激发波长或发射波长会发生较大位移.可应用双波长比率法进行Ca~(2+)浓度的测定。然而,目前商业化应用的Ca~(2+)荧光探针的数目极为有限。
     为了满足不同浓度范围Ca2~(2+)的测试,改善探针的生物亲和性以及荧光强度,本文围绕新型Ca~(2+)荧光探针的设计、合成及其胞内信使作用展开研究.主要内容有以下几个方面:
     1.通过对目前广泛应用的Ca~(2+)荧光探针的螫合母体BAPTA结构的分析,设计、合成了五种新型BAPTA结构的衍生物,并对这五种化合物进行了结构表征.
     2.设计、合成了三种未见文献报道的新型荧光素类Ca~(2+)荧光探针,并对这三种新型荧光素类Ca~(2+)荧光探针的甲酯形式进行了结构表征。报道了这三种新型荧光素类Ca~(2+)荧光探针甲酯的荧光光谱。
     3.设计、合成了五种未见文献报道的新型含氯荧光素类Ca~(2+)荧光探针,并对这五种新型荧光素类Ca~(2+)荧光探针的甲酯形式进行了结构表征.报道了这五种新型荧光素类Ca~(2+)荧光探针甲酯的荧光光谱。同时,从理论计算角度获得了Ca~(2+)荧光探针分子设计的有用结果。
     4.设计、合成了五种未见文献报道的新型吲哚型Ca~(2+)荧光探针,并对这五种新型吲哚犁Ca~(2+)荧光探针的甲酯形式进行了结构表征。报道了这五种新型吲哚型Ca~(2+)荧光探针的荧光光谱。
     5.对设计、合成的新型荧光素类Ca~(2+)荧光探针Fluo-3M的荧光光谱进行了研究,结果表明,Fluo-3M在与Ca~(2+)结合后,荧光强度明显增强。其最大激发波长和发射波长与Fluo-3类似,所有可应用于Fluo-3的荧光成像仪器均适用于这种新型探针,为Fluo-3M的商品化应用奠定了基础。
     6.对设计、合成的新型荧光素类Ca~(2+)荧光探针Fluo-3M的离解平衡常数-K_d进行了测定,结果表明,Fluo-3M是一种具有较高亲和力(低K_d值)的Ca~(2+)荧光探针,适用于细胞膜附近的Ca~(2+)浓度的测定。
     7.将设计、合成的新型荧光素类Ca~(2+)荧光探针Fluo-3M的乙酸甲酯形式-Fluo-3MAM负载入人胚肾细胞及中国仓鼠卵巢细胞中,应用Olympus IX71型倒置研究级荧光显微镜进行活体细胞中胞内自由Ca~(2+)的检测和成像。结果表明:Fluo-3M具有优良的荧光性能和生物亲和性,可应用于活体细胞的连续测定,是一种性能优良的Ca~(2+)荧光探针。
Ca~(2+) acts as a universal messenger in a variety of cells. Numerous functions of all types of cells are regulated by calcium to a greater or lesser degree. Serving as an intracellular second messenger and mediator,Ca~(2+) plays a very important role in intracellular signal transduction as well as extracellular. Consequently, the measurement of cytosolic Ca~(2+) has become an important investigation area in chemical, biological and medical research.
     Fluorescent indicators with the structure of EGTA、BAPTA were developed by Tsien and his colleagues in the 1980's for cytosolic Ca~(2+) detection. Fluorescence probes, which are sensitive, fast-responding and capable of affording high spatial resolution via microscopic imaging, provide a new method in the research of intracellular calcium. Therefore, the design and synthesis of new fluorescence probes for cytosolic Ca~(2+) have arisen much more attention. Among the fluorescent Ca~(2+) probes synthesized, fluorescein-based calcium fluorescent probes and fluorescent probes with an indole structure, which are excitated by visible light and UV light respectively, have been widely used. Nevertheless, the fluorescence probes for Ca~(2+) which can be used widely and commercially are quite limited nowadays.
     In order to test the Ca~(2+) in different concentration, improve the biological affinity to Ca~(2+)and the fluorescence intensity, the investigations on the design, synthesis and function test of new fluorescence probes for Ca~(2+) are carried out, mainly including the following several aspects:
     1.According to the analysis of the structure of BAPTA,five kinds of novel derivates of BAPTA were synthesized successfully. Furthermore, the structures of these compounds were all confirmed.
     2.Have designed and synthesized three novel fluorescein-based calcium fluorescent probes. The methyl ester forms of the new probes were confirmed. The fluorescent spectrum of the novel compounds were reported.
     3.Have designed and synthesized five novel fluorescein-based calcium fluorescent probes linked chlorine. The methyl ester forms of the new probes were confirmed. The fluorescent spectrum of the novel compounds were reported. Simultaneously, very useful results about designing of the new probes were obtained from theoretic calculation.
     4.Have designed and synthesized five novel calcium fluorescent probes with an indole structure.The methyl ester forms of the new probes were confirmed. The fluorescent spectrum of the novel compounds were reported.
     5.The fluorescent spectrum of the novel fluorescein-based calcium fluorescent probe Fluo-3M were investigated. The experimental result shows that the fluorescence intensity enhanced obviously after bonded with Ca~(2+).The fluorescence excitation and emission wavelength maxima for Fluo-3M are nearly the same as those reported for Fluo-3. Thus, fluorescence microscopy applications are applicable for detection of Fluo-3M as well.
     6.Have calculated the K_d of the novel fluorescent probe Fluo-3M. The data shows that Fluo-3M has a relatively high affinity to calcium. It can be used to measure the Ca~(2+) distributed near the membrane of the cell.
     7.Fluo-3M was injected into HEK-293 cells and CHO cells, the OlympusⅨ71 fluorescent microscope was used for detecting the intracellular calcium and the imaging of the cell. The experimental results show that Fluo-3M which has a high fluorescence intensity and biological affinity can be used in vivo.
引文
1. Atsushi Miyawaki.,Juan Liopis.,Roger Heim.,et al.Fluorescentin dicators for Ca~(2+) based on green fluorescent proteins and calmodulin[J]. Nature, 1997,388(28): 882-887.
    2. Hunter T. Signaling-2000 and beyond[J]. Cell, 2000, 100:113-127.
    3. Zaccolo M., Magalhaes P., Pozzan T. Compartmentalization of cAMP and Ca~(2+) Signals[J]. Current Opinion in Cell Biology, 2002, 14:160-166.
    4. Monteith G. R. Seeing is believing: recent trends in the measurement of Ca~(2+) in subcellular domains and intracellular organelles[J]. Immunology and cell biology, 2000, 78:403-407.
    5. Berridge M. J., Bootman M. D., Lipp P. Calcium-alife and death signal[J]. Nature, 1998, 395:645-648.
    6. Nesher R., Cerasi E. Biphasic insulin release as the expression of combined inhibitory and potentiating effects of glucose[J]. Endocrinology, 1987, 121: 1017-1024.
    7. Henquin J. C, Ravier M. A., Nenquin M. Hierarchy of the beta-cell signals controlling insulin secretion[J]. European Journal of Clinical Investigation, 2003, 33: 742-750.
    8. Yang S. N., Berggren P.O.Ca~(2+) channel and PKClambda: new players in insulin secretion[J].Journal of Clinical Investigation, 2005, 115:16-20.
    9. Schulla V., Renstrom E.,Feil R.Impaired insulin secretion and glucose tolcrance in beta cell-selective Ca~(2+) channel null mice[J]. EMBO Journal, 2003, 22: 3844-3854.
    10.董颀,陈敏生,黄少华.神经肽Y对大鼠心肌细胞胞浆及核内游离钙浓度的影响[J].广州医学院学报,2005,33(2):5-7.
    11.赵亚莉,吴立玲.心肌细胞钙调节与心力衰竭[J].医师进修杂志,2003,26(9):9-14.
    12.惠海鹏,李小鹰.心肌细胞肌浆网Ca~2+-ATPase及其相关Ca~(2+)调节蛋白[J].中国老年杂志,2004,24(9):867-869.
    13. Kiss E., Jakab G., Kranias E. G. Thyriod hormone-induced alterations in phospholamban p rotein expression: regulatory effects on sarcop lasmic reticulum Ca~(2+)-transport and mycocardial relaxtion[J].Circulation Research, 1994,75 (2): 245-264.
    14. Ritzuto R., Pinton P., Carrlngton W. Close contacts of endoplasmic reticulum as determinants of mitoehondfial Ca responses[J]. Science, 1998, 280: 1763-1766.
    15.吴兰.测定细胞内游离钙含量的有机显色剂[J].化学试剂,1983,10(5):273-283.
    16.王国平.钙对动脉粥样硬化发生中细胞迁移的影响[J].国外医学生理病理科学与临床分册,1992,12(3):125-127.
    17.张永刚.肝细胞钙超载与肝细胞损伤[J].国外医学生理病理科学与临床分册,1997,17(3):255-258.
    18.李靖.Ca~(2+)与肝细胞损伤[J].国外医学生理病理科学与临床分册,1996,16(3):159-161.
    19.白建平.三种荧光Ca~(2+)指示剂用于血小板胞浆游离钙浓度测定原理及应用比较[J].国外医学生理病理科学与临床分册,1993,14(2):75-78.
    20.许长庆,李麟仙,王子灿.兴奋性氨基酸、Ca~(2+)在短暂性脑缺血后海马DND发生机制中的作用[J].生理科学进展,1993,24(2):157-160.
    21.陈松海,韩启德.细胞内游离Ca~(2+)浓度的调节机制[J].生理科学进展,1993,24(1):10-13.
    22. Alberts B. Molecular Biology of the Cell[M]. 3th ed. New York: Garland Pub. Inc., 1994.
    23. Darnell J. Molecular Cell Biology[M]. 3th ed. New York: Scientific American Books Inc.,1995.
    24.文允镒,张志明,胡蓓等.钙与钙调素[M].化学工业出版社,1989,218-225.
    25.崔婕,薛绍白.胞内钙稳态调节[J].细胞生物学杂志,1995,17(3):97-102.
    26.孙大业,郭艳林,马力耕等.细胞信号转导[M].第3版.北京:科学出版社,2001.
    27. Wagner J., Keizer J. Effects of rapid buffers on Ca~(2+) diffusion and Ca~(2+) oscillation[J]. Biophysics Journal, 1994, 67,447-456.
    28. Berridge M. J., Lipp P., Bootman M. D. The versatility and universality of calcium signaling[J].Nature Reviews Molecular Cell Biology, 2000, 1:11-21.
    29.黄全跃.钙在高血压病发病学中的地位[J].国外医学生理病理科学与临床分册,1990,(2):95-97.
    30.乐志培等.生物信息胞内传递分子机理[M].世界图书出版公司,1997,1-201.
    31. Ashkenazi A., DixitV M. Death receptors: signalingand modulation[J]. Science, 1998, 281 (5381):1305-1308.
    32. Mendes C. C, Gomes D. A., Thompson M. The type Ⅲ inositoll,4,5-trisphosphate receptor preferentially transmit sapoptotic Ca~(2+) signal sintomito chondria[J]. Journal of Biological Chemistry,2005, 280 (49): 40892-40900.
    33.栾晶.文昌鱼钙结合蛋白基因的鉴定、表达与进化研究[D].青岛:中国海洋大学,2007
    1. Brownlee C. Cellular calcium imaging: so, what's new? [J]. Trends in Cell Biology, 2000, 10(10):451-457.
    2. 王永祥.新型细胞Ca2+荧光探针的设计合成研究[D].陕西:陕西师范大学,2006.
    3. Hirota A., Chandler W. K., Southwick P. L., Waggner A. S. Calcium signals recorded from two new purpurate indicators inside frog cut twitch fibers[J]. Journal of General Physiology, 1989, 94:597-631.
    4. Konishi M., Baylor S. M. Myoplasmic calcium transients monitored with purpurate indicator dyes injected into intact frog skeletal muscle fibers[J]. Journal of General Physiology, 1991,97: 245-270.
    5. Maylier J., Irving M., Sizto N. L., Greyory Boyarsky., et al.Calcium signals recorded from cut frog twitch fibers containing tetramethylmurexide[J]. Journal of General Physiology, 1987,89:145-176.
    6. Ohnishi S. T. Characterization of the murexide method: dual-wavelength spectrophotometry of cations under physiological conditions[J]. Analytical Biochemistry, 1978, 85: 165-179.
    7. Dorogi P. L., Rabl C.,Neumann E. Kinetic seheme for Ca2+-arsenazo Ⅲ interactions[J].Biochemical and Biophysical Research Communications, 1983,111:1027-1033.
    8. Paladl P., Vergara J. Stioehiehiometries of arsenazo Ⅲ-Ca complexes[J]. Biophysical Journal, 1983,43: 355-369.
    9. Brown J. E., Cohen L. B., De Weer P., et al. Rapid changes of intracellular free calcium concentration: detection by metallochromic indicator dyes in squid giant axon[J]. BioPhysical Journal, 1975, 15: 1155-1160.
    10. Baylor S. M., Holingworth S. Hui C. S., et al. Properties of the metallochromic dyes Asenazo-Ⅲ,AntiPyrylazo Ⅲ and Azo-1 in frog skeletal muscle fibres at rest[J]. Journal of Physiology, 1986, 377:89-141.
    11. Ogawa Y., Yarafuji H., Kurebayashi N. Comparison of the characteristics of four metallochromic dyes as potential calcium indicators for biological experiments[J]. The Journal of Biochemistry, 1980,87: 1293-1303.
    12. Rios E., Schneider M. F. Stoichiometry of the reactions of calcium with the metallochromic indicator dyes antipyrylazo Ⅲ and arsenazo Ⅲ[J]. Biophysical Journal, 1981,36:607-621.
    13. Searpa A., Brinley J. Jr., Dubyak G Antipyrylazo Ⅲ:a"middle range"Ca~(2+) metallochromic indicator[J]. Biochemistry, 1978, 17: 1378-1386.
    14. Doeampo R., Moreno S.N. J., Mason R. P. Generation of free radical metabolities and superoxide anion by the calcium indicators arsenazo Ⅲ,antipyrylazo Ⅲ,and murexide in rat liver microsomes[J]. Journal of Biological Chemistry, 1993, 258:14920-14925.
    15. Klein M. G, Simon B. J., Szues G, et al. Simultaneous recording of calcium transients in skeletal muscle using high-and low-affinity calcium indicators[J]. Biophysical Journal, 1988, 53: 971-988.
    16. Beeler T. Oxidation of sulfhydryl groups and inhibition of the (Ca~++Mg~(2+))-ATPase by arsenazo Ⅲ[J].Biochimica et Biophysica Acta, 1990,1027: 264-267.
    17. Blair T. L., Yang S. T., Smith-Palmer.,et al.Fiber Optic Sensor for Ca~(2+) Based on an Induced Change in the Conformation of the Protein Calmodulin[J]. Analytical Chemistry, 1994,66:300-302.
    18. Morf W. E., Seiler K., Rusterholz B., et al. Design of calcium-selective optode membrane based on neutral ionophore[J]. Analytical Chemstry, 1990, 62: 783-742.
    19. Rosatzin T., Holy P., Seiler K.,Rusterholz B., Simon W. An optical Method for Evaluating Ion Selectivity for Calcium Signaling Pathways in the cell[J]. Analytical Chemistry, 1992, 64:2029-2035.
    20. Suzuki K., Yohcla K., Tanda Y., et al. Fiber-optic magnesium and calcium ion sensor based on a natural carboxylic polyether antibiotic[J]. Analytical Chemstry, 1989,61(4): 382-384.
    21. Eckert-Tilotta S. E., Scouten W. H., Hines. J. A calcium-selective optrode based on the fluorescence of dansylated troponin[J]. Applied Spectroscopy, 1991,45: 491-495.
    22. Werner T. C, Cummings J. G., Seitz W. R. General approach to the development of luminescent cation detectors[J]. Analytical Chemstry, 1989, 61:211-215.
    23. Sharma.A.,Wolfbeis O.S.Unusually efficient quenching of the fluorescence of an energy transfer-based optical sensor for oxygen[J]. Analytical Chimica Acta, 1988, 212:261-265.
    24. Asbworth D. C, Huang H. P., Narayanaswany R. An optical calcium ion sensor [J]. Analytical Chimica Acta, 1988, 212: 267-271.
    25. Chau L. K.,Porter M. D. Optical sensor for calcium: performance, structure, and reactivity of calcichrome immobilized at an anionic polymer film[J]. Analytical Chemstry, 1990,62:1964-1967.
    26. Kawabata Y., Tahara R., Imasaka T., et al. Fiber-optic calcium(##) sensor with reversible response[J].Analytical Chimica Acta, 1988, 213: 251-257.
    27. Michael Shortread., Raoul Kopelman.,Michael Kuhn.,et al. Fluorescent Fiber-Optic Calcium sensor for physiological measurements[J]. Analytical Chemstry, 1996, 68: 1414-1418.
    28. Shaloom S.,Strinkozski A., Peleg G.,et al. An optical submicrometer calcium senter with conductance sensing capability[J]. Analytical Biochemistry, 1997, 244(2): 256-259.
    29. Junter G A. Electrochemical detection techniques in the applied biosciences[M]. Analysis and Clinical Application; Ellis Horwoood limited: Chichester, England, 1988.
    30. 刘栋,常相娜,陈兴娟等.氟代指示剂在核磁共振测细胞内钙离子中的应用[J].化学工程师,2005,(1):41-43.
    31. Krishna M. C,Subramanian S., Kuppusamy P. Magnetic resonance imaging for in vivo assessment of tissue oxygen concentration[J].Seminars in Radiation Oncology, 2001,11:58-69.
    32. Tsien R. Y,Rink T. J. Neutral carrier ion-selective microelectrodes for measurement of intracellular free calcium[J]. Biochimica et Biophysica Acta, 1980,599: 623-638.
    33. Ross J.W.Calcium-Selective Electrode with Liquid Ion Exchanger[J].Science,1967,156:1378-1379.
    34. Takahashi A., Camacho P., Lechleiter J. D. Measurementof intracellular calcium[J]. Physiological Reviews, 1999, 79:1089-1125.
    35. Knowles A., Shabala S. Overcoming the problem of non-idealliquid ion exchanger selectivity in microelectrode ion fluxmeasurements[J]. Journal of Membrane Biology, 2004, 202(1): 51-59.
    36. Basset O.,Boittin F. X., Dorchies O. M. Involvement ofinositol 1,4,5-trisphosphate in nicotinic calcium responses indystrophic myotubes assessed by near-plasma membrane calcium measurement[J].The Journal of Biological Chemistry, 2004, 279(45): 47092-47100.
    37.娄志义,左丽丽.同位素示踪法及其在中学生物学中的应用[J].生物学教学,2005,30(8):68-69
    38. Stump S. Uncertainty calculation on the determination of calcium absorption in nutritional experiments with enriched stable isotopes and detection by double focusing sector field ICP-MS with a shielded torch[J]. Journal of Analytical Atomic Spectrometry, 2002, 17: 1-7.
    39. Monteith G. R., Bird G. S. Techniques: high-throughput measurement of intracellular Ca~(2+)-back to basics. Trends Pharmacol Sci, 2005, 26(4): 218-223.
    40. Ridgway E. B., Ashley C. C. Calcium transients in single muscle fibers[J]. Biochemieal and BioPhysieal Researeh Communications, 1967,29: 229-234.
    41. Shimomura O.Bioluminescence in the Sea: Photoprotein Systems[J]. Symposia of the Society for Experimental Biology, 1985, 39:351-372.
    42. Tsuji F. I., Ohmiya Y., Fagan T. F., et al.Molecular evolution of the Ca~(2+)-binding photoproteins of the hydrazoa[J]. Photochemistry and Photobiology,1995, 62: 657-661.
    43. Albota M., Beljonne D., Bredas J. L., et al. Design of Organic Molecules with Large Two-Photon Absorption Cross Sections[J]. Science, 1998, 281: 1653-1656.
    44. Borle.,Andre B. Ca~(2+)-bioluminescent indicators Methods Toxical[J]. In Vitro Toxicity Indicators, 1994, 1B:315-327.
    45. Blinks J. R., Wier W. G, Hess P., et al. Measurement of Ca~(2+) concentrations in living cells[J].Progress in Biophysics and Molecular Biology, 1982,40:1-114.
    46. 孙天恩,周平,叶梦炜.荧光指示剂测定植物细胞内游离钙离子的研究进展[J].植物生理学通讯,1996,32(2):91-99.
    47. Rizzuto R. Close contacts with the Endoplasmic Reticulum as determinants of Mitochondrial Ca~(2+) responses[J]. Science, 1998,280: 1763-1766.
    48. Robert V., Giorgi D. E., Massimino M. L., et al. Direct monitoring of the calcium concentration in the sarcoplasmic and endoplasmic reticulum of skeletal muscle myotubes[J]. The Journal of Biological Chemistry, 1998, 273: 30372-30378.
    49. Paolo Pinton., Tullio Pozzan., Rosario. The Golgi apparatus is an inosilol 1,4,5-trisphosphate-sensitive Ca~(2+) store with functional properties distinct from those of the endoplasmic reticulum[J]. EMBO Journal, 1998, 17: 5298-5380.
    50. Geroge G. H. Calcium environments along trafficking pathways leading to gap junction bioge nesis in living C0S-7cells [J]. The Journal of Biological Chemistry, 1998, 273: 29822-29829.
    51. Miyawaki A., Liopis J., Heim R., et al.Fluorescent indicators for Ca~(2+) based on green fluorescent proteins and calmodulin[J]. Nature, 1997,388(28): 882-887.
    52. Maria J B., Mayte M. Javier Alvarez, Dynamics of [Ca~(2+)] in the Endoplasmic Reticulum and Cytoplasm of Intact Hela Cells, A Comparative Study[J]. The Journal of Biological Chemistry, 1997,272: 27694-27699.
    53. Marisa B., Robert M., Carlo B., Javier A., Tullio P., Rosario R. Transfected aequorin in the measurement of cytosolic Ca~(2+) concentration ([Ca~(2+)])[J]. The Journal of Biological Chemistry,1995, 270: 9896-9903.
    54. Badminton M. N. Differential regulation of nuclear and cytosolic Ca~(2+) in Hela Cells[J]. The Journal of Biological Chemistry, 1996, 271: 31210-31214.
    55. Nicolas D., Maud F. Measurement of the free luminal ER Ca~(2+) concentration with targeted "cameleon" fluorescent proteins[J]. Cell Calcium,2003, 34:109-119.
    56. Marisa B., Paolo P., Tullio P., et al.Targeted recombinant aequorins: tools for monitoring [Ca~(2+)] in the various compartments of aliving cell[J]. Microscopy Research and Technique, 1999, 46:380-389.
    57. Anna C, Elena R., Valeria T., et al. Fogarty and Rosario Rizzuto. Recombinant aequorin and green fluorescent protein as valuable tools in the study of cell signaling[J]. Biochemistry, 2001, 355: 1-12.
    58. 张春阳,陈波,马辉等.细胞内钙离子的光学分析方法研究进展[J].分析科学学报,2000,6(16):510-515.
    59. Naai J.,Ohkura M.,Imoto K.A high signal-to noise Ca~(2+) probe composed of single green fluorescent protein[J].Nature Biotechnology, 2001, 19: 137-141.
    60. Hunter T. Signaling-2000 and beyond[J]. Cell, 2000,100:113-127.
    61. Schulman S.G. Fluorescence and Phosphorescence Spectroscopy[M]. Physicochemical Priciples and Practic, New York: Oxford, 1997.
    62. 陈国珍,黄贤智,许金钩等.荧光分析法[M].第二版,科学出版社,1990.
    63. Valeur B. Molecular Fluorescence: Principles and Applications[J].Weinheim:Wiley-VCH, 2001.
    64. O'Haver T. C. The development of luminescence spectrometry as an analytical tool[J]. Journal of Chemical Education, 1978, 55(7): 423-428.
    65. 黄晓峰,张远强,张英起.荧光探针技术[M].北京:人民军医出版社,2004.
    66. 孟令之,龚淑玲,何永炳.有机波谱分析[M].武汉大学出版社,2003.
    67. 张华山.分子探针与检测试剂[M].科学出版社,2002
    68. 钱小红,谢剑炜.现代仪器分析在生物医学研究中的应用[M].化学工业出版社,2003.
    69. 西川泰治,平木敬三.荧光分析方法[M].东京共立出版社,1984,157-189.
    70. Simpson A. W. Fluorescent measurement of [Ca24]: basic practical considerations[J].Methods in Molecular Biology, 2006, 312:3-36.
    71. Grynkiewiez G, Poenie M and Tsien R. Y. A new generation of Ca~(2+) indicators with greatly improved fluorescence properties[J]. Journal of Biological Chemistry, 1985, 260: 3440-3450.
    72.徐若千.吲哚类Ca~(2+)荧光指示剂及螯合母体的合成[D].陕西:西北大学,2008.
    73. Albers A. E., Okreglak V. S., Chang C. J. A FRET-Based Approach to Ratiometric Fluorescence Detection of Hydrogen Peroxide[J]. Journal of the American Chemical Society, 2006, 128:9640-9641.
    74. Aoki S., Kaido S., Fujioka H., et al.A New Zinc(Ⅱ) Fluorophore 2-(9-Anthrylmethylamino) ethyl-Appended l,4,7,10-Tetraazacyclododecane[J]. Inorganic Chemistry, 2003,42:1023-1030.
    75. Barja G J. Minireview: The Quantitative Measurement of H2O2 Generation in Isolated Mitochondria[J]. Journal of Bioenergetics and Biomembranes, 2002, 34(3): 227-233.
    76. Biwersi J., Tulk B.,Verlman A. S. Long-wavelength chloride-sensitive fluorescent indicators[J].Analytical Biochemistry, 1994, 219(1):139-143.
    77. Biwersi J., Verlman A. S. Cell-permeable fluorescent indicator for cytosolic chloride[J].Biochemistry, 1991, 30: 7879-7883.
    78. Baruah M., Qin W., Vallee R. A. L., et al. Heterobifunctional Multivalent Inhibitor-Adaptor Mediates Specific Aggregation between Shiga Toxin and a Pentraxin[J]. Organic Letters, 2005, 7: 4377-4380.
    79. De Silva A. P., De Silva S. A. Fluorescent signaling crown ethers: switching on of fluorescence by alkali metal ion recognition and binding in situ[J]. Journal of the Chemical Society, Chemical Communications,1986, 23,1709-1710.
    80.贾宏瑛.靶向性细胞Ca~(2+)荧光探针的合成及其应用[D].陕西:陕西师范大学,2004.
    81. De Silva A. P., Gunaratne H. Q. N., Sandanayake K. R. A. S. A new benzo-annelated cryptand and a derivative with alkali cation-sensitive fluorescence[J]. Tetrahedron Letters, 1990, 31: 5193-5196.
    82. Dean R. T., Fu S., Stocker R., Davies M. Biochemistry and pathology of radical-mediated protein oxidation[J]. Biochemical Journal, 1997, 324(1):1-18.
    83. Hong S. H., Maret W. A fluorescence resonance energy transfer sensor for the beta-domain of metallothionein [J]. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100: 2255-2260.
    84. Tsien R.Y. New calcium indicators and buffers with high selectivity against magnesium and protons:design, synthesis and properties of prototype structures[J]. Biochemistry, 1980, 19: 2396-2404.
    85. Levy L. A., Muryhy E., Raju B et al. Measurement of cytosolic free magnesium ion concentration by ~(19)F NMR[J]. Biochemistry, 1988, 27:4041-4045.
    86. Raju B., Muryhy E., Levy L. A., et al. A fluorescent indicator for measuring cytosolic free magnesium[J]. American Journal of Physiology, 1989, 256: C540-C548.
    87. Haugland R. P. Handbook of Fluorescent Probe sand Research Chemicals[M].6~(th) edn.Moleeular Probes, Eugene, OR,1996.
    88. Minta A., Kao J. P. Y, Tsien R. Y. Fluoreseent indieators for cytosolic calcium based on rhodamine and fluorescein chromophores[J]. Journal of Biological Chemistry, 1989, 264: 8171-8178.
    89. Kao J. P., Harootunian A. T., Tsien R. Y Photochemically generated cytosolic calcium pulses and their detection by fluo-3[J]. Journal of Biological Chemistry, 1989,264: 8178-8184.
    90. Gee K. R., Brown K. A., Chen W. U., et al.Chemieal and physiological characterization of fluo-4 Ca~(2+) indicator dyes[J]. Cell Calcium,2000, 27(2): 97-106.
    91.韩洁.新型细胞Ca~(2+)荧光探针的合成及在生命科学研究中的应用[D].陕西:西北大学,2008.
    92. Eberhar M., Erne P. Calcium binding to fluorescent calcium indicators: calcium green,calcium orange and calcium crimson[J]. Biochemieal and BioPhysieal Research Communications, 1991,180(1): 209-215.
    93. Kuhn M. A. l,2-bis(2-aminophenoxy)ethane-N,N,N', N'-tetracetic acid conjugates used to measure intracellular Ca~(2+) concentration, In Fluorescent Chemosensors for Ion Molecule Recognition(Czarnik A W ed.) [J].Washington, D C, Ameriean Chemieal Soeiety, 1999,147-161.
    94. Vergara J and Eseobar A. Detection of Ca~(2+) transients in skeletal muscle fibers using the low affinity dye calcium-green-SN[J]. Biophysical Journal, 1993, 64: A37.
    95. Cifuentes R,Eseobar A. L., Vergara J. Calcium-orange-5N:a low affinity indicator able to track the fast release of calcium in skeletal muscle fibers[J]. Biophysical Journal, 1993,68: A419.
    96. Zhao M., Hollingworth S., Baylor S. M. Properties of tri and tetracarboxylate Ca~(2+) indieators in frog skeletal muscle fibers[J]. Biophysical Journal, 1996, 70: 896-916.
    97. De Marinis R. M., KaterinoPoulos H. E., Muirhead K. A. New tetracarboxylete compounds as fluorescent intracellular calcium indicators[J]. Biochemistry Methods, 1990, 112: 381-385.
    98. Kurebayashi N., Harkins A. B., Baylor S. M. Use of fura red as an intracellular[J]. Biophysical Journal, 1993, 64: 1934-1960.
    99. Smith G A., Metealfe J. C, Clarke S. D. The design and properties of a series of calcium indicators fluorescence on binding calcium[J]. Journal of the Chemical Society-Perkin Transactions, 1993, 2:1195-1204.
    100. Pething R., Kuhn M., Payne R., et al. On the dissociation constants of BAPTA-type calcium buffers[J]. Cell Calcium,1989, 10: 491-498.
    101. Tsien R. Y, Pozzan T, Rink T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new intracellularly trapped fluorescent indicator[J]. The Journal of Cell Biology, 1982, 94: 325-334.
    102. Tsien R. Y, Pozzan T. Measurement of cytosolic free Ca~(2+) with quin-2: practical aspects[J]. Methods in Enzymology, 1989,172: 230-262.
    103. Tsien R. Y Fluorescent probes of cell signaling[J]. Annual Review of Neuroscience, 1989,12:227-234.
    104. Gilroy S., Hughes W. A., Trewavas A. J. A comparison between quin-2 and aquorin as indicators of cytoplasmic calcium levels in higher plant cell protoplasts[J]. Plant Physiology, 1989, 90:482-492.
    105. Poenie M., Alderton J., Tsien R. Y., et al. Changes of free calcium levels with stages of the cell division cycle[J]. Nature (London), 1985, 315: 147-149.
    106. Goligorsky M., Hruska K., Cofrus G, et al. Alpha1-adrenergic stimulation and cytoplasmic free calcium concentration in cultured renal proximal tubular cells: Evidence for compartmentalization of quin-2 and fura-2[J]. Journal of Cellular Physiology, 1986, 128: 466-474.
    107. Grynkiewiez G, Poenie M., Tsien R. Y. A new generation of Ca~(2+) indicators with greatly improved fluorescence properties[J]. Journal of Biological Chemistry, 1985, 260: 3440-3450.
    108. Xu C., Webb W. W. Measurement of two-photon excitation cross section of molecular fluorophores with data from 690 to 1050nm[J]. Journal of the Optical Society of America, 1996, B13: 481-491.
    109. Szmaeinski H., Gryezynski I., Lakowicz J. R. Calcium-dependent fluorescence lifetimes of indo-1 for one- and two-photon excitation of fluorescence[J]. Photochemistry and Photobiology, 1993, 58: 341-345.
    110. Aimers W., Neher E. The Ca signal from fura-2 loaded mast cells depends strongly on the method of dye-loading[J]. FEBS Letters, 1985, 192: 13-18.
    111. Blatter L. A., Wier W. G. Intracellular diffusion, binding and compartmentalization of the fluorescent calcium indicators indo-1 and fura-2[J]. Biophysical Journal, 1990, 58: 1491-1499.
    112. Connor J. A. Dissecting signals from fura-2 in cytosol, nucleus and other organells in living cells[J]. Neuroprotocols, 1994, 5: 25-34.
    113. Poenie M., Alderto J.A., Steinhardt R. A., et al. Calcium rises abruptly and briefly throughout the cell at the onset of anaphase[J]. Science, 1986, 233: 886-889.
    114. Sipido K. R., Callewaert G. How to measure intracellular [Ca~(2+)] in single cardiac cells with fura-2 or indo-1[J]. Cardiovascular Research, 1995, 29: 717-726.
    115. Hove-Madse L., Bers D. M. Indo-1 binding to protein in permeablized ventricular myocytes alters its speetral and Ca~(2+)-binding properties [J]. Biophysical Journal, 1992, 63: 89-97.
    116. Iatridou H., Foukaraki E., Kuhn M. A., et al. The development of a new family of intracellular calcium probes[J]. Cell Calcium, 1994, 15: 190-198.
    117. Liepouri F., Foukaraki E., Deligeorgiev T. G., et al. Iminocoumarin-based low affinity fluorescent Ca~(2+) indicators excited with visible light[J]. Cell Calcium, 2001, 30(5): 331-335.
    118. Iaepouri F., Deilgeorgiev T. H., Veneti Z., et al.Near-membrane iminocoumarin-based low affinity fluorescent Ca~(2+) indicators[J]. Cell Calcium, 2002,31(5): 221-227.
    119. Raju B. E., Murphy L. A., Levy R. D., et al. A fluorescent indicator for measuring cytosolic free magnesium[J]. Ameriean Journal of Physiology, 1989, 256: C540-548.
    
    120. Baylor S. M., Hollingworth S., Konishi M. Calcium transient in intact frog single skeletal muscle fibers measured with the fluorescent indicator dye mag-fura-2[J]. The Journal of Physiology, 1989, 418: 69p.
    121.Konishi M., Hollingworth S., Baylor S. M. Myoplasmic calcium transients in intact frog twitch fibers monitored with furaptra (=mag-fura-2) and purpurate-diaellic acid(=PDAA) [J]. Biophysical Journal,1990,57: 344a.
    122. Ogden D., Khodakhah K.,Carter T., et al.Analogue computation of transient changes of intracellular free Ca~(2+) concentration with the low affinity Ca~(2+) indicator furaptra during wholecell patch-clamp recording[J].Pfluegers Archiv.1995,429(4): 587-591.
    123. Konishi M., Hollingworth S., Harkins A. B., et al. MyoPlasmic calcium transients in intact frog skeletal muscle fibers monitored with the fluorescent indicator furaptra[J]. Journal of General Physiology, 1991, 97: 271-301.Engin U.,Akkaya., Joseph R., Lakowicz. Styryl-based wavelength-ratiometic probes, a new class of fluorescent calcium probes with long wavelength emission and a large Stokes shift[J]. Analytical Biochemistry, 1993,213: 285-289.
    124. Burcu Ozmen., Engin U., Akkaya. Infrared fluorescence sensing of submicromolar calcium, pushing the limits of photo induced electron transfer[J]. Tetrahedron Leters, 2000,41:9185-9188.
    125. April L., Ellis., M ason J. C, et al. Design, synthesis, and characterization of a calcium-sensitive near infrared dye[J]. Talanta, 2002, 56: 1099-1107.
    126. Engin U. Akkay., Serhan Turkyilmaz.A Squaraine-based Near IR Fluorescent Chemosensor for Calcium[J]. Tetrahedron Letters, 1997,38(25): 4513-4516.
    127.张小玲,阎宏涛,阎炀.5-羟色胺诱导胃底平滑肌细胞钙火花[J].中国科学(B辑),2003,33(1):54-58.
    128.张小玲,阎宏涛.新型Ca~(2+)探针用于5-HT诱导细胞钙动员的机制[J].中国科学(B辑),2002,32(3):225-260..
    129. Zhang Xiaoling., Yan Hongtao., Yan Yang. 5-hydroxytryptamino-induced calcium sparks incultured rat stomach fundus smooth muscle cells[J]. Science in China(Series B), 2003,46(1):13-18.
    130.杨利苹,屠惠萍,傅红燕等.控制细胞内游离Ca~(2+)的鳌合剂BAPTA衍生物的合成及结构与性能关系[J].华东师范大学学报(自然科学版),1996,1:45-51.
    131.杨利苹,张熊德,黄小安等.BAPTA及BAPTA-AM的合成与性能研究[J].华东师范大学学报(化学专辑),1991,30-33.
    132.杨利苹,张熊德,游福有等.荧光钙敏试剂Indo-1 AM的合成[J].合成化学,1993,1(4):341-347.
    133.屠惠萍,王隽,杨利苹等.钙敏荧光试剂Fluo-2的合成[J].合成化学,1995,3(4):332-335.
    134.杨利苹,赵著,张小兵等.Fura-新荧光试剂的合成和结构与性能关系的研究[J].有机化学,1995,15:609-614.
    135.邓必阳,陈震华,尹权.新型荧光钙试剂Fura-3的合成及其性质的研究[J].化学试剂,1992,14(1):40-45.
    136.温和瑞,王金唏,陈荣三.细胞内Ca~(2+)测定的新进展[J].化学试剂,1993,3:25-29.
    137.金晖,刘乃丰.组织和细胞钙检测方法的进展[J].南京铁道医学院学报,1997,16(3):219-221
    138. 张川里,吴本.钙荧光探剂的研究及其在生命科学中的应用[J].生理科学进展,1996,27(1):37-42
    139. 马会民,余席茂,陈观锉等.测定细内游离钙的有机显色剂和荧光试剂[J].化学通报,1993,11:37-42
    140. 赵彩霞,郑延松.细胞内游离钙检测方法进展[J].国外医学临床生物化学与检验学分册,2001,22(2):71-72.
    141. 张小玲,鲍霞,贾宏瑛等.细胞Ca~(2+)测定研究进展[J].咸阳师范学院学报,2002,17(6):19-26.
    142. 张春光,郑海雪,马建华等.细胞内自由钙离子浓度的测定方法[J].生物学通报,2002,37(10):15-16.
    143. Akiyuki T., Paricia C. Measurement of Intracellular Calcium[J]. Physiological Reviews, 1999, 79:1089-1125.
    144. Elliott D. C, Petkoff H. S. Measurement of cytoplasmic free calcium in plant protoplast[J]. Plant Science, 1990, 67: 125.
    145.孟繁霞,张蜀秋.测定蚕豆保卫细胞胞质中游离Ca~(2+)的荧光染料孵育法[J].植物生理学通讯,2001,37(5):429-432.
    146. Timmers A. C. J. Digitonin-aided loading of fluo-3 into embryogenic plant cells[J]. Cell Calcium,1991,12:515.
    147.周平,孙天恩,叶梦炜等.钙离子荧光指示剂导入植物细胞原生质体研究[J].武汉大学学报(自然科学版),1995,41(2):208.
    148. Carolyn C.,Woodroofe., Stephen J. L. A novel two-fluorophore approach to rationmetric sensing of Zn~(2+)[J]. Journal of the American Chemical Society, 2003 125:11458-11459.
    149.郑广华.细胞内信使系统[M].广东高等教育出版社,1983,160-165.
    150.文允镒,张志明,胡蓓等.钙与钙调素[M].化学工业出版社,1989,218-226
    1. Tsien R.Y. New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis and properties of prototype structures[J]. Biochemistry, 1980,19:2396-2404.
    2. Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons:design, synthesis, and properties of prototype structures[J]. Biochemistry, 1985, 19(11):2396-2404.
    3.姚蒙.硝化反应的近期进展[J].染料工业,1999,36(2):15-21.
    4. Kwok J.,Jayasuriya K.Application of H-ZSM-5 Zeolite for Regioselective Mononitration of Toluene [J]. Journal of Organic Chemistry, 1994,59 (17): 4939-4942.
    5. Smith K.,Musson A., DeBoos C.A. A Novel Method for the Nitration of Simple Aromatic Compounds[J]. Journal of Organic Chemistry, 1998,63 (23): 8448-8454.
    6.唐培垫.精细有机有机合成化学及工艺学[M].天津:天津大学出版社,2002:143-165.
    7.李在国,汪清民,黄君珉.有机中间体制备[M].北京:化学工业出版社,2001:187-188.
    8. Robin G C, Gordon G C, Alfred F., et al.Formation of 4-Halo-4-nitrocyclohexa -2,5-dienones on nitration of p-halophenols and p-halophenyl acetates[J]. Tetrahedron, 1989,45(5):1299-1310.
    9. Elks J., Hey D. H., Jones B. Reactions with l-Aryl-3:3-dimethyltriazens[J]. Journal of the Chemical Society, 1943,441-446.
    10. Berridge M. J., Lipp P., Bootman M. D. The versatility and universality of calcium signaling[J].Nature Reviews Molecular Cell Biology, 2000,1(1):11-21.
    11. Squella J. A., Huerta M., Bollo S., et al. Electrochemical reduction of nitrotetralones[J]. Journal of Electroanalytical Chemistry, 1997,420:63-69.
    12. Fan L. J., Wang C, Chang S. C, et al. Reaction of nitrobenzene on gold single-crystal electrodes:surface crystallographic orientation dependence[J]. Journal of Electroanalytical Chemistry,1999,477:111-120.
    13. Nolen T. R., Fedkiw P. S. Kinetic study of the electroreduction of nitrobenzene[J]. Journal of Applied Electrochemistry, 1990, 20(3): 370-376.
    14. Ravchandran C, Chellammmal S., Anantharaman P. N. lectroreduction of nitrobenzene to p-aminophenol at a titanium dioxide/titanium electrode[J]. Journal of Applied Electrochemistry 1989,19(3): 465-466.
    15.杨利苹,张熊德,黄小安等.BAPTA及BAPTA-AM的合成与性能研究[J].华东师范大学学报(化学专辑),1991,30-33.
    16. Ni Y., Wang L., Kokot S. Simultaneous determination of nitrobenzene and nitro-substituted phenols by differential pulse voltammetry and chemometrics[J]. Analytica Chimica Acta, 2001, 431(1):101-113.
    17.邓必阳,陈震华,尹权.新型荧光钙试剂Fura-3的合成及其性质的研究[J].化学试剂,1992,14(1): 40-45
    18. Grynkiewicz G, Poenie M., Tsien R. Y. A new generation of Ca~(2+) indicators with greatly improved fluorescence properties[J]. Journal Biological Chemistry, 1985,260:3440-3450.
    1. Su J. H., Tian H. Novel trichromophoric rhodamine dyes and their fluorescence properties[J]. Dyes and Pigments, 1996, 31(1):69-77.
    2. Adamczyk M.,Grote J. Synthesis of probes with broad pH range fluorescence[J]. Bioorganic & Medicinal Chemistry Letters, 2003,13(14): 2327-2330.
    3. Liu J. X., Diwu Z. J. Rational design and synthesis of a novel class of highly fluorescent rhodamine dyes that have strong absorption at long wavelengths[J]. Tetrahedron Letters, 2003, 44(23):4355-4359.
    4. Roth M. Fluorescence reaction for amino acids[J]. Analytical Chemistry, 1971,43(7): 880-882.
    5. Feltus A., Hentz N., Daunert G. S. Post-capillary reaction detection in capillary electrophoresis based on the streptavidin-biotin interaction. Optimization and application to single cell analysis[J]. Journal of Chromatography A, 2001,918(2): 381-392.
    6. Shaner L. M., Brown P. R. Single cell analysis using capillary electrophoresis[J]. Journal of Liquid Chromatography & Related Technologies,2000, 23(7): 975-997.
    7. Neher E. The use of Fura-2 for estimating Ca buffers and Ca fluxes[J]. Neuropharmacology, 1995,34(11):1423-1442.
    8. Groden D. L., Guan Z., Stokes B. T. Determination of Fura-2 dissociation constants following adjustment of the apparent Ca-EGTA association constant for temperature and ionic strength[J]. Cell Calcium, 1991,12:279-287.
    9. 李楠.荧光探针应用技术[M].军事医学科学出版社,1998.
    10. 程介克.单细胞分析[M].科学出版社,2005.
    11. Prabhavathi B. F. Technological advances in high-throughput screening[J]. Current Opinion in Chemical Biology, 1998, 2: 597-603.
    12. Yevich J. P. Drug development: From discovery to marking[M]. A textbook of drug design and development, 2~(nd) ed, Australia: Harwood Academic, 1996, 508.
    13. Steven A. S. High-throughput and ultra-high-throughput screening: solution and cell-based approaches[J].Current Opinion in Chemical Biology, 2000, 11:47-53.
    14. Sitta G. S., Steven D.K.,William P. J. High-throughput screening: advances in assay technologies[J].Current Opinion in Chemical Biology, 1997,1:384-391.
    15. Etter E. F.,Kuhn M. A., Fay F. S. Detection of changes in near-membrane Ca~(2+) concentration using a novel membrane-associated Ca~(2+) indicator[J].Journal of Biological Chemistry, 1994, 269(13):10141-10149.
    16. William P. J. High Throughput Screening Methods and Protocols[M]. Human Press, 2002.
    17. Lloyd Q. P., Kuhn M. A., Gay C. V. Characterization of calcium translocation across the plasma membrane of primary osteoblasts using a lipophilic calcium-sensitive fluorescent dye, calcium green C18[J].Journal of Biological Chemistry,1995, 270(38): 22445-22451.
    18. Takahashi A., Camacho P., Lechleiter J. D., et al.Measurement of intracellular calcium[J].Physiological. Reviews., 1999, 79(4): 1089-1125.
    19. Liepouri F., Deligeorgiev T. G., Veneti Z.,et al.Katerinopoulos H. E., Near-membrane iminocoumarin-based low affinity fluorescent Ca~(2+) indicators[J]. Cell Calcium, 2002, 31(5):221-227.
    20. Liepouri F., Foukaraki E., Deligeorgiev T.G. Katerinopoulos H. E., Iminocoumarin-based low affinity fluorescent Ca~(2+) indicators excited with visible light[J]. Cell Calcium, 2001, 30:331-335.
    21. 朱维平,徐玉芳,钱旭红.具有重要生物学意义的重金属及过渡金属离子荧光分子探针[J].化学进展,2007,19(9):1229-1238.
    22. 樊江莉.二(2-吡啶甲基)胺为识别基团Zn~(2+)荧光分子探针的研究[D].大连:大连理工大学2005.
    23. De Silva A. P., Hu Q. N., Gunnlauggson T., et al. Signaling recognition events with fluorescent sensors and switches[J]. Chemical Reviews (Washington, D. C.) 1997, 97(5):1515-1566.
    24. Setsukinai S., Urano Y., Kakinuma K., et al. Development of novel fluorescence probes that can reliably detect reactive oxygen species and distinguish specific species[J]. Journal of Biological Chemistry,2003, 278(5):3170-3175.
    25. Hovius R., Vallotton P., Wohland t., et al. Fluorescence techniques: shedding light on ligand-receptor interactions[J].Trends in Pharmacological Sciences, 2000, 21(7):266-273.
    26. Tanaka K., Miura T., Umezawa N., et al. Rational Design of Fluorescein-Based Fluorescence Probes.Mechanism-Based Design of a Maximum Fluorescence Probe for Singlet Oxygen[J]. Journal of the American Chemical Society, 2001, 123(11):2530-2536.
    27. Miura T., Urano Y., Tanaka K., et al. Rational Design Principle for Modulating Fluorescence Properties of Fluorescein-Based Probes by Photoinduced Electron Transfer[J].Journal of the American Chemical Society, 2003, 125(28): 8666-8671.
    28. Hirano T., Kikuchi K.,Urano Y., et al. Highly Zinc-Selective Fluorescent Sensor Molecules Suitable for Biological Applications[J].Journal of the American Chemical Society, 2000, 122(49):12399-12400.
    29. Valeur B., Leray I. Design principles of fluorescent molecular sensors for cation recognition[J].Coordination Chemistry Reviews , 2000, 205: 3-40.
    30. Umezawa N., Tanaka K., Urano Y., et al. Novel fluorescent probes for singlet oxygen[J].Angewandte Chemie, International Edition , 1999, 38(19): 2899-2901.
    31. Urano Y., Kamiya M., Kanda K., et al. Evolution of fluorescein as a platform for finely tunable fluorescence probes[J].Journal of the American Chemical Society ,2005, 127(13): 4888-4894.
    32. Grabowski Z. R., Dobkowski J. Twisted intramolecular charge transfer (TICT) excited states: energy and molecular structure[J].Pure and Applied Chemistry, 1983, 55(2): 245-252.
    33. Rettig W. Charge separation in excited states of decoupled systems: twisted intramolecular charge transfer (TICT) compounds and implications for the development of new laser dyes and for the primary process of vision and photosynthesis[J]. Angewandte Chemie.1986, 98(11):969-986.
    34. Trautwein A. X. Electronic properties of paramagnetic and exchange-coupled transition-metal centers in biomimetic systems[J]. Bioinorganic Chemistry. 1997,741-759.
    35. Burdete S. C, Frederickson C. J., Bu W. M, et al.ZP4,an improved neuronal Zn2+ sensor of the zinpyr family[J]. Journal of the American Chemical Society, 2003,125(7):1778-1787.
    36. Confalone P. N. The use of heterocyclic chemistry in the synthesis of natural and unnatural products[J]. Journal of Heterocyclic Chemistry, 1990,27(1):31-46.
    37. Jiao G. S., Han J. W., Burgess K.Syntheses of regioisomerically pure 5- or 6-halogenated fluoresceins[J]. Journal of Organic Chemistry, 2003,68(21):8264-8267.
    38. (a)Cohn G.,Chem.Ber.,1891,24:2064. (b)Cohn G., J. Prakt.Chem.,1893,48:384-410.
    39. Pope F. G. Fluorone derivatives.Ⅱ.Resorcinolbenzein[J]. Journal of the Chemical Society,Transactions,1914,105,251-260.
    40. Lytle M. H., Carter T. G., Cook R. M. Improved synthetic procedures for 4,7,2',7'- tetrachloro-and 4',5'- dichloro-2',7'-dimethoxy-5(and 6)-carboxyfluoresceins[J]. Organic Process Research & Development, 2001, 5(1):45-49.
    41. Sen R. N., Sinha N. N. Condensations of aldehydes with resorcinol and some other aromatic hydroxy compounds[J].Journal of the American Chemical Society,1923,45:2984-2996.
    42. Chakravarti G.C.Condensation of benzoic acid and substituted benzoic acids with resacetophenone[J]. Journal of the American Chemical Society,1924,46:682-685.
    43. Mukerji D. N. Vat dyes of the azo series[J]. Journal of the Chemical Society, Transactions, 1922,121,2879-2882.
    44. James P. B., Aaron M. K., David L., et al. Free-Radical-5-exo-Trig Cyclization of Chiral 3-Silylhepta-1,6-dienes: Concise Approach to the A-B-C Ring Core of Hexacyclinic Acid[J]. Journal of Organic Chemistry,2005, 70(20): 7985-7995.
    45. Motram L. F., Boonyaratanakalin S., Kovel R. E., et al. The Pennsylvania Green fluorophore: A hybrid of Oregon Green and Tokyo Green for the construction of hydrophobic and pH-insensitive molecular probes[M]. Abstracts of Papers, 232nd ACS National Meeting, San Francisco, CA, United States, 2006, Sept.10-14.
    46. Chen C. A., Yeh R. H., Lawrence D. S. Design and Synthesis of a Fluorescent Reporter of Protein Kinase Activity[J]. Journal of the American Chemical Society, 2002, 124(15): 3840-3841.
    47. Yang Y. J., Escobedo J.O.,Wong A., et al. A convenient preparation of xanthene dyes[J]. The Journal of organic chemistry, 2005, 70(17): 6907-6912.
    48. Clark M. A., Hilderbrand S. A., Lippard S. J. Synthesis of fluorescein derivatives containing metal-coordinating heterocyclesfJ]. Tetrahedron Letters, 2004,45(38):7129-7131.
    49. 刘恺,邬旭然,郑素华.基于全反射原理的X荧光分析技术及其应用研究[J].光谱学与光谱分 析,1999,3.
    50. Hiraoka Y.,Shimi T.,Haraguchi T.活细胞多光谱成像荧光显微术[J].细胞结构功能,2002,27(5):367-374.
    1. Ismail F. M. D. Important fluorinated drugs in experimental and clinical use[J]. Journal of Fluorine Chemistry, 2002, 118(1-2): 27-33.
    2. Michel D., Schlosser M. Odor-structure relationships using fluorine as a probe[J]. Tetrahedron, 2000, 56(25): 4253-4260.
    3. Feltus A., Hentz N., Daunert G. S. Post-capillary reaction detection in capillary electrophoresis based on the streptavidin-biotin interaction. Optimization and application to single cell analysis[J]. Journal of Chromatography, A , 2001, 918(2): 318-392.
    4. Roth M. Fluorescence reaction for amino acids[J]. Analytical Chemistry, 1971,43(7): 880-882.
    5. Shaner L. M., Brown P. R. Single cell analysis using capillary electrophoresis[J]. Journal of Liquid Chromatography & Related Technologies, 2000,23(7): 975-997.
    6. Adamczyk M.. Grote J. Synthesis of probes with broad pH range fluorescence[J]. Bioorganic & Medicinal Chemistry Letters, 2003, 13(14): 2327-2330.
    7. Su J. H., Tian H. Novel trichromophoric rhodamine dyes and their fluorescence properties[J]. Dyes and Pigments, 1996, 31(1): 69-72.
    8. Liu J. X., Diwu Z. J. Rational design and synthesis of a novel class of highly fluorescent rhodamine dyes that have strong absorption at long wavelengths[J]. Tetrahedron Letters, 2003, 44(23): 4355-4359.
    9. Groden D. L., Guan Z., Stokes B. T. Determination of Fura-2 dissociation constants following adjustment of the apparent Ca-EGTA association constant for temperature and ionic strength[J]. Cell Calcium, 1991, 12:279-287.
    10. Neher E. The Use of Fura-2 for Estimating Ca Buffers and Ca Fluxes[J]. Neuropharmacology, 1995, 34: 1423-1442.
    11. De Silva A. P., Hu Q. N., Gunnlauggson T., et al. Signaling recognition events with fluorescent sensors and switches[J]. Chemical Reviews (Washington, D. C.) 1997, 97(5): 1515-1566.
    12. Miura T., Urano Y., Tanaka K., et al. Rational Design Principle for Modulating Fluorescence Properties of Fluorescein-Based Probes by Photoinduced Electron Transfer[J]. Journal of the American Chemical Society, 2003,125(28): 8666-8671.
    13. Hovius R., Vallotton P., Woland T., et al. Fluorescence techniques: shedding light on ligand-receptor interactions[J]. Trends in pharmacological sciences, 2000,21(7): 266-273.
    14. Allen P. Z., Pazur J. H. Interaction of a streptococcal cell wall tetraheteroglycan and Salmonella telaviv lipopolysaccharide with polymeric McPC 870 and MOPC 384 mouse IgA myeloma proteins[J]. Molecular Immunology, 1984, 21(11): 1131-41.
    15. Becke A. D. Density-functional thermochemistry. III. The role of exact exchange[J]. Journal of Chemical Physics, 1993, 98(7): 5648-5652.
    16. Lee C, Yang W., Parr R.G Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density[J]. Physical Review B: Condensed Matter and Materials Physics,1988, 37(2): 785-789.
    1. Neher E. The Use of Fura-2 for Estimating Ca Buffers and Ca Fluxes[J]. Neuropharmacology, 1995,34: 1423-1442.
    2. Adamczyk M., Grote J. Synthesis of probes with broad pH range fluorescence[J]. Bioorganic & Medicinal Chemistry Letters, 2003,13(14): 2327-2330.
    3. Su J. H., Tian H. Novel trichromophoric rhodamine dyes and their fluorescence properties[J]. Dyes and Pigments, 1996,31(1): 69-72.
    4. Shaner L. M., Brown P. R. Single cell analysis using capillary electrophoresis[J]. Journal of Liquid Chromatography & Related Technologies,2000, 23(7): 975-997.
    5. Liu J. X., Diwu Z. J. Rational design and synthesis of a novel class of highly fluorescent rhodamine dyes that have strong absorption at long wavelengths[J]. Tetrahedron Letters, 2003, 44(23):4355-4359.
    6. Feltus A., Hentz N., Daunert G. S. Post-capillary reaction detection in capillary electrophoresis based on the streptavidin-biotin interaction. Optimization and application to single cell analysis[J]. Journal of Chromatography, A , 2001, 918(2):318-392.
    7. Roth M. Fluorescence reaction for amino acids[J]. Analytical Chemistry, 1971,43(7): 880-882.
    8. Groden D. L., Guan Z., Stokes B. T. Determination of Fura-2 dissociation constants following adjustment of the apparent Ca-EGTA association constant for temperature and ionic strength[J]. Cell Calcium, 1991, 12: 279-287.
    9. Tsien R. Y. New calcium indicators and buffers with high selectivity against magnesium and protons:design, synthesis, and properties of prototype structures[J]. Biochemistry, 1985, 19(11):2396-2404.
    10. Masashi I., Risa K., Motonori H. Endothelials Ca~(2+)waves preferentially originate at specific loci in caveolin-rich cell edges[J]. Cell Biology, 1998, 95: 5009-5014.
    11. Shuji U., Masao M., Hirokazu I. Critical Role of c-Kit Tyrosine Residues 567 and 719 in Stem Cell Factor-induced Chemotaxis:Contribution of Src Family Kinase and PI3-kinase on Calcium Mobilization and Cell Migration[J]. Immunobiology, 2002, 99: 3342-3349.
    12. 白海鑫,杨成,杨秀荣.牛血清白蛋白与Indo-1相互作用的荧光光谱法研究[J].高等学校化学学报,2007,28(2):227-233.
    13. Tsien R. Y., Pozzan T., Rink T. J. Calcium homeostasis in intact lymphocytes: cytoplasmic free calcium monitored with a new intracellularly trapped fluorescent indicator[J]. Journal of Cell Biology, 1982,94:325-334.
    14. Takahashi A., Camacho P., Lechleiter J. D., et al.Measurement of Intracellular Calcium[J].Physiological Reviews, 1999, 79: 1089-1125.
    15. Tsien R. Y. Fluorescent probes of cell signaling[J]. Annual review of neuroscience, 1989, 12:227-234.
    16. Gilroy S., Hughes W. A., Trewavas A. J. A comparison between quin-2 and aquorin as indicators of cytoplasmic calcium levels in higher plant cell protoplasts[J]. Plant Physiology, 1989,90: 482-487.
    17. Szmaeinski H., Gryezynski I., Lakowicz J. R. Calcium-dependent fluorescence lifetimes of indo-1 for one- and two-photon excitation of fluorescence[J]. Journal of Photochemistry and Photobiology,1993, 58: 341-345.
    18. Goligorsky M, Hruska K.,Cofrus G.,et al.Alpha1-adrenergic stimulation and cytoplasmic free calcium concentration in cultured renal proximal tubular cells: Evidence for compartmentalization of quin-2 and fura-2[J]. Journal of Cellular Physiology, 1986, 128(3): 466-474.
    19. Poenie M., Alderton J., Tsien R. Y., et al. Changes of free calcium levels with stages of the cell division cycle[J]. Nature (London), 1985,315:147-149.
    20. Blatter L. A., Wier W. G Intracellular diffusion, binding and compartmentalization of the fluorescent calcium indicators indo-1 and fura-2[J]. Biophysical Journal, 1990, 58: 1491-1499.
    21. Aimers W., Neher E. The Ca signal from fura-2 loaded mast cells depends strongly on the method of dye-loading[J]. FEBS Letters, 1985,192: 13-18.
    22. Xu C, Webb W. W. Measurement of two-photon excitation cross section of molecular fluorophores with data from 690 to 1050nm[J]. Journal of the Optical Society of America, 1996, B13: 481-491.
    23. Connor J. A. Dissecting signals from fura-2 in cytosol, nucleus and other organells in living cells[J].Neuroprotocols,1994,5:25-34.
    24. Sipido K.R.,Callewaert G How to measure intracellular [Ca~(2+)] in single cardiac cells with fura-2 or indo-1[J]. Cardiovascular Research, 1995, 29:717-726.
    25. Poenie M., Alderto J. A., Steinhardt R. A., et al, Calcium rises abruptly and briefly throughout the cell at the onset of anaphase[J]. Science, 1986, 233: 886-889.
    26. Hove M. L.,Bers D. M. Indo-1 binding to protein in permeablized ventricular myocytes alters its speetral and Ca~(2+)-binding properties[J]. Biophysical Journal, 1992,63:89-97.
    27. Grynkiewiez G, Poenie M., Tsien R. Y., et al, A new generation of Ca2+ indicators with greatly improved fluorescence properties[J]. Journal of Biological Chemistry,1985,260: 3440-3450.
    28. Kayakiri H.,Yamasaki N., Mizutani T., et al. Sulfonamide compounds and medicinal use[P].United States Patent 6348474. 2002.
    1. Rasmussen H. Calcium and cAMP as a Synarchic Messenger[M]. New York: John and Sons Inc,1981.
    2. 汪(?)仁.细胞生物学[M].北京:北京师范大学出版社,1999
    3. 林松桥.细胞表面识别与糖蛋白[J].生命的化学,1988,8(3):20-24.
    4. Goldberg J. Structure basis for activation of ARF GTPase: mechanisms of guanine nucleotide exchange and GTP-myristoyl switching[J].Cell, 1998, 95: 237-248.
    5. Ames J. B., Ishima R., Tanaka T., et al.Molecular mechanics of calcium-myristoryl switches[J].Nature, 1997,389:198-202.
    6. Dunphy J. T., Linder M. E. Signaling functions of protein palmitoylation[J]. Biochimica et Biophysica Acta, Molecular and Cell Biology of Lipids, 1998, 1436: 245-261.
    7. Lamb T. D. Gain and kinetics of activation in the G-protein cascade of phototransduction[J].Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(2):566-570.
    8. Mumby S. M., Reversible palmitoylation of signaling proteins[J].Current opinion in cell biology,1997,9(2): 148-154.
    9. Resh M. D. Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins[J].Biochimica et Biophysica Acta, Molecular and Cell Biology of Lipids,1999,1451:1-16.
    10. Sinensky M. Functional aspects of polyisoprenoid protein substituents: roles in protein-protein interaction and trafficking[J]. Biochimica et Biophysica Acta, Molecular and Cell Biology of Lipids,2000,1529: 203-209.
    11. 尤复翰,陆佩洪.细胞的通讯与细胞的防御[M].南京:江苏科学出版社,1982.
    12. Fagotto F, Gumbiner B. M. Cell contact-dependent signaling[J]. Developmental Biology, 1996,180(2): 445-454.
    13. 李亚,吴馥梅.神经递质释放的胞吐过程膜融合的新观点[J].细胞生物学杂志,2000,22(4):181-184.
    14. Bredt D. S., Snyder S. H.. Nitric oxide: a physiologic messenger molecule[J]. Annual review of biochemistry, 1994, 63: 175-195.
    15. Alderton W. K.,Cooper C. E., Knowles R. G Nitric oxide syntheses: structure, function and inhibition[J].Biochemical Journal, 2001, 357(3): 593-615.
    16. Shaul P.W., Anderson R.G.W.Role of plasmalemmal caveolae in signal transduction[J].Physioogicall Reviews, 1998, 9: 745-754.
    17. Berridge M. J., Lipp P.,Bootman M. D. The versatility and universality of calcium signaling[J].Nature Reviews Molecular Cell Biology, 2000, 1(1):11-21.
    18. Meldlesi J. Oscillation, activation, expression[J]. Nature, 1998,392(30): 863-866.
    19. Putney Jr J. W. Calcium signaling: up, down, up, down, whats the point? [J]. Science, 1998, 279(9):191-192.
    20. Gerald Karp. Cell and Molecular Biology: Concepts and Experiment[M].4~(th) ed,John Wiley & Son,Inc.,New York, 2005, 652-656.
    21. Williams D. A., Fay F. S. Intracellular calibration of the fluorescent indicator Fura-2[J].Cell Calcium, 1990, 11:75-83.
    22.李成文.现代免疫化学技术[J].上海科技出版社,1992.
    23.王伯沄,李玉松,黄高异等.病理学技术[M].人民卫生出版社,2000.
    24.刘继红,蔡学永,何其华.细胞骨架的激光共焦研究技术[J].中国医学装备,2005,2(6):49-51.
    25.历俊华,万虹,王忠诚.免疫荧光染色检测不同组织细胞微管蛋白-β的表达[J].首都医科大学学报,2004,25(1):57-59.
    26.鲍岚,焦西英,程西平等.酪氨信号放大间接免疫荧光组织化学方法[J].第四军医大学学报,2001,27(6):570-571.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700