铜离子相关基因CUTA的功能初探暨RLIM对肝癌的抑制作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铜离子是人体所必需的微量元素,在体内发挥重要作用,但是过量铜离子会产生大量反应性氧自由基离子(ROS),造成细胞的氧化性损伤,导致人类各种疾病的发生,肝豆状核变性(Wilson disease)是常见的铜离子代谢缺陷性疾病。但近年来的研究发现铜离子毒性还与阿尔茨海默氏症,动脉粥样硬化等的发生紧密相关。许多与疾病直接相关的蛋白如微管相关蛋白Tau,淀粉样前体蛋白APP,软病毒蛋白Prion都是铜离子结合蛋白,这些蛋白与铜离子的相互作用是导致疾病发生的重要因素之一。因此研究潜在的铜离子相关基因及其功能,将有助于揭示铜在人类疾病中的作用机制。
     人类的CUTA(copper tolerance protein A又名cation tolerance protein A)蛋白是CutA1同源蛋白中的一员,此类同源蛋白多数具有铜离子结合能力,并且大肠杆菌中的CutA1蛋白可能参与了细菌对铜的容忍性。CUTA蛋白与大肠杆菌CutA1蛋白的同源性提示我们CUTA的功能可能与铜离子平衡相关,本文对人类CUTA基因的表达,蛋白性质,以及与铜离子的相关性等方面进行了初步的探讨。我们发现CUTA在人类的18种组织中广泛表达,在肝脏和前列腺中有较高水平的表达。CUTA蛋白集中分布在细胞核的周围,大部分能与线粒体染料共定位,是一种潜在的线粒体蛋白,DSG(disuccinimidvlglutarate)交联试验显示,CUTA蛋白以三聚体的形式存在于真核细胞中。随后,我们对CUTA蛋白与铜离子的相关性进行了深入的探讨,发现CUTA蛋白与铜离子的代谢平衡紧密相关,首先,CUTA蛋白能够结合多种二价金属离子,但它对二价铜离子的结合能力最强;其次,CUTA的表达受铜离子浓度的影响,CUTA蛋白的表达量随细胞外铜离子浓度的增高而增多;最后,CUTA超量表达时,影响了细胞对铜离子毒性的敏感性,使细胞对高浓度铜离子的毒性变得更为敏感,进一步的分析表明CUTA促进了铜离子对细胞增殖的抑制作用,增强了铜离子对细胞凋亡的诱导作用,从而使细胞对铜离子毒性更为敏感。在研究过程中,我们还通过免疫新西兰大白兔的方法制备纯化了CUTA特异性的多克隆抗体,并用此抗体检测了CUTA蛋白在癌症细胞株及肝癌和癌旁组织中的表达。发现CUTA蛋白的表达量与肝癌的发生无明显的相关性,但是在不同的肝癌样本中,CUTA蛋白有不同的上下调表达,这提示我们CUTA可作为肝癌分子分型的候选基因。
     此外,本文还对本实验室筛选到的一个肝癌中显著下调表达的基因-泛素化连接酶RLIM,在肝癌发生发展中的作用展开了研究,我们依次检验了RLIM的表达对肝癌细胞的克隆形成率,增殖速率和移植瘤生长速度的影响。结果表明:1.RLIM的表达显著降低了肝癌细胞的独立生存能力,抑制了肝癌细胞的克隆形成率,RLIM转染的SK-Hep1细胞的克隆形成率只有对照组克隆形成率的25%;2.RLIM的表达显著抑制了肝癌细胞的增殖速度,比较RLIM稳定转染的SK-Hep1细胞株和对照细胞株的增殖曲线,发现RLIM稳定转染的SK-Hep1细胞的增殖速度显著慢于对照细胞的增殖速度。3.RLIM的表达抑制了肝癌细胞移植瘤的生长速度,将RLIM稳定转染的细胞和对照细胞分别接种于裸鼠,检测肝癌细胞移植瘤的生长速度,发现RLIM稳定转染的细胞株的移植瘤,其生长速度显著慢于对照组细胞的移植瘤,并且最终形成的肿瘤的大小和重量均小于对照组。这些结果暗示了RLIM是一个新的潜在的肝癌抑制基因。
     综上所述,本文通过对CUTA的组织表达谱,蛋白的亚细胞定位和多聚体构象的分析检测,发现并初步证明了CUTA是一个广谱表达的线粒体蛋白,具有三聚体构象,在对CUTA的功能研究中,我们发现CUTA的功能与铜离子紧密相关,CUTA蛋白能够结合铜离子,CUTA的表达受铜离子浓度的影响,CUTA超量表达能够影响细胞对铜离子毒性的敏感性,因此,我们推测CUTA是人体内的一个铜离子相关蛋白,其功能可能与铜离子对细胞的毒性作用有关。此外,对泛素化连接酶RLIM在肝癌发生发展中的作用的研究显示,RLIM的表达不仅对肝癌细胞的克隆形成和增殖速度具有抑制作用,而且对肝癌细胞移植瘤的生长具有抑制作用,因此我们推测RLIM是一个潜在的肝癌抑制基因。
Copper,an essential trace element,plays an important role in biological system.However, excessive copper is toxic and contributes to production of excessive reactive oxygen species (ROS),which results in the oxidant damages in the cell and genesis of human diseases. Mounting evidence is showing the relativity of copper with many human diseases,such as Alzheimer's disease,atherosclerosis,Creutzfeldt-Jakob(CDJ) disease and so on.Those proteins directly involved in the diseases genesis,such as the microtube related protein Tau, amyloid precursor protein APP and Prion proteins,can bind copper,and the interaction between those proteins and copper plays an important role in diseases.So study on the potential proteins associated with copper will be helpful to reveal the role copper plays in diseases.
     Human CUTA(copper tolerance A also named as cation tolerance protein A) is a homologous gene of CutA1 in Escherichia coli.Most CutA1 homologous protein have the capability of copper binding,and the CutA1 protein in Escherichia coli is involved in copper tolerance.So the sequence characterization of CUTA protein indicated that CUTA is a potential protein associated with copper.However,the function of CUTA gene is still unknown.In order to reveal the potential function of CUTA gene,we made a primary study on the tissue expression pattern of CUTA gene,the characterization of CUTA protein,and its relativity with copper.It was found that CUTA was constitutively expressed in human tissues and expressed with a high level in liver and prostate.The results also showed that CUTA protein concentrated in the perinuclear region,where it co-localized in a large part,but not completely,with mitochondria. CUTA is a potential mitochondrial protein with the structure of trimers proved by cross-linking with DSG(disuccinimidyl glutarate).In the study on the association of CUTA protein with copper,we found that CUTA protein has the strongest binding ability with Cu(Ⅱ) in the detected metals.In addition,the expression of CUTA protein was increased when the cells were exposed to high concentration of copper.Furthermore,CUTA could affect the sensitivity of the cells to the copper toxicity.Over-expression of CUTA seemed to sensitize the cells to copper toxicity.All of the studies indicated the strong association between CUTA and copper.In the study,we raised and purified CUTA specific antibody by immunizing the New Zealand rabbit.The native CUTA protein could be detected in the different cancer cell lines.The expression of CUTA protein detected in the 21 pares of liver cancer samples showed that there was no significant association between CUTA and liver cancer.However, CUTA was significantly up or down regulated in some.liver cancer samples.So it seemed that CUTA could be used as a candidate gene for typing the liver cancer.
     In addition,in an effort to identify HCC relevant genes,we used differential display and found RLIM(RING finger LIM domain-binding protein) was significantly down-regulated in HCC.RLIM is an E3 ubiquitin ligase with a RING finger.To investigate the role RLIM plays in HCC,we checked the effect of RLIM gene expression on colony formation,cell. proliferation and tumor growth.The results showed that:1.RLIM over expression in SK-Hepl significantly decreased the efficiency of colony formation by 75%.2.RLIM expression in SK-Hepl(stably tansfeeted with RLIM) significantly inhibited the cell proliferation.3.RLIM over-expression inhibited the tumor growth.This was done by replanting the stably transfeeted cells in nude mice,and then measuring the growth rate,size and weight of the tumor originated from the cancer cells.
     In general,we found and primarily proved that CUTA is a mitochondrial protein widely expressed in tissues,forms trimer in cell lysate.We also found that CUTA could bind copper and change the sensitivity of the cells to the copper toxicity,and the expression of CUTA was affected by copper concentration.So we considered the function of CUTA was associated with copper and CUTA maybe play a role in copper toxicity.We constructed two powerful tools for the research in CUTA gene.One is the CUTA stably transfected HeLa cells and the other is the CUTA specific antibody.In addition,we investigated the role of RLIM in HCC because RLIM was found to be significantly down-regulated in HCC.We found that over-expression of RLIM in SK-Hepl cells not only inhibited the colony formation and cell proliferation,but also inhibited the growth of tumor in nude mice.So it was considered that RLIM is a new potential tumor suppressor gene in HCC.
引文
1.Modol,J.,et al.,Hospital-acquired legionnaires disease in a university hospital:impact of the copper-silver ionization system.Clin Infect Dis,2007.44(2):p.263-5.
    2.Bremner,I.,Manifestations of copper excess.Am J Clin Nutr,1998.67(5 Suppl):p.1069S-1073S.
    3.Bremner,I.,Nutritional and physiological significance of metallothionein.Experientia Suppl,1987.52:p.81-107.
    4.Sternlieb,I.,Copper and the liver Gastroenterology,1980.78(6):p.1615-28.
    5.Gunther,M.R.,et al.,Hydroxyl radical formation from cuprous ion and hydrogen peroxide:a spin-trapping study.Arch Bioehem Biophys,1995.316(1):p.515-22.
    6.White,A.R.,et al.,The Alzheimer's disease amyloid precursor protein modulates copper-induced toxicity and oxidative stress in primary neuronal cultures.J Neurosci,1999.19(21):p.9170-9.
    7.Haigh,C.L.and D.R.Brown,Prior protein reduces both oxidative and non-oxidative copper toxicity.J Neurochem,2006.98(3):p.677-89.
    8.Stadler,N.,R.A.Lindner,and M.J.Davies,Direct detection and quantification of transition metal ions in human atherosclerotic plaques:evidence for the presence of elevated levels of iron and copper Arterioscler Thromb Vase Biol,2004.24(5):p.949-54.
    9.Wiedau-Pazos,M.,et al.,Altered reactivity of superoxide dismutase in familial amyotrophic lateral sclerosis.Science,1996.271(5248):p.515-8.
    10.Yim,M.B.,et al.,A gain-of-function of an amyotrophic lateral sclerosis-associated Cu,Zn-superoxide dismutase mutant:An enhancement of free radical formation due to a decrease in Kin for hydrogen peroxide.Proc Natl Acad Sci U S A,1996.93(12):p.5709-14.
    11.Fong,S.T.,J.Camakaris,and B.T.Lee,Molecular genetics of a chromosomal locus involved in copper tolerance in Escherichia coli K-12.Mol Microbiol,1995.15(6):p.1127-37.
    12.Arnesano,F.,et al.,The evolutionarily conserved trimeric structure of CutAl proteins suggests a role in signal transduction.J Biol Chem,2003.278(46):p.45999-6006.
    13.Tanaka,Y.,et al.,Structural implications for heavy metal-induced reversible assembly and aggregation of a protein:the case of Pyrococcus horikoshii CutA.FEBS Lett, 2004.556(1-3):p.167-74.
    14.Burkhead,J.L.,et al.,The Arabidopsis thaliana CUTA gene encodes an evolutionarily conserved copper binding chloroplast protein.Plant J,2003.34(6):p.856-67.
    15.Perrier,A.L.,et al.,Two distinct proteins are associated with tetrameric acetylcholinesterase on the cell surface.J Biol Chem,2000.275(44):p.34260-5.
    16.Noureddine,H.,et al.,Assembly of acetylcholinesterase tetramers by peptidic motifs from the proline-rich membrane anchor,PRIMA:competition between degradation and secretion pathways of heteromeric complexes.J Biol Chem,2007.282(6):p.3487-97.
    17.Cheah,D.M.,et al.,Heterozygous tx mice have an increased sensitivity to copper loading:implications for Wilson's disease carriers.Biometals,2007.20(5):p.751-7.
    18.Xu,Y.,et al.,GlnK,a PⅡ-homologue:structure reveals ATP binding site and indicates how the T-loops may be involved in molecular recognition.J Mol Biol,1998.282(1):p.149-65.
    19.Ninfa,A.J.and M.R.Atkinson,PⅡ signal transduction proteins.Trends Microbiol,2000.8(4):p.172-9.
    20.Arcondeguy,T.,R.Jack,and M.Merrick,P(Ⅱ) signal transduction proteins,pivotal players in microbial nitrogen control Microbiol Mol Biol Rev,2001.65(1):p.80-105.
    21.Brandenberger,R.,et al.,Transcriptome characterization elucidates signaling networks that control human ES cell growth and differentiation.Nat Biotechnol,2004.22(6):p.707-16.
    22.Arraztoa,J.A.,et al.,Identification of genes expressed in primate primordial oocytes.Hum Reprod,2005.20(2):p.476-83.
    23.Naylor,M.J.,et al.,Transcriptional changes underlying the secretory activation phase of mammary gland development.Mol Endocrinol,2005.19(7):p.1868-83.
    24.Nishimura,T.,et al.,Cellular prion protein regulates intracellular hydrogen peroxide level and prevents copper-induced apoptosis.Biochem Biophys Res Commun,2004.323(1):p.218-22.
    25.Emanuelsson,O.,et al.,Predicting subcellular localization of proteins based on their N-terminal amino acid sequence.J Mol Biol,2000.300(4):p.1005-16.
    26.Kitada,S.,et al.,Determination of the cleavage site of the presequence by mitochondrial processing peptidase on the substrate binding scaffold and the multiple subsites inside a molecular cavity.J Biol Chem,2003.278(3):p.1879-85.
    27.Nakai,K.and M.Kanehisa,A knowledge base for predicting protein localization sites
    in eukaryotic cells.Genomics,1992.14(4):p.897-911.
    28.Paul Horton,K.-J.P.,Takeshi Obayashi,Protein subcellular localization prediction with WoLF PSORT 2006.:p.39-48.
    29.Bannai,H.,et al.,Extensive feature detection of N-terminal protein sorting signals.Bioinformatics,2002.18(2):p.298-305.
    30.Paul Horton,K.N.,Better Prediction of Protein Cellular Localization Sites with the k Nearest Neighbors Classier.Proc.5th Intelligent Systems for Molecular Biology,,1997:p.147-152,.
    31.Tanaka,Y.,et al.,Structural evidence for guanidine-protein side chain interactions:crystal structure of CutA from Pyrococcus horikoshii in 3 M guanidine hydrochloride.Biochem Biophys Res Commun,2004.323(1):p.185-91.
    32.Chen,J.,et al.,MMDB:Entrez's 3D-structure database.Nucleic Acids Res,2003.31(1):p.474-7.
    33.Xia,Q.,et al.,Quantitative proteomics of the archaeon Methanococcus maripaludis validated by microarray analysis and real time PCR.Mol Cell Proteomics,2006.5(5):p.868-81.
    34.Carlsson,J.,H.Drevin,and R.Axen,Protein thiolation and reversible protein-protein conjugation.N-Succinimidyl 3-(2-pyridyldithio)propionate,a new heterobifunctional reagent.Biochem J,1978.173(3):p.723-37.
    35.Laemmli,U.K.,Cleavage of structural proteins during the assembly of the head of bacteriophage T4.Nature,1970.227(5259):p.680-5.
    36.Gaetke,L.M.and C.K.Chow,Copper toxicity,oxidative stress,and antioxidant nutrients.Toxicology,2003.189(1-2):p.147-63.
    37.Petris,M.J.and J.F.Mercer,The Menkesprotein(ATP7A;MNK) cycles via theplasma membrane both in basal and elevated extracellular copper using a C-terminal di-leucine endocytic signal Hum Mol Genet,1999.8(11):p.2107-15.
    38.Katano,K.,et al.,The copper export pump ATP7B modulates the cellular pharmacology of carboplatin in ovarian carcinoma cells.Mol Pharmacol,2003.64(2):p.466-73.
    39.Nayak,K.K.,et al.,Antitumour activities of copper-ATP complex on transplantable murine lymphoma.Pharmacology,1990.41(6):p.350-6.
    40.Alemon-Medina,R.,et al.,Induction of oxidative damage by copper-based antineoplastic drugs(Casiopeinas).Cancer Chemother Pharmacol,2007.60(2):p.219-28.
    41.Tsang,S.Y.,et al.,Research communication copper-1,10-phenanthroline induces internucleosomal DNA fragmentation in HepG2 cells,resulting from direct oxidation by the hydroxyl radical.Biochem J,1996.317(Pt 1):p.13-6.
    42.Zhai,Q.,et al.,Copper induces apoptosis in BA/F3beta cells:Bax,reactive oxygen species,and NFkappaB are involved,J Cell Physiol,2000.184(2):p.161-70.
    43.Strand,S.,et al.,Hepatic failure and liver cell damage in acute Wilson's disease involve CD95(APO-1/Fas) mediated apoptosis.Nat Med,1998.4(5):p.588-93.
    44.Tripodis,N.,et al.,Construction of a high-resolution 2.5-Mb transcript map of the human 6p21.2-6p21.3 region immediately centromeric of the major histocompatibility complex.Genome Res,2000.10(4):p.454-72.
    45.Johansson,M.,et al.,Recombinations of chromosomal bands 6p21 and 14q24characterise pulmonary hamartomas.Br J Cancer,1993.67(6):p.1236-41.
    46.Williams,A.J.,et al.,HMGI(Y) expression in human uterine leiomyomata.Involvement of another high-mobility group architectural factor in a benign neoplasm.Am J Pathol,1997.150(3):p.911-8.
    47.Xiao,S.,et al.,HMGI(Y) activation by chromosome 6p21 rearrangements in multilineage mesenchymal cells from pulmonary hamartoma.Am J Pathol,1997.150(3):p.901-10.
    48.Friedmann,M.,et al.,Organization,inducible-expression and chromosome localization of the human HMG.-I(Y) nonhistone protein gene.Nucleic Acids Res,1993.21(18):p.4259-67.
    49.el-Deiry,W.S.,et al.,WAF1,a potential mediator of p53 tumor suppression.Cell,1993.75(4):p.817-25.
    50.Harper,J.W.,et al.,The p21 Cdk-interacting protein Cipl is a potent inhibitor of G1cyclin-dependent kinases.Cell,1993.75(4):p.805-16.
    51.Cuypers,H.T.,et al.,Assignment of the human homologue of Pim-1,a mouse gene implicated in leukemogenesis,to the pter-q12 region of chromosome 6.Hum Genet,1986.72(3):p.262-5.
    52.Sun,Q.,et al.,Defining the mammalian CArGome.Genome Res,2006.16(2):p.197-207.
    53.Beers,J.,D.M.Glerum,and A.Tzagoloff,Purification,characterization,and localization of yeast Cox17p,a mitochondrial copper shuttle.J Biol Chem,1997.272(52):p.33191-6.
    54.Heaton,D.N.,et al.,The mitochondrial copper metallochaperone Cox17 exists as an oligomeric,polycopper complex.Biochemistry,2001.40(3):p.743-51.
    55.Guo,B.,A.Godzik,and J.C.Reed,Bcl-G,a novel pro-apoptotic member of the Bcl-2family.J Biol Chem,2001.276(4):p.2780-5.
    56.Werner,A.B.,et al.,Bcl-2 family member Bfl-1/Al sequesters truncated bid to inhibit is collaboration with pro-apoptotic Bak or Bax.J Biol Chem,2002.277(25):p.22781-8.
    57.Hsu,Y.T.,K.G.Wolter,and R.J.Youle,Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis.Proc Natl Acad Sci U S A,1997.94(8):p.3668-72.
    58.Wolter,K.G.,et al.,Movement of Bax from the cytosol to mitochondria during apoptosis.J Cell Biol,1997.139(5):p.1281-92.
    59.Gross,A.,et al.,Enforced dimerization of BAX results in its translocation,mitochondrial dysfunction and apoptosis.Embo J,1998.17(14):p.3878-85.
    60.Marzo,I.,et al.,Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis.Science,1998.281(5385):p.2027-31.
    61.Smith,D.P.,et al.,Copper-mediated amyloid-beta toxicity is associated with an intermolecular histidine bridge.J Biol Chem,2006.281(22):p.15145-54.
    62.Thompsett,A.R.,et al.,High affinity binding between copper and full-length prion protein identified by two different techniques.J Biol Chem,2005.280(52):p.42750-8.
    63.Puig,S.and D.J.Thiele,Molecular mechanisms of copper uptake and distribution.Curr Opin Chem Biol,2002.6(2):p.171-80.
    64.Rees,E.M.,J.Lee,and D.J.Thiele,Mobilization of intracellular copper stores by the ctr2 vacuolar copper transporter,J Biol Chem,2004.279(52):p.54221-9.
    65.Atwood,C.S.,et al.,Dramatic aggregation of Alzheimer abeta by Cu(Ⅱ) is induced by conditions representing physiological acidosis.J Biol Chem,1998.273(21):p.12817-26.
    66.Xie,F.,et al.,Assessment of the toxicity of mixtures of copper,9,10-phenanthrenequinone,and phenanthrene to Daphnia magna:evidence for a reactive oxygen mechanism.Environ Toxicol Chem,2006.25(2):p.613-22.
    67.Bellingham,S.A.,et al.,Copper depletion down-regulates expression of the Alzheimer's disease amyloid-beta precursor protein gene.J Biol Chem,2004.279(19):p.20378-86.
    68.Ishida,S.,et al.,Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctrl in yeast and mammals.Proc Natl Acad Sci U'S A,2002.99(22):p.14298-302.
    69.Chen,C.,A.K.Seth,and A.E.Aplin,Genetic and expression aberrations of E3ubiquitin ligases in human breast cancer Mol Cancer Res,2006.4(10):p.695-707.
    1.Johnson,R.C.,Hepatocellular carcinoma.Hepatogastroenterology,1997.44(13):p.307-12.
    2.Sherman,M.,Hepatocellular carcinoma.Gastroenterologist,1995.3(1):p.55-66..
    3.Duvoux,C.,[Epidemiology and diagnosis of hepatocellular carcinomas in cirrhosis].Ann Chir,1998.52(6):p.511-7.
    4.Parkin,D.M.,et al.,Global cancer statistics,2002.CA Cancer J Clin,2005.55(2):p.74-108.
    5.Cartwright,C.A.,A.I.Meisler,and W.Eckhart,Activation of the pp60c-src protein kinase is an early event in colonic carcinogenesis.Proc Natl Acad Sci U S A,1990.87(2):p.558-62.
    6.Fuchs,S.Y.,V.S.Spiegelman,and K.G.Kumar,The many faces of beta-TγCP E3ubiquitin ligases:reflections in the magic mirror of cancer.Oncogene,2004.23(11):p.2028-36.
    7.Fearon,E.R.,et al.,Identification of a chromosome 18q gene that is altered in colorectal cancers.Science,1990.247(4938):p.49-56.
    8.Hsu,I.C.,et al.,Mutational hotspot in the p53 gene in human hepatocellular carcinomas.Nature,1991.350(6317):p.427-8.
    9.Bishop,J.M.,Molecular themes in oncogenesis.Cell,1991.64(2):p.235-48.
    10.Mulcahy,L.S.,M.R.Smith,and D.W.Stacey,Requirement for ras proto-oncogene function during serum-stimulated growth of NIH 3T3 cells.Nature,1985.313(5999):p.241-3.
    11.Boumber,Y.A.,et al.,RIL,a LIM gene on 5q31,is silenced by methylation in cancer and sensitizes cancer cells to apoptosis.Cancer Res,2007.67(5):p.1997-2005.
    12.Iyer,V.R.,et al.,The transcriptional program in the response of human fibroblasts to serum.Science,1999.283(5398):p.83-7.
    13.Golub,T.R.,et al.,Molecular classification of cancer:class discovery and class prediction by gene expression monitoring.Science,1999.286(5439):p.531-7.
    14.van Saase,J.,et al.,Changing pattern of drug use in relation to disease duration of rheumatoid arthritis.J Rheumatol,1987.14(3):p.476-8.
    15.Pasquinelli,C.,K.Bhavani,and F.V.Chisari,Multiple oncogenes and tumor suppressor genes are structurally and functionally intact during hepatocarcinogenesis in hepatitis B virus transgenic mice.Cancer Res,1992.52(10):p.2823-9.
    16.Ozturk,M.,p53 mutation in hepatocellular carcinoma after aflatoxin exposure.Lancet,1991.338(8779):p.1356-9.
    17.Murakami,Y.,K.Hayashi,and T.Sekiya,Detection of aberrations of the p53 alleles and the gene transcript in human tumor cell lines by single-strand conformation polymorphism analysis.Cancer Res,1991.51(13):p.3356-61.
    18.Yang,N.,et al.,Cofilin phosphorylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization.Nature,1998.393(6687):p.809-12.
    19.Prat,M.,et al.,The receptor encoded by the human c-MET oncogene is expressed in hepatocytes,epithelial cells and solid tumors.Int J Cancer,1991.49(3):p.323-8.
    20.Fausto,N.and J.E.Mead,Regulation of liver growth:protooncogenes and transforming growth factors.Lab Invest,1989.60(1):p.4-13.
    21.Bach,I.,et al.,RLIM inhibits functional activity of LIM homeodomain transcription factors via recruitment of the histone deacetylase complex.Nat Genet,1999.22(4):p.394-9.
    22.Cariani,E.,et al.,Differential expression of insulin-like growth factor Ⅱ mRNA in human primary liver cancers,benign liver tumors,and liver cirrhosis.Cancer Res,1988.48(23):p.6844-9.
    23.Jackson,P.K.,et al.,The lore of the RINGs:substrate recognition,and catalysis by ubiquitin ligases.Trends Cell Biol,2000.10(10):p.429-39.
    24.Joazeiro,C.A.and A.M.Weissman,RING finger proteins:mediators of ubiquitin ligase activity.Cell,2000.102(5):p.549-52.
    25.Bach,I.,The LIM domain:regulation by association.Mech Dev,2000.91(1-2):p.5-17.
    26.Hobert,O.and H.Westphal,Functions of LIM-homeobox genes.Trends Genet,2000.16(2):p.75-83.
    27.Shirasaki,R.and S.L.Pfaff,Transcriptional codes and the control of neuronal identity.Annu Rev Neurosci,2002.25:p.251-81.
    28.Ostendorff,H.P.,et al.,Ubiquitination-dependent cofactor exchange on LIM homeodomain transcription factors.Nature,2002.416(6876):p.99-103.
    29.Hiratani,I.,et al.,Selective degradation of excess Ldb1 by Rnf12/RLIM confers proper Ldb1 expression levels and Xlim-1/Ldb1 stoichiometry in Xenopus organizer functions.Development,2003.130(17):p.4161-75.
    30.Agulnick,A.D.,et al.,Interactions of the LIM-domain-binding factor Ldb1 with LIM homeodomain proteins.Nature,1996.384(6606):p.270-2.
    31.Morcillo,P.,et al.,Chip,a widely expressed chromosomal protein required for segmentation and activity of a remote wing margin enhancer in Drosophila.Genes Dev,1997.11(20):p.2729-40.
    32.van Meyel,D.J.,et al.,Chip and apterous physically interact to form a functional complex during Drosophila development.Mol Cell,1999.4(2):p.259-65.
    33.Becker,T.,et al.,Multiple functions of LIM domain-binding CLIM/NLI/Ldb cofactors during zebrafish development.Mech Dev,2002.117(1-2):p.75-85.
    34.Thaler,J.P.,et al.,LIM factor Lhx3 contributes to the specification of motor neuron and interneuron identity through cell-type-specific protein-protein interactions.Cell,2002.110(2):p.237-49.
    35.Matthews,J.M.and J.E.Visvader,LIM-domain-binding protein 1:a multifunctional cofactor that interacts with diverse proteins.EMBO Rep,2003.4(12):p.1132-7.
    36.Tursun,B.,et al.,The ubiquitin ligase Rnf6 regulates local LIM kinase 1 levels in axonal growth cones.Genes Dev,2005.19(19):p.2307-19.
    37.Arber,S.,et al.,Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase.Nature,1998.393(6687):p.805-9.
    38.Hershko,A.and A.Ciechanover,The ubiquitin system.Annu Rev Biochem,1998.67:p.425-79.
    39.Glickman,M.H.and A.Ciechanover,The ubiquitin-proteasome proteolytic pathway:destruction for the sake of construction.Physiol Rev,2002.82(2):p.373-428.
    40.Nakayama,K.I.and K.Nakayama,Ubiquitin ligases:cell-cycle control and cancer.Nat Rev Cancer,2006.6(5):p.369-81.
    41.Sun,Y.,Targeting E3 ubiquitin ligases for cancer therapy.Cancer Biol Ther,2003.2(6):p.623-9.
    42.Sun,Y.,E3 ubiquitin ligases as cancer targets and biomarkers.Neoplasia,2006.8(8):p.645-54.
    43.Ito,Y.,et al.,c-Fos degradation by the ubiquitin-proteasome proteolytic pathway in osteoclast progenitors.Bone,2005.37(6):p.842-9.
    44.Ciechanover,A.and K.Iwai,The ubiquitin system:from basic mechanisms to the patient bed.IUBMB Life,2004.56(4):p.193-201.
    45.Bagheri-Yarmand,R.,et al.,LIM kinase 1 increases tumor metastasis of human breast cancer cells via regulation of the urokinase-type plasminogen activator system.Int J Cancer,2006.118(11):p.2703-10.
    46.Nishimura,Y.,et al.,LIM kinase 1:evidence for a role in the regulation of intracellular vesicle trafficking of lysosomes and endosomes in human breast cancer cells.Eur J Cell Biol,2004.83(7):p.369-80.
    47.Davila,M.,et al.,LIM kinase 1 is essential for the invasive growth of prostate epithelial cells:implications in prostate cancer.J Biol Chem,2003.278(38):p.36868-75.
    48.Yoshioka,K.,et al.,A role for LIM kinase in cancer invasion.Proc Natl Acad Sci U S A,2003.100(12):p.7247-52.
    1.Wachnik,A.,[The physiological role of copper and its importance in nutrition.Ⅱ.Participation of copper in the synthesis of enzymes and factors regulating the status of coppersupply in the body].Rocz Panstw Zakl Hig,1987.38(6):p.491-7.
    2.Finzi,G.,et al.,[Importance of trace elements in human nutrition.Copper and chromium].Minerva Dietol Gastroenterol,1978.24(4):p.343-7.
    3.Giacomasso,P.P.,[The importance of copper metabolism in human pathology.Personal contribution to the study of blood copper in the normal subject.].Arch Sci Med(Torino),1962.114:p.325-62.
    4.Gollan,J.L.and D.J.Deller,The role of human bile in the absorption of endogenous and exogenous radiocopper.Gut,1969.10(11):p.956.
    5.Voskoboinik,I.and J.Camakaris,Menkes copper-translocating P-type ATPase (ATP7A):biochemical and cell biology properties,and role in Menkes disease.J Bioenerg Biomembr,2002.34(5):p.363-71.
    6.Brewer,G.J.,Copper control as an antiangiogenic anticancer therapy:lessons from treating Wilson's disease.Exp Biol Med(Maywood),2001.226(7):p.665-73.
    7.Varada,K.R.,R.G.Harper,and R.A.Wapnir,Development of copper intestinal absorption in the rat.Biochem Med Metab Biol,1993.50(3):p.277-83.
    8.Gordon,D.T.,A.S.Leinart,and R.J.Cousins,Portal copper transport in rats by albumin.Am J Physiol,1987.252(3 Pt 1):p.E327-33.
    9.Mzhel'skaya,T.I.,Biological functions of ceruloplasmin and their deficiency caused by mutation in genes regulating copper and iron metabolism.Bull Exp Biol Med,2000.130(8):p.719-27.
    10.Roelofsen,H.,et al.,Copper-induced apical trafficking of ATP7B in polarized hepatoma cells provides a mechanism for biliary copper excretion.Gastroenterology,2000.119(3):p.782-93.
    11.Sugawara,N.,et al.,Decreased hepatobiliary secretion of inorganic mercury,its deposition and toxicity in the Eisai hyperbilirubinemic rat with no hepatic canalicular organic anion transporter.Toxicology,1998.126(1):p.23-31.
    12.Soto,M.,M.P.Cajaraville,and I.Marigomez,Tissue and cell distribution of copper,zinc and cadmium in the mussel,Mytilus galloprovincialis,determined by autometallography.Tissue Cell,1996.28(5):p.557-68.
    13.Kressner,M.S.,et al.,Origins of biliary copper Hepatology,1984.4(5):p.867-70.
    14.Dancis,A.,et al.,Molecular characterization of a copper transport protein in S.cerevisiae:an unexpected role for copper in iron transport.Cell,1994.76(2):p.393-402.
    15.Petris,M.J.and J.F.Mercer,The Menkes protein(ATP7A;MNK) cycles via the plasma membrane both in basal and elevated extracellular copper using a C-terminal di-leucine endocytic signal Hum Mol Genet,1999.8(11):p.2107-15.
    16.Puig,S.and D.J.Thiele,Molecular mechanisms of copper uptake and distribution.Curr Opin Chem Biol,2002.6(2):p.171-80.
    17.Huffman,D.L.and T.V.O'Halloran,Function,structure,and mechanism of intracellular copper trafficking proteins.Annu Rev Biochem,2001.70:p.677-701.
    18.Rosenzweig,A.C.,Copper delivery by metallochaperone proteins.Ace Chem Res,2001.34(2):p.119-28.
    19.Chinenov,Y.V.,Cytochrome c oxidase assembly factors with a thioredoxin fold are conserved among prokaryotes and eukaryotes.J Mol Med,2000.78(5):p.239-42.
    20.Falconi,M.,M.Iovino,and A.Desideri,A model for the incorporation of metal from the copper chaperone CCS into Cu,Zn superoxide dismutase.Structure,1999.7(8):p.903-8.
    21.Horng,Y.C.,et al.,Specific copper transfer from the Cox17 metallochaperone to both Scol and Cox11 in the assembly of yeast cytochrome C oxidase.J Biol Chem,2004.279(34):p.35334-40.
    22.Pena,M.M.,J.Lee,and D.J.Thiele,A delicate balance:homeostatic control of copper uptake and distribution.J Nutr,1999.129(7):p.1251-60.
    23.Lee,J.,et al.,Biochemical characterization of the human copper transporter Ctr1.J Biol Chem,2002.277(6):p.4380-7.
    24.Aller,S.G.,et al.,Eukaryotic CTR copper uptake transporters require two faces of the third transmembrane domain for helix packing,oligomerization,and function.J Biol Chem,2004.279(51):p.53435-41.
    25.Yonkovich,J.,et al.,Copper ion-sensing transcription factor Mac1p post-translationally controls the degradation of its target gene product Ctr1p.J Biol Chem,2002.277(27):p.23981-4.
    26.Eisses,J.F.,et al.,Domains Ⅰ and Ⅲ of the human copper chaperone for superoxide dismutase interact via a cysteine-bridged Dicopper(Ⅰ) cluster.Biochemistry,2000. 39(25):p.7337-42.
    27.Ishida,S.,et al.,Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals.Proc Natl Acad Sci U S A,2002.99(22):p.14298-302.
    28.Gitlin,J.D.,et al.,Mechanisms of caeruloplasmin biosynthesis in normal and copper-deficient rats.Biochem J,1992.282(Pt 3):p.835-9.
    29.Hung,I.H.,et al.,Biochemical characterization of the Wilson disease protein and functional expression in the yeast Saccharomyces cerevisiae.J Biol Chem,1997.272(34):p.21461-6.
    30.Bull,P.C.,et al.,The Wilson disease gene is a putative copper transporting P-type ATPase similar to the Menkes gene.Nat Genet,1993.5(4):p.327-37.
    31.Atwood,C.S.,et al.,Dramatic aggregation of Alzheimer abeta by Cu(Ⅱ) is induced by conditions representing physiological acidosis.J Biol Chem,1998.273(21):p.12817-26.
    32.Moller,J.V.,B.Juul,and M.le Maire,Structural organization,ion transport,and energy transduction of P-type ATPases.Biochim Biophys Acta,1996.1286(1):p.1-51.
    33.Petrukhin,K.,et al.,Characterization of the Wilson disease gene encoding a P-type copper transporting ATPase:genomic organization,alternative splicing,and structure/function predictions.Hum Mol Genet,1994.3(9):p.1647-56.
    34.Vulpe,C.,et al.,Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase.Nat Genet,1993.3(1):p.7-13.
    35.Lutsenko,S.,R.Tsivkovskii,and J.M.Walker,Functional properties of the human copper-transporting ATPase ATP7B(the Wilson's disease protein) and regulation by metallochaperone Atox1.Ann N Y Acad Sci,2003.986:p.204-11.
    36.Voskoboinik,I.,et al.,The regulation of catalytic activity of the menkes copper-translocating P-type ATPase.Role of high affinity copper-binding sites.J Biol Chem,2001.276(30):p.28620-7.
    37.Scarborough,G.A.,Structure and function of the P-type ATPases.Curr Opin Cell Biol,1999.11(4):p.517-22.
    38.Harada,M.,et al.,Copper does not alter the intracellular distribution of ATP7B,a copper-transporting ATPase.Biochem Biophys Res Commun,2000.275(3):p.871-6.
    39.Forbes,J.R.and D.W.Cox,Copper-dependent trafficking of Wilson disease mutant ATP7B proteins.Hum Mol Genet,2000.9(13):p.1927-35.
    40.Schaefer,M.,et al.,Hepatocyte-specific localization and copper-dependent trafficking of the Wilson's disease protein in the liver.Am J Physiol,1999.276(3 Pt 1):p.G639-46.
    41.Lim,C.M.,et al.,Copper-dependent interaction of dynactin subunit p62 with the N terminus of ATP7B bur not ATP7A.J Biol Chem,2006.281(20):p.14006-14.
    42.Cater,M.A.,S.La Fontaine,and J.F.Mercer,Copper binding to the N-terminal metal-binding sites or the CPC motif is not essential for copper-induced trafficking of the human Wilson protein(ATP7B).Biochem J,2007.401(1):p.143-53.
    43.Komatsu,M.,et al.,Copper-transporting P-type adenosine triphosphatase(ATP7B) is associated with cisplatin resistance.Cancer Res,2000.60(5):p.1312-6.
    44.Katano,K.,et al.,The copper export pump ATP7B modulates the cellular pharmacology of carboplatin in ovarian carcinoma cells.Mol Pharmacol,2003.64(2):p.466-73.
    45.Harris,Z.L.,et al.,Aceruloplasminemia:molecular characterization of this disorder of iron metabolism.Proc Natl Acad Sci U S A,1995.92(7):p.2539-43.
    46.Sato,M.and J.D.Gitlin,Mechanisms of copper incorporation during the biosynthesis of human ceruloplasmin.J Biol Chem,1991.266(8):p.5128-34.
    47.Tao,T.Y.,et al.,The copper toxicosis gene product Murr1 directly interacts with the Wilson disease protein.J Biol Chem,2003.278(43):p.41593-6.
    48.Amaravadi,R.,D.M.Glerum,and A.Tzagoloff,Isolation of a cDNA encoding the human homolog of COX17,a yeast gene essential for mitochondrial copper recruitment.Hum Genet,1997.99(3):p.329-33.
    49.Glerum,D.M.,A.Shtanko,and A.Tzagoloff,Characterization of COX17,a yeast gene involved in copper metabolism and assembly of cytochrome oxidase.J Biol Chem,1996.271(24):p.14504-9.
    50.Beers,J.,D.M.Glerum,and A.Tzagoloff,Purification,characterization,and localization of yeast Cox17p,a mitochondrial copper shuttle.J Biol Chem,1997.272(52):p.33191-6.
    51.Heaton,D.N.,et al.,The mitochondrial copper metallochaperone Cox17 exists as an oligomeric,polycopper complex.Biochemistry,2001.40(3):p.743-51.
    52.Nittis,T.,G.N.George,and D.R.Winge,Yeast Sco1,a protein essential for cytochrome c oxidase function is a Cu(Ⅰ)-binding protein.J Biol Chem,2001.276(45):p.42520-6.
    53.Andruzzi,L.,et al.,Spectroscopic studies of metal binding and metal selectivity in Bacillus subtilis BSco,a Homologue of the Yeast Mitochondrial Protein Sco1p.J Am Chem Soc,2005.127(47):p.16548-58.
    54.Horng,Y.C.,et al.,Human Sco1 and Sco2 function as copper-binding proteins.J Biol Chem,2005.280(40):p.34113-22.
    55.Shoubridge,E.A.,Cytochrome c oxidase deficiency.Am J Med Genet,2001.106(1):p.46-52.
    56.Culotta,V.C.,et al.,The copper chaperone for superoxide dismutase.J Biol Chem,1997.272(38):p.23469-72.
    57.Wong,P.C.,et al.,Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase.Proc Natl Acad Sci U S A,2000.97(6):p.2886-91.
    58.Rae,T.D.,et al.,Undetectable intracellular free copper:the requirement of a copper chaperone for superoxide dismutase.Science,1999.284(5415):p.805-8.
    59.Casareno,R.L.,D.Waggoner,and J.D.Gitlin,The copper chaperone CCS directly interacts with copper/zinc superoxide dismutase.J Biol Chem,1998.273(37):p.23625-8.
    60.Schmidt,P.J.,et al.,Multiple protein domains contribute to the action of the copper chaperone for superoxide dismutase.J Biol Chem,1999.274(34):p.23719-25.
    61.Hellman,N.E.and J.D.Gitlin,Ceruloplasmin metabolism and function.Annu Rev Nutr,2002.22:p.439-58.
    62.Terada,K.,et al.,Copper incorporation into ceruloplasmin in rat livers.Biochim Biophys Acta,1995.1270(1):p.58-62.
    63.Holtzman,N.A.and B.M.Gaumnitz,Studies on the rate of release and turnover of ceruloplasmin and apoceruloplasmin in rat plasma.J Biol Chem,1970.245(9):p.2354-8.
    64.Yoshida,K.,et al.,A mutation in the ceruloplasmin gene is associated with systemic hemosiderosis in humans.Nat Genet,1995.9(3):p.267-72.
    65.De Lisle,R.C.,et al.,Metallothionein is a component of exocrine pancreas secretion:implications for zinc homeostasis.Am J Physiol,1996.271(4 Pt 1):p.C1103-10.
    66.Kagi,J.H.and Y.Kojima,Chemistry and biochemistry of metallothionein.Experientia Suppl,1987.52:p.25-61.
    67.van De Sluis,B.,et al.,Identification of a new copper metabolism gene by positional cloning in apurebred dog population.Hum Mol Genet,2002.11(2):p.165-73.
    68.Greene,W.C.,The brightening future of HIV therapeutics.Nat Immunol,2004.5(9):p. 867-71.
    69.Lynch,S.M.and W.Colon,Dominant role of copper in the kinetic stability of Cu/Zn superoxide dismutase.Biochem Biophys Res Commun,2006.340(2):p.457-61.
    70.Ostrakhovitch,E.A.and M.G.Cherian,Role of p53 and reactive oxygen species in apoptotic response to copper and zinc in epithelial breast cancer cells.Apoptosis,2005.10(1):p.111-21.
    71.Tsang,S.Y.,et al.,Research communication copper-1,10-phenanthroline induces internucleosomal DNA fragmentation in HepG2 cells,resulting from direct oxidation by the hydroxyl radical.Biochem J,1996.317(Pt 1):p.13-6.
    72.Smith,D.P.,et al.,Copper-mediated amyloid-beta toxicity is associated with an intermolecular histidine bridge.J Biol Chem,2006.281(22):p.15145-54.
    73.Halliwell,B.and J.M.Gutteridge,Role of free radicals and catalytic metal ions in human disease:an overview.Methods Enzymol,1990.186:p.1-85.
    74.Lunec J,W.D.,Graff TL,Dormand TL.,Inflammatory disease and copper:the metabolic and therapeutic roles of copper and other essential metalloelements in humans.Humana:Totowa,NJ.,1982:p.231-242.
    75.Zhai,Q.,et al.,Copper induces apoptosis in BA/F3beta cells:Bax,reactive oxygen species,and NFkappaB are involved.J Cell Physiol,2000.184(2):p.161-70.
    76.Monti,E.,et al.,Cardiotoxicity and antitumor activity of a copper(Ⅱ)-doxorubicin chelate.Cancer Chemother Pharmacol,1990.25(5):p.333-6.
    77.Nayak,K.K.,et al.,Antitumour activities of copper-ATP complex on transplantable murine lymphoma.Pharmacology,1990.41(6):p.350-6.
    78.Singh,N.K.,et al.,Antitumor activity studies of newly synthesized N-salicyloyl-N'-(p-hydroxybenzthioyl)hydrazine and its copper(Ⅱ) complex both in vivo and in vitro.Bioorg Med Chem,1997.5(2):p.245-51.
    79.Alemon-Medina,R.,et al.,Induction of oxidative damage by copper-based antineoplastic drugs(Casiopeinas).Cancer Chemother Pharmacol,2007.60(2):p.219-28.
    80.White,A.R.,et al.,The Alzheimer's disease amyloid precursor protein modulates copper-induced toxicity and oxidative stress in primary neuronal cultures.J Neurosci,1999.19(21):p.9170-9.
    81.Hirai,T.and E.G.Jones,A new parcellation of the human thalamus on the basis of histochemical staining.Brain Res Brain Res Rev,1989.14(1):p.1-34.
    82.Visvader,J.E.,et al.,The LIM domain gene LMO4 inhibits differentiation of mammary epithelial cells in vitro and is overexpressed in breast cancer.Proc Natl Acad Sci U S A,2001.98(25):p.14452-7.
    83.Angeletti,B.,et al.,BACE1 cytoplasmic domain interacts with the copper chaperone for superoxide dismutase-1 and binds copper.J Biol Chem,2005.280(18):p.17930-7.
    84.Nelson,T.J.and D.L.Alkon,Oxidation of cholesterol by amyloid precursor protein and beta-amyloid peptide.J Biol Chem,2005.280(8):p.7377-87.
    85.Sayre,L.M.,et al.,In situ oxidative catalysis by neurofibrillary tangles and senile plaques in Alzheimer's disease:a central role for bound transition metals.J Neurochem,2000.74(1):p.270-9.
    86.Miyata,M.and J.D.Smith,Apolipoprotein E allele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and beta-amyloid peptides.Nat Genet,1996.14(1):p.55-61.
    87.Seshadri,S.,et al.,Plasma homocysteine as a risk factor for dementia and Alzheimer's disease.N Engl J Med,2002.346(7):p.476-83.
    88.Crouch,P.J.,et al.,Copper-dependent inhibition of human cytochrome c oxidase by a dimeric conformer of amyloid-betal-42.J Neurosci,2005.25(3):p.672-9.
    89.Squitti,R.,et al.,Excess of serum copper not related to ceruloplasmin in Alzheimer disease.Neurology,2005.64(6):p.1040-6.
    90.Squitti,R.,et al.,d-penicillamine reduces serum oxidative stress in Alzheimer's disease patients.Eur J Clin Invest,2002.32(1):p.51-9.
    91.Larry Sparks,D.,Cholesterol,copper,and accumulation of thioflavine S-reactive Alzheimer's-like amyloid beta in rabbit brain.J Mol Neurosci,2004.24(1):p.97-104.
    92.Kolker,E.,et al.,Identification and functional analysis of 'hypothetical' genes expressed in Haemophilus influenzae.Nucleic Acids Res,2004.32(8):p.2353-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700