随钻电磁波测井仪的数值模拟及地质导向应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随钻测井技术现已成为油田开发获得最大效益的至关重要手段,在国内外油田应用非常普遍。随钻电磁波测井仪器是随钻测井仪器的核心之一,在地层评价和地质导向方面被广泛应用,但少见该类仪器在地质导向应用中的系统理论研究,因而,本文基于正反演数值模拟,对随钻电磁波仪器的地质导向应用进行了详细研究。
     正演数值模拟主要采用磁偶极子源并矢格林函数理论,利用矩阵递推原理推导出各向异性任意多层介质中的并矢格林函数。该方法适用于分析线圈任意方向放置的随钻电磁波测井仪器的响应,具有计算速度快,精度高的优点。反演中开发了自适应阻尼型高斯牛顿和变形波恩迭代方法,并给出一种新的正则化方法以及不等式约束条件施加方法。
     利用开发的正反演方法模拟了常规及倾斜线圈随钻电磁波测井仪在大斜度井中的响应规律和在地质导向中的应用。模拟结果表明,常规电磁波测井仪在大斜度井中靠近地层边界时,响应有极化角现象可作为预示界面存在的依据,受各向异性的影响随相对倾角的增大而增大,薄互层呈现出宏观各向异性特征。新一代单发单收倾斜线圈采用更低的频率和更长的源距,在靠近地层上下界面时分别呈现相反的信号特征,能有效识别界面方向。对双发双收倾斜线圈结构定义了一种新的定向信号,使该结构形式同时具备地层评价和地质导向方位探测能力。模拟结果表明,电阻率响应受各向异性的影响更加敏感,而定向测量则基本不受影响,对界面的响应特征与单发单收线圈结构相同。对地质导向矢量角理论进行了研究,利用空间重叠算法进行数值模拟,发现该矢量角始终指向电导率更大的方向,与倾斜线圈的定向信号结合可以判断仪器从哪个方向靠近边界,该理论适用于地层界面不平行的情况。
     采用多种地层模型,对随钻电磁波仪器进行了反演数值模拟。提出了一种多初值法,通过模拟发现,该方法可以有效改善由于初值给定不合适引起的迭代发散以及多解性问题。总结了相对倾角及地层电阻率参数误差对反演结果的影响规律,验证了地质导向反演中三层模型的可行性。在具有多个薄层的地层模型下,常规电磁波电阻率曲线比深探测定向曲线具有更好的界面识别效果,而厚地层中深探测定向测量曲线则具有更好的界面识别效果。
Logging-while-drilling (LWD) technology has become a key method for oil field toget the maximum production, and it is worldwide used in the oil fields at home and abroad.Electromagnetic LWD tool is one of the core logging tools which is widely used information evaluation and geosteering. However, very little researches of systematic theoryof such instrument have been carried on. Thus in this thesis, based on forward andinversion numerical simulation, the geosteering applications of electromagnetic tool werestudied detailed.
     The forward numerical simulation was based on the dyadic Green’s functionproduced by magnetic dipole. The dyadic Green’s function of anisotropy formation withany number of layers was deduced using matrix recursive principle. This method is withhigh calculation speed and high accuracy, and it is suitable for the analysis of the responseof electromagnetic LWD tool with the coils placed in any direction. In the inversionnumerical simulation, adaptive damping Gauss Newton and distort Born iterative method,a new regularization method and inequality constraint imposed method were developed.
     In this thesis, the response rules and application in geosteering in highly deviatedwells of the electromagnetic LWD tool with conventional and tilted coils were simulatedby using the developed forward and inverse methods. The results showed that in highlydeviated wells, when the conventional electromagnetic LWD tool is near the formationboundary, there is a polarization angle phenomenon of the response which can indicatesexisting of the boundary, and the response is affected by the anisotropy and increases withthe increasing of relative angle. The thin alternating layers showing macroscopicanisotropy. The new generation tool with single transmitter and single receiver with tiltedcoils uses a lower operating frequency and the spacing is longer. When it is near the upperand lower formation boundaries, the response shows opposite signal characteristicsrespectively, and that can effectively help identifying the direction of the boundary. A newdefinition of directional signal was developed in the tool with two transmitters and tworeceivers with tilted coils, so that the tool had the capabilities of formation evaluation aswell as geosteering. The numerical simulation results showed that the resistivitymeasurement is more sensitive to anisotropy than conventional tools’ measrement, while the geosteering direction measurement is not affected, and the boundary responsecharacteristics of two tansmitters two receivers system is same with the single tansmittersingle receiver system. Geosteering vector angle theory was studied using numericalsimulation with space superposition algorithm. The results showed that the vector angle isalways pointing to the direction of greater conductivity. Combined with directional signalsof tilted coils, it can be determined that from which direction the tool is getting close tothe boundary. This theory can apply in the case in which the formation boundary is notparallel.
     Several formation models were built and the inversion numerical simulations ofelectromagnetic LWD tool were done using these models. A multi-initial method wasintroduced. The results showed that the method can resolve the problems of iterationdivergence and multiple solutions caused by the inappropriate initial value. The influencerule of relative dip and formation resistivity parameter errors were summarized and thefeasibility of the inversion of three layers model was verified. In the models of several thinlayers, the conventional electromagnetic resistivity curve is more effective than the deepdirectional curve in boundary identify, while in the models of thick layers, the deepdirectional curve is more effective.
引文
[1] Alumbaugh D L,Morrison H F. Electromagnetic conductivity imaging with an iterative Borninversion. IEEE Transactions on Geoscience and Remote sensing,1993,31(4):758~763
    [2] Alumbaugh D L,Morrison H F. Monitoring subsurface changes over time with cross-wellelectromagnetic tomography. Geophysical Prespecting,1995,43:873~902
    [3] Alumbaugh D L, Morrison H F. Theoretical and practical consideration for cross-wellelectromagnetic tomography assuming a cylindrical geometry. Geophysics,1995,60(3):846~870
    [4] Alumbaugh D L. Iterative electromagnetic Born inversion applied to earth conductivity imaging:[博士学位论文]. University of California at Berkeley,1993
    [5] Bell C,Hampson J,eadsforth P. Navigating and imaging in complex geology with azimuthalpropagation resistivity while drilling. SPE102637,2006
    [6] Bittar M,Chemali R,Pitcher J,et al. Real-time proactive optimal well placement using geosignaland deep images. Paper presented at the Offshore Technology Conference,Houston,2010
    [7] Bittar M,Klein J,Beste R,et al. A new azimuthal Deep-Reading resistivity tool for geosteeringand advanced formation evaluation. SPE109971,2009
    [8] Bittar M. Electromagnetic wave resistivity tool having a tilted antenna for geosteering within adesired payzone. US Patent,6476609,2002
    [9] Bittar M. Method for azimuthal resistivity measurement and bed boundary detection. US patent,7659722B2,2010
    [10] Brooks A G,Exlog I.Calculation of MWD electromagnetic resistivity tool response by a finiteelement method. SPE19623,1989
    [11] Chemali R,Hart E. Real-Time Formation Imaging,Dip and Azimuth While Drilling FromCompensated Deep Directional Resistivity. SPWLA48th Annual Logging Symposium,June3-6,2007
    [12] Chew W C,Barone S,Anderson B,et al. Diffraction of axisymmetric in a borehole by bedboundary discontinuities. Geophysics,1984,49(10):1586~1595
    [13] Christine B,Jason P,Dennis L. Geosteering Techniques in Thin Coal Reservoirs. CSPG CSEGCWLS convention,2009
    [14] Christopher C. compensated directional resistivity measurements. US patent,7990153,2011
    [15] Clark B,Allen D F,Best D L,et al. Electromagnetic propagation logging while drilling:theoryand experiment. SPE18117,1990
    [16] Clark B,Luling M G,Jundt J,et al. A dual depth resistivity measurement for FEWD. SPWLA29th Annual Logging Symposium,June5-8,1988
    [17] Coope D,Shen L C,Huang F S C. The theory of2MHz resistivity tool and its application tomeasurement-while-drilling. The Log Analyst,1984,25(3):1~11
    [18] Douglas J S,Roland C,Michael B,etal. Hydrocarbon reservoirs where proactive geosteering ismost likely to succeed. Saudi Aramco Journal of Technology,2011,18~24
    [19] Eaton P A.3D electromagnetic inversion using integral equations. Geophysical Prospecting,1989,37:407~426
    [20] Edwards J. Geosteering examples using modeled2-MHz LWD response in the presence ofanisotropy. SPWLA41st Annual Logging Symposium,2000
    [21] Fredericks P D,Hearn F P,Wisler M M. Formation Evaluation While Drilling With a DualPropagation Resistivity Tool. SPE19622,1989
    [22] Gao G Z. Simulation of borehole electromagnetic measurements in dipping and anisotropic rockformations and inversion of array induction data:[博士学位论文]. Austin:The University ofTexas at Austin,2005
    [23] Ham F M. principles of neurocomputing for science and engineering. New York:Mcgraw-Hill,2000
    [24] Hornik K,Stinchcombe are universal approximators. Neural networks,1989,2(5):359~366
    [25] Jose P. The solution of nonlinear inverse problems and the Levenberg-Marquardt method.Geophysics,2007,72(4):1~16
    [26] Kalyan S. Real-Time Modeling-While-Drilling for Optimized Geosteering and EnhancedHorizontal Well Placement in Thin and Complex Reservoirs. IPTC16715,2013.
    [27] Kaneda N,Houshmand B and Itoh T. FDTD analysis of dielectric resonators with curvedsurfaces. IEEE Trans. Microwave Theory Technology,2005,11(1):25~27
    [28] Kim H J,Song Y,Lee K H. Inequality constraint in least squares inversion of geophysical data.Earth Planets Space,1999,51(4):255~259
    [29] Lee H O,Teixeira F L. Locally-conformal FDTD for anisotropic conductive interfaces. IEEETrans. Antennas Propag.,2010,58(11):3658~3665
    [30] Levenberg K. A method for the solution of certain nonlinear problems in least squares. Quarterlyof Applied Math,1944,2:164~168
    [31] Li Q,Omeragic D, Chou L,et al. New directional electromagnetic tool for proactivegeosteering and accurate formation evaluation while drilling. SPWLA46,2005
    [32] Marquardt D W. An algorithm for least-squares estimation of nonlinear parameters. Journal ofthe Society for Industrial and Applied Mathematics,1963,11(2):431~441
    [33] Meyer H,Eric H and Kaare J. Geosteering with a combination of extra deep and azimuthalresistivity tools. SPE115675,2008
    [34] Mike D,Jason P and Michael B. Modern Azimuthal Resistivity Tools and their Applicationto mature field development. SPWLA-INDIA3rd Annual Logging Symposium,Nov25-26,2011
    [35] Millard X,Liu Q H. Simulation of near-surface detection of objects in layered media by theBCGS-FFT method. IEEE Transaction Geoscience Remote Sensing,2004,42:327~334
    [36] Newman G.A. Crosswell electromagnetic inversion using integral and differential equations.Geophysics,1995,60(3):899~911
    [37] Omeragic D,Habashy T M and Esmersoy C. Method for calculation a distance between a welllogging instrument and a formation boundary by inversion processing measurements from thelogging instrument. US patent,6594584B1,2003
    [38] Omeragic D,Li Q and Chou L. Deep directional electromagnetic measurements for optimal wellplacement. SPE97045,2005
    [39] Padensi M A. Method to calculated the reflection and transmission of guidee waves. Journal ofthe optical society of america,1982,71(1):126~130
    [40] Palmer R,Silvav A and Hajari A A. A new deep azimuthal resistivity LWD for optimal wellplacement and reservoir. SPE120811,2008
    [41] Peter T W,Jacques R T and Stephen D B. Petrophysical Interpretation of a Multispacing2-MHzMWD Resistivity Tool in Vertical andHorizontal Wells. SPE36547,1996
    [42] Pitcher J,Bittar M,Hoyt D,et al. Improving recovery with advanced formation evaluation andwell placement techniques in thinly laminated sand-shale reservoirs. Paper presented at theOffshore Mediterranean Conference and Exhibition,Italy,2009
    [43] Rodney P F, Wisler M M. Electromagnetic wave resistivity MWD tool. SPE12167,1986
    [44] Roland C,Eric H,Tracey F,et al. Successful applications of azimuthal propagation resistivityfor optimum well placement and reservoir characterization while drilling. SPE109959,2007
    [45] Tripp A C,Hohmann G W. Three-dimensional electromagnetic cross-well inversion. IEEETransactions on Geoscience and Remote sensing.1993,31(1):121~126
    [46] Tsili W,Hal M,Liming Y. Dipping bed response and inversion for distance to bed for a newwhile-drilling resistivity measurement. SEG New Orleans Annual Meeting,2006,416~420
    [47] Tsili W,Roland C,Eric H,et al. Real-time formation imaging, dip, and azimuth while drillingfrom compensated deep directional resistivity. SPWLA48th Annual Logging Symposium,June3-6,2007
    [48] Wang H M. Finite element analysis of resistivity logging:[博士学位论文]. Houston:Universityof Houston,1999
    [49] Wang L.3-D Numerical modeling of induction resistivity tools for well logging problems:[博士学位论文]. Houston:University of Houston,1998
    [50] Wei B J, Tian K, Zhang X. Physics of directional electromagnetic propagationmeasurements-while-drilling and its application for forecasting formation boundaries.2010,53(10):2507~2515
    [51] Wei X C,Li E P,Zhang Y J. Efficient solution to the large scattering and radiation problem usingthe improved finite element fast multipole method. IEEE Transactions on Magnetic,2005,41(5):1684~1687
    [52] Wiig M,Berg E,Saltnes M,et al. Geosteering using new directional electromagneticmeasurements and a3D rotary steerable system on the Veslefrikk field,North Sea. SPE95725,2005
    [53] Wu D,Liu C R and Chen J. An efficient FDTD method for axially symmetric LWDenvironments. IEEE Transaction Geoscience and Remote Sensing,2008,46(6):1652~1656
    [54] Yang J,Omeragic D,Liu C B. Bed-Boundary Effect Removal to Aid Formation ResistivityInterpretation from LWD Propagation Measurements at All Dip Angles. SPWLA46th AnnualLogging Symposium,2005
    [55] Zhao Y,Shi G S,Li S J,et al. Modified wave-front method in3D electromagnetic field analysis:IEEE Antennas and Propagation Society International Symposium. Washington:IEEE Press,2005,4A:214~217
    [56]陈桂波,汪宏年,姚敬金,等.用积分方程法模拟各向异性地层中三维电性异常体的电磁响应.地球物理学报,2009,52(8):2174~2181
    [57]窦松江,赵平起.水平井随钻地质导向方法的研究与应用.海洋石油,2009,29(4):77~82
    [58]顿月芹,袁建生.阵列侧向电法测井的快速反演.清华大学学报(自然科学版),2009,49(11):1871~1875
    [59]冯国庆.最优化测井解释的遗传算法实现.天然气工业,2002,22(6):48~51
    [60]高晓飞,闫正和,曾显磊.新型地质导向技术在薄层油藏中的应用.石油天然气学报,2010,32(5):214~218
    [61]雷群,王红岩,赵群等.国内外非常规油气资源勘探开发现状及建议.天然气工业,2008,28(12):7~10
    [62]冷纪桐,赵军,张娅.有限元技术基础.北京:化学工业出版社,2007
    [63]刘得军,马中华,苑赫等.自适应高阶矢量有限元方法在随钻电阻率测井中的应用.中国石油大学学报(自然科学版),2012,36(4):77~83
    [64]刘四新,佟文琪.电磁波测井的现状和发展趋势.地球物理学进展,2004,19(2):235~237
    [65]刘之地.随钻测井响应反演方法及应用研究:[博士学位论文].南充:西南石油大学,2006
    [66]罗利.神经网络在测井解释中的应用.天然气工业,1997,17(5):23~26
    [67]马哲,林楠,杨锦舟.紧凑型随钻电磁波电阻率井眼影响补偿方法.录井工程,2010,21(1):7~10
    [68]南山,顾文建.新型地质导向技术在渤中25_1油田的应用.录井工程,2006,17(3):1~5
    [69]沈金松.用边有限元法计算三维各向异性介质的电磁响应.测井技术,2004,28(1):11~15
    [70]沈金松.用有限差分法计算各向异性介质中多分量感应测井的响应.地球物理学进展,2004,19(1):101~107
    [71]孙向阳,聂在平,赵延文等.用矢量有限元方法模拟随钻测井仪在倾斜各向异性地层中的电磁响应.地球物理学报,2008,51(5):1600~1607
    [72]谭茂金,张庚骥,谢关宝.电阻率测井三维模式匹配法中的平面数值分析.中国石油大学学报(自然科学版),2007,31(2):59~63
    [73]谭茂金,张庚骥,赵文杰.用新型模式匹配法计算地球物理中的电磁场.北京邮电大学学报,2006,29(5):6~18
    [74]汪宏年,陶宏根,姚敬金等.用模式匹配算法研究层状各向异性倾斜地层中多分量感应测井响应.地球物理学报,2008,51(5):1591~1599
    [75]王若.随钻测井技术发展史.石油仪器,2001,15(2):5~7
    [76]魏宝君,Liu Q H.层状介质中计算体积分方程的弱化BCGS-FFT算法.中国石油大学学报(自然科学版),2007,31(1):49~55
    [77]魏宝君,欧永峰,武杨等.柱状成层介质中倾斜线圈响应的模拟及其在电磁波传播随钻测量中的应用.中国石油大学学报(自然科学版),2012,36(5):78~85
    [78]魏宝君,王甜甜,王颖.用磁流源并矢Green函数的递推矩阵方法计算层状各向异性地层中多分量感应测井响应.地球物理学报,2009,52(11):2920~2928
    [79]魏宝君,徐丹,王莎莎.通讯槽对电磁波传播随钻测量信号的影响.中国石油大学学报(自然科学版),2011,35(1):56~60
    [80]魏宝君,张庚骥,柳清伙.层状单轴各向异性介质并矢Green函数的递推算法及精确计算.中国科学E辑:信息科学,2007,37(6):63~80
    [81]魏宝君,张克,欧永峰等.采用混合法和递推矩阵算法模拟层状介质中随钻电磁波电阻率测量仪器的响应.中国石油大学学报(自然科学版),2013,37(1):61~69
    [82]魏宝君.井间电磁场的一维、二维联合反演方法.地球物理学报,2006,49(1):264~274
    [83]魏宝君.井间电磁成像方法研究:[博士学位论文].山东:中国石油大学(华东),2003
    [84]魏宝君.利用积分方程计算阵列感应测井响应.石油大学学报(自然科学版),2005,29(6):32~37
    [85]魏忠利.地质导向钻井技术研究与应用.工业技术,2009,11:136
    [86]吴意明,熊书权,李楚吟.探边工具AziTrak在开发井地质导向中的应用.测井技术,2013,37(5):547~551
    [87]夏宏泉,刘之的,朱猛,等.随钻电阻率测井的环境影响校正主次因素分析.测井技术,2008,32(2):60~63
    [88]肖加奇,张国艳,洪德成等.层状各向异性地层中三维感应测井响应快速计算及资料处理.地球物理学报,2013,56(2):696~706
    [89]徐凤玲,林楠,杨锦舟.随钻方位电磁波电阻率未钻地层预测技术.录井工程,2011,22(2):14~17
    [90]杨锦舟,马哲,林楠. PeriScope15方位定向电阻率测量仪的功能与特点.录井工程,2009,20(4);53-56
    [91]杨锦舟,魏宝君,林楠.径向成层介质的Green函数及其在随钻电磁波电阻率测量中的应用.中国石油大学学报(自然科学版),2009,33(3):53~58
    [92]杨锦舟.基于随钻自然伽马、电阻率的地质导向系统及应用.测井技术,2005,29(4):285~288
    [93]杨震,范宜仁,文艺等.三维频率域随钻电磁波测井数值模拟.地球物理学进展,2009,24(5):1833~1838
    [94]杨震,刘庆成,岳步江等.随钻电磁波电阻率测井仪器响应影响因素数值模拟.测井技术,2011,35(4):325~330
    [95]张庚骥,汪涵明.普通电阻率测井的数值模式匹配解法.石油大学学报(自然科学版),1996,20(2):23~29
    [96]张美玲,邢光龙,刘曼芬等.阻尼型高斯牛顿法及其在高频电磁波测井反演中的应用.计算物理,2002,19(2):155~158
    [97]张辛耘,郭彦军,王敬农.随钻测井的昨天、今天和明天.测井技术,2006,30(6):487~492
    [98]张辛耘,王敬农,郭彦军.随钻测井技术进展和发展趋势.测井技术,2006,30(1):10~15
    [99]张旭,魏宝君,刘坤等.利用积分方程的加速迭代算法计算随钻电磁波电阻率测量仪器的响应.地球物理学报,2009,52(9):2394~2401
    [100]张中庆,穆林雪,张雪.矢量有限元素法在随钻电阻率测井模拟中的应用.中国石油大学学报(自然科学版),2011,35(4):64~71
    [101]郑春亮,范炜,孙金浩.水平井地质导向与测井资料解释方法研究.内蒙古石油化工,2010,11:139~142
    [102]邹德江,范宜仁,邓少贵.随钻测井技术最新进展.石油仪器.2005,19(5):1~4
    [103]邹晓萍,陈恭洋.边际油田薄油层开发中的地质导向技术.西南石油大学学报(自然科学版),2013,35(5):65~72

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700