高速磨床结构设计中的优化技术及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速磨床是现代机械加工中重要的工作母机。随着现代工业产品的精度要求不断提高,对高速磨床本身的结构设计也提出了更高的要求,以保证其加工的精度和稳定性。国内外的学者和工程师在此领域内做了很多基础性的研究工作,但是由于高速磨床本身的一些结构特点,使研究工作同时面临着一些瓶颈问题。作为制造业大国,我国在制造装备的设计领域,目前与国际水平还存在着一定的差距,并且国外在这方面的先进技术对我国又是限制出口的,导致相对落后的制造装备大大制约了我国制造业水平的进步,因此高速磨床的自主开发与研制对于我国制造业发展具有极其重要的意义。优化和反求技术是当前国际上十分活跃的研究领域,对于工程设计问题有相当重要的指导作用。本文在总结前人关于高速磨床的设计研究及各种优化技术的基础上,将近似模型技术结合全局优化算法的现代设计方法引入高速磨床结构设计领域,解决了高速磨床设计中遇到的一些难题。
     围绕高速磨床结构设计中的优化技术及应用这个主题,本论文开展了以下几个方面的研究:
     1.建立了一种适于高速磨床零部件结构优化设计的优化技术流程,将近似模型技术引入到高速磨床结构优化设计中,代替试验研究和耗时的传统数值计算模型,结合全局优化算法,达到了提高其结构优化的效率和精度的目的。通过对目前高速磨床的结构设计要求及其零部件的结构特征的分析,运用现代设计方法对高速磨床的静、动态性能进行研究,发现一般的优化技术缺少针对性,或是设计的成本太高,致使在工程实际问题中很难进行推广。利用近似回归技术建立研究问题的近似模型,代替无法显式表达的函数关系或是耗时的数值计算问题,是目前解决大规模、复杂问题的有效途径,本文通过研究近似模型的建模理论,采用拟合精度和效率都较好的径向基函数模型处理高速磨床结构设计中的非线性问题,并在此基础上开发出一套高速磨床结构优化软件。
     2.开展高速磨床动力学和结构分析的联合同步仿真研究,实现工作状态下的关键零部件结构分析的实时与动态仿真分析。在传统的高速磨床动力学分析中,通常将其零部件视为刚体,从而使得到的相关位移、速度和作用力等性能响应数据并不能反映真实的系统情况。动力学分析与结构分析一般是分开进行的,根据动力学分析的结果在结构分析中进行加载模拟和计算,从而降低了分析的精度和效率。另一方面,高速磨床具有精密加工的功能特点,使其分析和设计的过程中,不能忽略零件的弹性变形,尤其是在一些关键参数的选取上,弹性变形会影响设备的加工精度。正是基于上述动力学分析和结构分析的缺陷,本文结合多刚体动力学软件和结构分析软件对高速磨床的运动、加工系统进行了联合同步仿真研究,解决了工作状态中零件结构分析的问题,并对主轴—砂轮架加工系统进行了仿真研究,通过与其多刚体模型进行比较,发现系统中零部件的弹性变形对加工精度具有一定程度的影响。
     3.开展了针对高速磨床设计中的不确定性问题的研究,将基于区间数的不确定性优化方法引入到高速磨床设计中,并针对高速磨削过程中主轴系统的不确定性问题进行了优化设计。在高速磨床的设计、制造和工作中,存在着很多不确定性的因素,例如,材料特性、边界条件、外界环境等,尤其是磨削过程中的磨削力,以往的设计和分析都将设计参数视为确定性参数,未曾考虑过这些设计参数中的不确定性,然而,这些因素又直接影响设计方案的准确性和可靠性,因此很有必要在结构设计过程中考虑这些不确定性因素。本文以高速磨床主轴系统为研究对象,分析其工作状态并充分考虑磨削力的不确定性,建立了主轴系统工作状态下的不确定性柔性动力学模型,利用基于区间数的不确定优化方法结合隔代映射遗传算法进行了优化研究,结果证明达到了提高主轴系统抗振可靠性的目的。
     4.提出了一种基于近似模型和变尺度混沌优化算法的高速磨床结构轻量化设计方法。高速磨床结构轻量化的首要前提是保证高速磨床原有的性能不能下降,既要有目的地减轻零部件的重量,又要保证结构的强度、刚度及抗振性等性能要求。对于高速磨床零部件的轻量化设计而言,其设计目的不仅仅是降低成本,同时也是机床进给系统高速化设计的一个重要研究方向,有助于提高进给系统的速度和加速度。然而,进给系统中零件的结构一般都比较复杂,本文借助近似模型方法代替实际结构模型,并结合变尺度混沌优化算法,进行结构轻量化设计。变尺度混沌优化算法是一种利用非线性动力学系统中混沌现象的遍历性、随机性等特点来寻找全局最优值的随机全局性优化方法,相比于其他梯度优化算法和随机优化算法,其原理简单、易懂,用于操作的算法参数少,易于一般工程设计员理解和操作,同时其优化收敛速度快,精度高。本文以高速磨床进给系统中的拖板为研究对象,通过对其进行参数化建模,并建立各个性能目标的近似模型,利用变尺度混沌优化方法进行多目标优化设计,达到了结构轻量化设计的目的。
     5.对高速磨床整机建模中的各种结合部的建模方式及其等效动力学参数的反求进行了研究,并在此基础上对高速磨床的整机进行了分析。在高速磨床中,结合部的特性研究因其影响因素多并且机理复杂,一直是一个难点。国内外很多学者分别从接触机理方面和动态试验方面进行了探索和研究,本文避开了繁琐复杂的理论公式推导和高成本的试验研究,将结合面等效动力学参数的反求过程视为一个参数寻优并与动态试验相匹配的过程,从而简化了参数反求的过程,同时也可以保证结果的准确性。
High-speed grinder is the important machine tool in the modern mechanical manufacturing. With the development of modern product design, the structural design of high speed grinder needs be promoted in order to ensure the precision and stability of products. Many researchers and engineers have done some foundational studies on the design of high speed grinder. There exit some bottleneck problems, caused by the structure characteristics of itself. As a manufacturing industry big country, our manufacturing industry development is restricted by the level of manufacturing equipment, which is still of relatively low quality compared with international advanced level. The technology of optimizing and reverse engineering are popular research fields, and play an important guiding role on engineering design. Therefore, in this paper, based on the exiting work of high-speed grinder design and optimization technique, the approximation model method and the global optimum algorithm are conducted to resolve some problems in the structural design.
     The main research content and contribution are summarized as follows:
     1. A structural optimization process is established and applied to the high-speed grinder components’design. The approximation model method is introduced into the design of components, instead of traditional numerical analysis, which are time-consuming. The global optimum algorithm is combined with approximation model method, which achieves at the goal of enhancing optimization precision and efficiency. By analysing the design requirements and the structural characteristics of high-speed grinder components, we can find that the common optimization methods are not suit for the design exactly, or the design cost is too high. The approximation model method is an effective way to solve the complex large-scale engineering computation problems. The radial basis function model can pass every sample point in the design space, and has better fitting accuracy for nonlinear problem in high-speed grinder’s structural design.
     2. A simulation study combining dynamic analysis and structural analysis has been done in high-speed grinder, which can realize the real-time structural analysis under operating conditions. In the traditional dynamic analysis, the components in high-speed grinder are usually considered as rigid body, so that the performance data obtained from simulation such as displacement, velocity and applied load can not reflect the real situation. And the dynamic analysis and structural analysis are processed by separate systems where structural analysis uses the results obtained from dynmic analysis to compute. The characteristic leads to the low precision and efficiency of simulation. On the other hand, the elastic deformation of components can not be ignored during the precision manufacturing. Especially, some key parameters will affect the precision of high-speed grinder. In this thesis, the problem on simulation combining dynamic analysis and structural analysis has been make on the spindle-carriage machining system. The comparison with rigid model reveals that the elastic deformation of components has effect on the manufacturing precision.
     3. A uncertainty optimization design method of high-speed grinder is proposed. The uncertainty optimization method based on nonlinear interval number programming is introduced to solve the uncertain problem in the high-speed grinder design. There are many uncertain factors in the manufacture and work process of high-speed grinder, such as material property, boundary condition, external environment, especially for the grinding force in the grinding process, which was considered as determined parameter in the design before. But these uncertain factors affect the veracity and reliability of design. It is necessary to consider the uncertain factors in the design. In this paper, the main spindle system is taken as research subject. By considering the uncertainty of grinding forces, a real-time dynamic flexibility model of main spindle system is established. By using the uncertainty optimization based on intervals and intergeneration projection genetic algorithm, the goal of improving the main spindle system performance is achieved.
     4. A lightweight optimization design method of high-speed grinder based on the approximation model and mutative scale chaos optimization algorithm (MSCOA) is proposed. The premise of high-speed grinder lightweight is to ensure the performance requirement that the weight of components is reduced and the performance requirement such as strength, stiffness, and vibration resistance, must be satisfied. The purpose of lightweight is one of methods of reducing cost and an important requirement of high speed design of feed system, which can improve the velocity and acceleration of feed system. In this thesis, the approximation model and mutative scale chaos algorithm are employed to lightweight the structure. Chaos optimization algorithm as a method of global stochastic optimization has attracted much attention, which utilizes the characteristics of chaotic maps to search for the global optimal solutions. In compared with the other global optimum algorithms, such as micro genetic algorithms (μGA), the method is relatively simple and easy to be operated. Moreover, MSCOA has a good convergent performance with fast convergent rate. The method is validated by the lightweight problem of the grinder slider.
     5. The modeling method of joint surface and reverse identification method of dynamic parameters are proposed. With aid of these methods, the whole machine of high-speed grinder is analysed. There are many influencing factors of joint surface, which are always complex. Researchers have investigated the contact mechanism of joint surface and dynamic experiments. In this thesis, the dynamic parameter identification is regarded as a matching process of optimizing search combined with dynamic experiments, which avoids complex theoretical formula and costly experiment study.
引文
[1]李伯民,赵波.现代磨削技术.北京:机械工业出版社,2003, 234-239
    [2]荣烈润.高速磨削技术的现状及发展前景.机电一体化, 2003, (1): 6-10
    [3]赵恒华,冯宝富等.超高速磨削技术在机械制造领域中的应用.东北大学学报:自然科学版,2003, 24 (6):564-568
    [4]冯宝富,蔡光起,邱长伍.超高速磨削的发展及关键技术.机械工程师, 2002, (1): 5-9
    [5]艾兴等.高速切削加工技术.北京:国防工业出版社, 2003, 149-152
    [6]张伯霖等.高速切削技术及应用.北京:机械工业出版社, 2002, 94-95
    [7] Lee D G, Sin H Y, Suh N P. Manufacturing of a graphite epoxy composite spindle for a machine tool. Ann CIRP, 1985, 34: 365-369
    [8] Lee D G, Chang S H, Kim H S. Damping improvement of machine tool columns with polymer matrix fiber composite materials. Composite Structure, 1998, 43:155-163
    [9] Dai Gil Lee, Jung Do Suh, Hak Sung Kim, etal. Design and manufacture of composite high speed machine tool structures. Composites Science and Technology, 2004, 64: 1523-1530
    [10]Cao Y, Altintas Y. Modeling of spindle-bearing and machine tool systems for virtual simulation of milling operations. International Journal of Machine Tools & Manufacture, 2007, 47 (9) 1342-1350
    [11]姜琼. MKQ8312数控高速轻型凸轮轴磨床动态性能分析及结构改进研究:[湖南大学硕士学位论文].长沙:湖南大学机械与汽车工程学院, 2006, 3-4
    [12]陈卫福,黄旭东.先进的机床设计方法“模态力法”.计算机辅助设计与制造,2000, (5): 85-86
    [13]陈卫福,孙建光等.模态力法用于机床结构系统动态分析的研究.北京工业大学学报, 2000, 26 (1): 53-57
    [14]胡如夫,孙庆鸿等.高精度内圆磨床整机集成优化设计研究.兵工学报,2003, 24 (2): 230-233
    [15]陈新,何杰等.基于动力学特征的磨床床身结构优化布局.制造技术与机床, 2001, (2): 21-22
    [16]伍建国,陈新等.内圆磨床床身结构的动态分析与优化设计.精密制造与自动化, 2002, (2): 25-26
    [17]贺兵.超高速平面磨床结构动态特性的研究与结构优化:[湖南大学硕士学位论文].长沙:湖南大学机械与汽车工程学院, 2004, 2-3
    [18]黄洪武,赵小青等.基于有限元的超高速平面磨床整机动力学建模及模态分析.湖南大学学报(自然科学版), 2005, 32 (4): 39-42
    [19]毛海军,孙庆鸿等.基于BP神经网络模型的机床大件结构动态优化方法及其应用研究.东南大学学报(自然科学版), 2002, 32 (4): 594-597
    [20]张广鹏,史文浩等.机床导轨结合部的动态特性解析方法及其应用.机械工程学报, 2002, 38 (10): 114-117
    [21]张广鹏,王海丽等.基于结合面基础特性参数的机床导轨结合部动态特性解析方法.机械制造与研究, 2001, (4): 72-75
    [22]赵岭,陈五一等.基于结构仿生的高速机床工作台轻量化设计.组合机床与自动化加工技术, 2008, (1): 1-4
    [23]Zhao L, Chen W Y, Ma J F, et al. Structural bionic design and experimental verification of a machine tool column, Journal of Bionic Engineering Suppl, 2008: 46-52
    [24]郭力,卿启湘等.超高速数控精密磨床磁浮轴承主轴单元设计.新技术新工艺, 2006, 1: 52-56
    [25]张敬.高速轴承内圆磨床结构动态分析与优化设计: [东南大学硕士学位论文].南京:东南大学, 2007
    [26] Schimit L A, Farshi B. Some approximation concepts for structural synthesis. AIAA J, 1974, 12: 692-699
    [27]隋允康,李善坡.结构优化中的建模方法概述.力学进展, 2008, 38 (2): 190-200
    [28]王备,隋允康.三维连续体结构形状优化设计.应用力学学报, 1999, 16 (2): 127-133
    [29]杨德庆,刘正兴,隋允康.连续体结构拓扑优化设计的ICM方法.上海交通大学学报, 1999, 33 (6): 734-736
    [30]隋允康,李善坡.改进的响应面方法在二维连续体形状优化中的应用.工程力学, 2006, 23 (10): 1-6
    [31]刘烈全.工程结构优化基础.武汉:华中工学院, 1985, 10-62
    [32]项可风,吴启光.试验设计与数据分析.上海:上海科学技术出版社, 1989
    [33] Jack,Kleijnen P C.An overview of the design and analysis of simulation experiments for sensitivity analysis. European Journal of Operational Research,2005, 164: 287-300
    [34] Montgomery D C.Design and analysis of experiments.4th Version,New York:NY Wiley, 1997
    [35]张勇.基于近似模型的汽车轻量化优化设计方法: [湖南大学博士学位论文].长沙:湖南大学, 2008, 14-22
    [36]张润楚,王兆军.关于计算机试验的理论和数据分析.应用概率统计, 1994, 10 (4): 420-435
    [37] Morris M D, Mitchell T J. Exploratory designs for computational experiments. Journal of Statistical Planning and Inference, 1995, 43(3): 381-402
    [38] Jin R, Chen W, Smpson T W.Comparative studies of metamodeling techniques under multiple modeling criteria. Journal of Structural and Multidisciplinary Optimization, 2001, 23(1): 1-13
    [39]穆雪峰,姚卫星,徐熊庆等.多学科设计优化中常用代理模型的比较.计算力学学报, 2005, 22(5): 608-612
    [40]窦毅芳,刘飞,张为华.响应面建模方法的比较.工程设计学报, 2007, 14 (5): 359-363
    [41]刘惟信.机械最优化设计.北京:清华大学出版社, 1994, 135-226
    [42]周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社, 1999, 1-90
    [43] Xu Y G, Liu G R, Wu Z P. A novel hybrid genetic algorithm using local optimizer based on heuristic pattern move. Appl. Artif. Intelligence, 2001, 15 (7): 601-613
    [44] Krishnakumar K. Micro-genetic algorithms for stationary and non-stationary function optimization. In SPIE Proceedings: Intelligent Control and Adaptive systems, 1989: 289-296
    [45] Liu G R, Han X. Computational inverse techniques in nondestructive evaluation. Florida: CRC Press, 2003
    [46] Cohon J L. Multicriteria Programming: Brief review and application, Design Optimization, Edited by Gero J S, Academic Press, Inc., 1985: 163-191
    [47]玄光男,程润伟.遗传算法与工程优化.北京:清华大学出版社, 2004, 76-108
    [48]刘桂萍.基于微型遗传算法的多目标优化方法及应用研究:[湖南大学博士学位论文].长沙:湖南大学, 2007
    [49]李伯民,赵波.现代磨削技术.北京:机械工业出版社, 2004, 29-38
    [50]陈立平,张云清,任卫群等.机械系统动力学分析及ADAMS应用.北京:清华大学出版社, 2005, 120-142
    [51]李军,邢俊文,覃文洁. ADAMS实例教程.北京:北京理工大学出版社, 2002, 211-242
    [52]郑建荣. ADAMS——虚拟样机技术入门与提高.北京:机械工业出版社,2002, 195-213
    [53]王颖淑,丁宁.外圆纵向磨削加工磨削力模型.长春大学学报, 2005, 15 (6): 1-3
    [54]韩正铜.磨削颤振与磨削表面形貌误差的研究.徐州:中国矿业大学出版社, 2005, 13-36
    [55]蒋铮,刘斌.不确定优化问题的研究动向.武汉科技大学学报, 2006, 29(6): 599-602
    [56]刘德顺,岳文辉,杜小平.不确定性分析与稳健设计的研究进展.中国机械工程, 2006, 17 (17): 1834-1841
    [57] Doltsinis I, Kang Z. Robust design of structures using optimization methods. Computer Methods in Applied Mechanics and Engineering, 2004, 193: 2221-2237
    [58] Bellman R E. Dynamic programming. New Jersey: Princeton University Press, 1957
    [59] Bellman R E, Zadeh L A. Decision making in a fuzzy environment. Management Science, 1970, 17: 141-164
    [60] Charnes A, Cooper W W. Chance-constrained programming. Management Science, 1959, 6 (1): 73-79
    [61] Delgado M, Verdegay J L, Vila M A. A general model for fuzzy linear programming. Fuzzy Sets and Systems, 1989, 29: 21-29
    [62] Fu W P, Huang Y M, Zhang G P. Experimental investigation on damping behavior of normal joint surface at unit area. Modelling, Measurement & Control, B, 1993, 51 (5): 13-20
    [63] Liu B, Iwamura K. Topological optimization models for communication network with multiple reliability goals. Computers & Mathematics with Applications, 2000, 39: 59-69
    [64] Liu B D. Uncertain programming: a unifying optimization theory in various uncertain environments. Applied Mathematics and Computation, 2001, 120: 227-234
    [65] Kall P. Stochastic programming: achievements and open problems. In: Models, Methods and Decision Support for Management: Essays in Honor of Paul Stahly, Heidelberg. New York: Physica-Verlag, 2001, 285-302
    [66] Escudero L, Kamesam P V, King A. Production planning via scenario modeling. Annals of Operations Research, 1993, 43 (1): 311-335
    [67] Elishakoff I, Haftka R T, Fang J. Structural design under boundeduncertainty—optimization with anti-optimization. Computers and Structures, 1994, 53 (6): 1401-1405
    [68] Slowinski R. A multicriteria fuzzy linear programming method for water supply systems development planning. Fuzzy Sets and Systems, 1986, 19:217-237
    [69]姜潮.基于区间的不确定性优化理论与算法: [湖南大学博士学位论文].长沙:湖南大学, 2008, 2-11
    [70] Jiang C, Han X, Guan F J, Li Y H. An uncertain structural optimization method based on nonlinear interval number programming and interval analysis method. Engineering Structures, 2007
    [71]刘宝碇,赵瑞清,王纲.不确定规划及应用.北京:清华大学出版社, 2003, 138-175
    [72]刘宝碇,赵瑞清.随机规划与模糊规划.北京:清华大学出版社, 1998, 128-200
    [73] Moore R E. Methods and applications of interval analysis. London: Prentice-Hall Inc., 1979
    [74] Ben-Haim Y, Elishakoff I. Convex models of uncertainty in applied mechanics. Amsterdam: Elsevier Science Publishers, 1990
    [75] Ben-Haim Y. Convex models of uncertainty in radial pulse buckling of shells. Journal of Applied Mechanics, 1993, 60 (3): 683-688
    [76] Elishakoff I, Haftka R T, Fang J. Structural design under bounded uncertainty—optimization with anti-optimization. Computers and Structures, 1994, 53 (6): 1401-1405
    [77] Tanaka H. On fuzzy mathematical programming. Journal of Cybemetics, 1984, 3 (4): 37-46
    [78] Chanas S, Kuchta D. Multiobjective programming in optimization of interval objective functions—a generalized approach. European Journal of Operational Research, 1996, 94: 594-598
    [79] Sengupta A, Pal T K, Chakraborty D. Interpretation of inequality constraints involving interval coefficients and a solution to interval linear programming. Fuzzy Sets and Systems, 2001, 119: 129-138
    [80]马龙华.不确定系统的鲁棒优化方法及其研究: [浙江大学博士学位论文].杭州:浙江大学, 2002, 3-10
    [81] Jiang C, Han X. A new uncertain optimization method based on intervals and an approximation management model, accepted by CMES-Computer Modeling in Engineering & Science, 2008, 344(1) :1-21
    [82] Ishibuchi H, Tanaka H. Multiobjective programming in optimization of the interval objective function. European Journal of Operational Research, 1990, 48 (2): 219-225
    [83]张全,樊治平,潘德惠.不确定性多属性决策中区间数的一种排序方法.系统工程理论与实践, 1999, 5: 129-133
    [84]刘桂萍,韩旭,姜潮.并行隔代映射遗传算法及其在材料参数反演中的应用.中国机械工程, 2007, 18 (4): 387-390
    [85]丁叙生.以主轴系统刚度与总功耗之比值为目标函数的液体静压轴承优化设计方法.南昌航空工业学院学报, 2000, 14 (3): 26~29
    [86] Lee D G, Suh J D, Kim H S, Kim J M. Design and manufacture of composite high speed machine tool structures. Composites Science and Technology, 2004, 64: 1523-1530
    [87] Zhao L, Chen W Y, Ma J F, Yang Y B. Structural Bionic Design and Experimental Verification of a Machine Tool Column. Journal of Bionic Engineering, 2008 Suppl.: 46-52
    [88]张彤,王宏伟,王子才.变尺度混沌优化方法及其应用.控制与决策, 1999, 14 (3): 285-288
    [89]李兵,蒋蔚孙.混沌优化方法及其应用.控制理论与应用, 1997, 14 (4): 613-615
    [90]李昊,胡云昌,曹宏铎.加速混沌优化方法及其应用.系统工程学报, 2002, 17 (1): 41-44
    [91] Yang D X, Li G, Cheng G D. On the efficiency of chaos optimization algorithms for global optimization. Chaos, Solutions and Fractals, 2007, 34: 1366-1375
    [92]高雷阜,胡行华.不同混沌序列对全局最优解的搜索影响.辽宁工程技术大学学报, 2008, 27 (4): 629-631
    [93]周德廉,陈新,孙庆鸿等.高精度内圆磨床整机动力学建模及优化设计.东南大学学报(自然科学版), 2001, 31 (2): 35-38
    [94]王琳琳,刘宇飞.机床固定结合面等效刚度系数和阻尼系数的研究.齐齐哈尔轻工学院学报, 1997, 13 (1): 80-83
    [95]秦宝荣.机床结合面动态特性研究.制造技术与机床, 1996, 8: 35-37
    [96]张广鹏,史文浩,黄玉美等.机床导轨结合部的动态特性解析方法及其应用.机械工程学报, 2002, 38 (10): 114-117
    [97]张学良,黄玉美.机床结合面静态基础特性参数的建模及应用.制造技术与机床, 1997, 11: 8-10
    [98]吉村允孝,陶志范译.采用接合面动态数据的计算机辅助设计来改善机床的结构刚性.机床, 1979 (1)
    [99]廖伯瑜,周新民,尹志宏.现代机械动力学及其工程应用.北京:机械工业出版社, 2004, 243-245
    [100]孙靖民.机床结构计算的有限元法.北京:机械工业出版社, 1981, 112-210

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700