撞击荷载作用下车桥系统的动力响应及高速列车运行安全研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术的发展和新型材料的应用,铁路桥梁跨度不断增大,列车速度不断提高,桥梁的振动问题日趋突出。与此同时,随着水运、铁路、公路交通的日益繁忙,船舶、流冰、车辆撞击桥梁结构的事故也越发频繁。本文在国家自然科学基金项目“撞击荷载作用下车桥系统的动力响应及列车运行安全控制研究(51178025)”和“河冰物理力学性能及其对桥梁撞击作用机理的研究(50878020)”的资助下,针对撞击荷载引起的桥梁结构振动以及由此引发的桥上高速列车的运行安全问题,展开了较深入的研究。主要研究内容和创新点包括:
     (1)对国内外桥梁遭受船舶、汽车和流冰等撞击而引发重大事故的情况和相关的研究现状进行了综述,阐述了研究撞击荷载引起的桥梁振动和列车运行安全问题的必要性,总结了一般车桥动力相互作用问题的研究内容及主要研究方法,说明了论文的选题意义和立项依据。
     (2)结合国内外铁路、公路设计规范和相关研究成果,总结了船舶、车辆和流冰撞击荷载的设计方法以及理论分析、数值模拟和试验结果。分析了各种撞击荷载的持时、最大幅值、作用位置等特点,为确定列车-桥梁系统动力分析模型中的撞击荷载取值方法提供了依据。
     (3)在佳木斯松花江公路大桥、通河松花江公路大桥等地进行了河冰温度场及流冰撞击荷载现场试验。通过河冰温度场试验,得到了流冰期气温、水温与河冰温度的相关关系。通过流冰撞击荷载试验,得到了流冰撞击桥墩的撞击力时程曲线,为撞击荷载作用下的车桥耦合振动分析提供了实测撞击力数据。采用快速傅立叶变换对实测流冰撞击力时程进行了频谱分析,获得了撞击力的离散频谱并对其特性进行了分析。
     (4)建立了撞击荷载作用下的车桥耦合系统动力分析模型,编制了相关的计算程序,其中车辆模型采用多刚体动力学方法建立,桥梁模型采用振型叠加法建立,轮轨垂向作用力按照轮轨密贴假定定义,轮轨横向作用力按照简化的Kalker蠕滑理论定义,撞击力作用时程以节点动荷载模拟。提出了一种适用于车桥动力耦合系统时程积分的全过程迭代法,通过算例说明了其计算效率。
     (5)利用所建立的计算模型和自编程序,以九江长江大桥为实例,按照我国普通旅客列车和美国五级谱轨道不平顺条件,通过模拟计算,考虑有无船舶撞击两种情况,对桥梁墩顶和跨中的横向位移和加速度响应以及列车的脱轨系数等运行安全指标进行了时程分析,并将桥梁位移响应的计算结果与2007年现场实测的一些数据进行了比较,部分地验证了本文方法。在此基础上,按照德国ICE3高速列车和秦沈客运专线轨道不平顺条件进行了计算,并与普通列车的计算结果进行了综合分析比较,结果表明荷载撞击桥梁对高速列车的影响比普通列车大。
     (6)以哈大高速铁路(32+48+32)m预应力混凝土连续箱梁桥为分析对象,考虑佳木斯流冰、通河流冰、船舶三种类型的撞击荷载,对桥梁墩顶、主跨跨中的位移和加速度响应以及ICE3高速列车的脱轨系数、轮重减载率和轮轨横向力等运行安全指标进行了时程分析。在此基础上,通过进一步的参数分析,系统地研究了撞击荷载类型、撞击强度、列车速度、列车类型等对桥上列车运行安全指标的影响规律。
     (7)对撞击荷载作用下高速铁路桥梁上列车的运行安全控制方法进行了初步的探讨,提出了撞击荷载作用下保障桥上列车运行安全的撞击强度-列车速度阈值曲线的确定方法。通过系统的模拟计算分析,得到了高速铁路(32+48+32)m预应力混凝土连续箱梁桥在佳木斯流冰(多次连续脉冲)、通河流冰(单次窄脉冲)、船舶(单次宽脉冲)三种类型撞击荷载作用下,德国ICE3、日本E500、国产CRH2三种列车在桥上安全运行的撞击强度-列车速度阈值曲线。
With the development of science and technology and application of new materials, the bridge span becomes longer and the train speed becomes faster. Meanwhile, as the water, railway and highway traffics become increasingly busy, collisions of vessels, vehicles and ice-floes on bridges crossing rivers and roadways also become more serious. In this dissertation, the bridge vibration induced by collision loads and the related running safety problem of high-speed train on bridge subjected to collision are studied, which is funded by the National Natural Science Foundations "Dynamic responses of railway bridges subjected to collision loads and running safety control of vehicles (Grant No.51178025)" and "Research on mechanism of physical and mechanical properties of river ice action and its effects on railway bridges (Grant No.50878020)". The detailed contents and highlights of the study include:
     (1) The serious accidents of bridges subjected to collision of vessels, vehicles and ice-floes and the related research situation in China and abroad are reviewed, and the necessity of research toward running safety of high-speed train on bridge subjected to collision load is elaborated. The research contents and general analysis methods of train-bridge dynamic interaction problem are summarized, and the significance and research basis of this doctoral dissertation are introduced.
     (2) The design methods, numerical simulation and experimental results of collision loads induced by vessels, vehicles and ice-floes are summarized, by referencing the highway and railway bridge design codes and the related researches in China and abroad. The characteristics of collision loads, such as duration time, maximum values and loading positions are analyzed, which provides an important basis to determine the collision loads for dynamic analysis of train-bridge interaction system.
     (3) The field experiments were carried out to measure temperature fields and ice-floe collision forces at the Jiamusi Songhuajiang Highway Bridge, the Tonghe Songhuajiang Highway Bridge, and several other sites. The relationships between air, water and ice temperature were obtained from the river ice temperature field measurement. The collision loads of ice-floe on bridge piers were obtained from the collision force measurement, which provides experimental data for the dynamic analysis of coupled train-bridge system. The frequency spectrum analysis is done with the FFT method on the measured ice-floe collision data, and then the features of discrete frequency spectra are analyzed.
     (4) The analysis model of train-bridge interaction system subjected to collision loads is established, and the computer code is written, where the vehicle submodel is established with multi-rigid-body dynamics, the bridge submodel is established with modal superposition method, the vertical wheel-rail force is defined with the wheel-rail close contact assumption, the lateral wheel-rail force is defined with the Kaller's Creep Theory, and the collision force is simulated as nodal dynamic load. Moreover, a new iterative method of whole process is proposed, which is suitable to the time history integral of train-bridge interaction system, and the calculation efficiency is proved through case study.
     (5) With the analysis model and the computer code, by taking the Jiujiang Yangtze River Bridge as a case study, whose main pier is subjected to vessel collision load, and considering a normal passenger train and the US Grade5irregularity spectrum as calculation conditions, the lateral displacements and accelerations at pier-top and mid-span of the bridge and the running safety indices of the train are calculated through computer simulation. Some of the calculated results are compared with the measured results obtained in the field experiment in2007, which partly proved the proposed method. On the basis, further calculation is performed with the German ICE3train running on the bridge and with irregularity samples measured from the Qinhuang-Shenyang high-speed railway, and the results are compared with the ones from ordinary passenger train, which shows that the high-speed train is more seriously affected than the ordinary train when the bridge pier is subjected to collision load.
     (6) For the (32+48+32) m continuous PC box girder bridge on the Harbin-Dalian high-speed railway, by assuming one of its piers collided by Jiamusi ice-floe, Tonghe ice-floe and vessel loads, the displacements and accelerations at pier-top and mid-span of the bridge and the derailment factors, offload factors and lateral rail-wheel forces of ICE3high-speed train are analyzed. By further parameter analysis, the influences of collision load types, collision intensities, train speeds and train types on the running safety indices of the train are studied.
     (7) A preliminary investigation is performed on the control method for running safety of train on high-speed railway bridge subjected to collision load, and the definition for threshold curves between train speed and impact intensity for running safety of train is proposed. Through systematical numerical simulation, the threshold curves between train speed and impact intensity for running safety of several trains including ICE3, Japan E500and China CRH2on the (32+48+32) m continuous PC box girder bridge which is subjected to three types of loads, Jiamusi ice-floe (successive multi-impulse), Tonghe ice-floe (single narrow impulse) and vessel (single wide impulse), are acquired.
引文
[I]Xia H, De Roeck G, Goicolea J M. Bridge Vibration and Controls:New Research [M], New York:Nova Science Publishers,2011.
    [2]Fryba L. Dynamic behavior of bridges due to high-speed trains [A]. Bridges for High Speed Railway[C], Porto,2004,137-158.
    [3]Diana G, et al. A numerical method of define the dynamic behavior of a train running on a deformable structure [J]. MECCANICA, Special Issue,1988:27-42.
    [4]Biondi B, Muscolino G, Sofi A. A substructure approach for the dynamic analysis of train-track-bridge system [J]. Computers & Structures,2005,83:2271-2281.
    [5]Bogaert V. Dynamic response of trains crossing large span double-track bridges [J]. Journal of Constructional Steel Research,1993,24(1):57-74.
    [6]夏禾,张楠.车辆与结构动力相互作用[M].第二版,北京:科学出版社,2005.
    [7]高芒芒.高速铁路列车一线路一桥梁耦合振动及列车走行性研究[D].北京:铁道部科学研究院博士学位论文,2001.
    [8]李小珍,强士中.列车-桥梁耦合振动研究的现状与发展趋势[J].铁道学报,2002,24(5):112—120.
    [9]曾庆元,郭向荣.列车-桥梁时变系统振动分析理论与应用[M].北京:中国铁道出版社,1999.
    [10]Cheng Y S, Au F T K, Cheung Y K. Vibration of railway bridges under a moving train by using bridge-track-vehicle element [J]. Engineering Structures,23(2001):1597-1606.
    [11]Dinh V N, Kim K D, et al. Dynamic analysis of three-dimensional bridge-high-speed train interactions using a wheel-rail contact model [J]. Engineering Structures,2009,31: 3090-3106.
    [12]Wang T L, Chu K H. Railway bridge/vehicle interaction studies with new vehicle model [J]. Structural Engineering,1991,117(7):2099-2116.
    [13]Zhang Q L, Vrouwenvelder Q and Wardenier J.2001. Numerical simulation of train-bridge interactive dynamics [J]. Computers and Structures,2001,79 (10):1059-1075.
    [14]郑健等.中国高速铁路桥梁[M].高等教育出版社.2008.
    []5]翟婉明,夏禾等.列车-轨道-桥梁动力相互作用理论与工程应用.科学出版社.2011.
    [16]Xia H, Zhang N, Guo W W. Application of train-bridge-interaction analysis to bridge design of high-speed railways in China [A]. Proc. The 1st International Workshop on High-speed and Intercity Railways [C]. Hong Kong,2011.
    [17]项海帆.船撞桥涉及理论的现状与需进一步研究的问题[J].同济大学学报,2002,30(4):386-392.
    [18]Gluver H, Olsen D. Ship Collision ArIals [M]. A. A. Balkema, Rotterdam,1998.
    [19]戴彤宇,聂武,刘伟力.长江干线船撞桥事故分析[J],中国航海,2002,53(4):44-47.
    [20]U.S. National Transportation Safety Board. Railroad-Marine Accident Report 94-1 [R], RAR-94-1,1994.
    [21]http://www.pickuptailgates.com/big bayou canot train disaster/encyclopedia.htm.
    [22]http://www.answers.com/topic/eschede-train-disaster#Bridge collapse.
    [23]http://www.dartfordmessenger.co.uk/kentonline/news/2011-1/april/1/foreign lorry_gets_stuck. aspx.
    [24]董正方,郭进,王君杰.桥梁倒塌事故综述及其防治对策[J].公路,2009,2:30-32.
    [25]Larry D and Olson P E. Dynamic bridge substructure evaluation and monitoring [R]. Report No. FHWA-RD-03-089, US Federal Highway Administration,2005.
    [26]Wuttrich R, Wekezer J, Yazdani N and Wilson C. Performance evaluation of existing bridge fenders for ship impact [J]. J. Perform. Constr. Facil.,2001,15(1):17-23.
    [27]Derucher K N. Bridge pile damage upon vessel impact [J]. Computers and Structures,1984, 18(5):931-935.
    [28]Derucher K N. Analysis of concrete bridge piers for vessel impact [C]. Proc. of Sino-America Symposium on Bridge and Structural Engineering,1982:1-11.
    [29]邵旭东,占雪芳,廖朝华,晏班夫,刘俊珂.从美国阳光大道桥被撞重建看现有桥梁防撞风险评估[J],公路,2008,8:33—37.
    [30]Highways Agency Contract Reports. Collision of heavy goods vehicles with highway structures draft report Brian Colquhoun and Partners in association with Colquhoun Transportation Planning [R], Vol.1, Brian Colquhoun and Partners,1992.
    [31]Highways Agency Contract Reports. Computer simulation of heavy goods vehicle collisions with bridges [R], Ove Arup and Partners,1997.
    [32]汪振铠,王常海.嫩江-松花江-黑龙江春季流冰特点及其对桥梁墩台的影响[A].第三届全国冰工程会议论文集[C],大连,1997,305-313.
    [33]Katsuragi K, Kawasaki T, Seto H. Distinct element simulation of ice-structure interactions [A]. Proc. the 8th International Offshore and Polar Engineering Conference [C]. Montreal Canada, 1998:395-401.
    [34]Dong J W, Li Z J, Lu P, et al. Design ice load for piles subjected to ice impact [J]. Cold Regions Science and Technology,2012,71(2):34-43.
    [35]Sodhi D S. Crushing failure during ice-structure interaction [J]. Engineering Fracture Mechanics,2001,68(17-18):1889-1921.
    [36]Brown T G, Analysis of ice event loads derived from structural response, Cold Regions Science and Technology,2007,47(3):224-232.
    [37]Jordaan Ian J. Mechanics of ice-structure interaction [J]. Engineering Fracture Mechanics, 2001,68(17-18):1923-1960.
    [38]Timco G W. Isolated ice floe impacts [J]. Cold Regions Science and Technology,2011,68(2): 35-48.
    [39]Timco G W. Johnston M. Ice loads on the Molikpaq in the Canadian Beaufort Sea [J]. Cold Regions Science and Technology,2003,37(2):51-68.
    [40]Minorsky N. On interaction of non-linear oscillations, Journal of the Franklin Institute,1953, 256(2):147-165.
    [41]Woisin, G The collision test of the GKSS [J]. Jahrbuch Schiffbautech Gesellsch,1976,70: 465-487.
    [42]Woisin G. Model testing with the collision protection structures in reactor ships [A]. Proc. of International Symposium on Advances in Marine Technology [C]. Trondheim,1979,309-336.
    [43]Woisin G. Design against collision [J]. Schiff und Hafen,1979,31(2):1059-1069.
    [44]AASHTO I. RFD. AASHTO LRFD bridge design specifications [S]. Washington, D.C.1991. American Association of State Highway and Transportation Officials,2007.
    [45]AASHTO, Guide specifications and commentary for vessel collision design of highway bridges (GVCB-2-2009) [S]. Washington, D.C.1991.
    [46]Pedersen P T, Zhang S M. On impact mechanics in ship collisions [J]. Marine Structures,1998, 11(10):429-449.
    [47]Pedersen P T. Review and application of ship collision and grounding analysis procedures [J]. Marine Structures,2010,23(3):241-262.
    [48]Consolazio G R, Cowan D R. Nonlinear analysis of barge crush behavior and its relationship to impact resistant bridge design [J]. Computers and Structures,2003,81(8-11):547-557.
    [49]Consolazio, G R, Lehr G B, McVay M C. Dynamic finite element analysis of vessel-pier-soil interaction during barge impact events [R]. Transportation Research Board, Washington, D.C., 2004:81-90.
    [50]Consolazio G R, Cook R A, McVay M C, Cowan D, Biggs A, Bui L. Barge impact testing of the St. George Island Causeway Bridge, Phase III:Physical testing and data interpretation [R]. Final Rep. to FDOT, Contract No. BC-354, Gainsville, Fla,2006.
    [51]Consolazio G R, Cowan D R, Lehr G B. Prediction of lateral impact loads imparted to bridge piers during barge collision events [A]. Proceedings Second MIT Conference on Computational Fluid and Solid Mechanics [C],2003:207-211.
    [52]Ueda Y, Rashed S M H, Paik J K. Buckling and ultimate strength interaction in plates and stiffened panels under combined in plane biaxial and shearing forces [J]. Marine Structures, 1995,8(1):1-36.
    [53]Ueda Y, Rashed S M H. The idealized structural unit method and its application to deep girder structures [J]. Computers & Structures,1984,18(2):277-293.
    [54]Ueda Y, Rashed S M H. Abdel-Nasser. An improved ISUM rectangular plate element taking account of post-ultimate strength behavior [J]. Marine Structures,1994,7(2-5):139-172.
    [55]Paik J K, Pedersen P T. Modeling of the internal mechanics in ship collisions [J]. Ocean Engineering,1996,23(2):107-142.
    [56]Paik J K, Thayamballi A K., Pedersen P T, Park Y I. Ultimate strength of ship hulls under torsion Original Research Article [J]. Ocean Engineering,2001,28(8):1097-1133.
    [57]Heins C P, Chiu L Y-B. Dynamic analysis of dolphins subjected to ship impact [J]. Computers and Structures,1982,15(1):49-59.
    [58]Lehmann E, Peschmann J. Energy absorption by the steel structure of ship in the event of collision [J]. Journal of Ships Mechanics,2001,24(1):40-49.
    [59]Lehmann E, Yu X. Inner dynamics of bow collision to bridge piers [A]. Proc. of the International Symposium on Advances in Ship Collision Analysis [C], Copenhagen, Denmark, 1998:61-71.
    [60]Furnes O, Amdahl J. Computer simulation study of offshore collisions and analysis of ship-platform impacts [J]. Applied Ocean Research,1980,2(3):119-127.
    [61]Liu Z H, Amdahl J. A new formulation of the impact mechanics of ship collisions and its application to a ship-iceberg collision [J]. Marine Structures,2010,23(3):360-384.
    [62]Wuttrich R, Wekezer J, Yazdani N, Wilson C. Performance evaluation of existing bridge fenders for ship impact [J]. Journal of Performance Construction Facilities,2001,15(1): 17-23.
    [63]Wang G, Ohtsubo H, Arita K. Inner dynamics of side collision to bridge pipers:ship collision analysis [A], Proc. the International Symposium on Advances in Ship Collision Analysis [C], Denmark,1998:53-60.
    [64]陈泽宏.船舶对大型桥墩的撞击及其参数测试的初步研究[D].南京理工大学博士学位论文,1995.
    [65]Liu J C, Gu Y N. Simulation of the whole process of ship-bridge collision [J]. China Ocean Engineering,2002,16(3):369-382.
    [66]刘建成,顾永宁,胡志强.桥墩在船桥碰撞中的响应及损伤分析[J].公路,2002(10):33-41.
    [67]刘建成,顾永宁.基于整船整桥模型的船桥碰撞数值仿真[J].工程力学.2003,20(5):155—162.
    [68]刘建成,顾永宁.船-桥碰撞力学问题研究现状及非线性有限元仿真计算[J].船舶工程。2002(5):4-9.
    [69]王君杰.桥梁船撞研究与工程应用[M],北京:人民交通出版社,2011.
    [70]王君杰,颜海泉,钱铧.基于碰撞仿真的桥梁船撞力规范公式的比较研究[J].公路交通科技.2006,23(2):68-73.
    [71]王君杰,陈诚.桥墩在船舶撞击作用下的损伤仿真研究[J].工程力学.2007,24(7):156—160.
    [72]王朝军,陈传尧,章建军,刘小虎.桥墩防护装置数值模拟分析[J].国外桥梁.2001(4):60-64.
    [73]梁文娟,金允龙,陈育增.船舷与桥墩撞击力计算及桥墩防撞[A],第十四届全国桥梁学术会议论文集[C].2000:566-571.
    [74]杨家祥,梁文娟,赵华.桥墩碰撞力的计算[J].交通部上海船舶运输科学研究所学报.1994.17(2):23-29.
    [75]钱铧.桥梁船舶碰撞的简化分析[D],同济大学硕士学位论文,2003.
    [76]孙霁.桥梁及防撞设施数值模拟分析[D],同济大学硕士学位论文,2005.
    [77]耿波.桥梁船撞安全评估[D].同济大学博士学位论文,2007.
    [78]汪宏,姚建军,王君杰.重庆忠县康家沱长江大桥船舶撞击安全性评价[J].公路交通技术,2005(7):51—56.
    [79]和秀岭,姚盛丹.大跨径钢筋混凝土拱桥船桥碰撞分析[J].昆明理工大学学报(理工版).2009,34(2):49-52.
    [80]罗林阁,曹映泓,陈国虞等.船舶撞击桥梁的撞击力计算方法探讨[J].中外公路,2006,26(5):78-81.
    [81]黄锋旺.船舶碰撞荷载计算[J].中南公路工程,1999,3:50-52.
    [82]王自力,顾永宁.船舶碰撞动力学过程的数值仿真研究[J],爆炸与冲击,2001,21(1):29-34.
    [83]吴卫国,姜河蓉,杨茨祥.桥墩防撞装置在船舶撞击载荷作用下的动态分析[J].武汉理工大学学报(交通科学与工程版),2004.28(4):482-484.
    [84]陈国虞,王立礼等.船撞桥及其防御[M].北京:中国铁道出版社,2006.
    [85]杨波军,编译.桥梁的防撞保护系统及其设计[M].北京:人民交通出版社,1990.
    [86]EL-Tawil S, Severino E, Fonseca P. Vehicle collision with bridge piers [J]. Journal of Bridge Engineering,2005,10(3):345-353.
    [87]Severino E, El-Tawil S. Collision of vehicles with bridge piers [A], Proc. Second MIT Conference on Computational Fluid and Solid Mechanics [C].2003:637-640.
    [88]Sharma H, Hurlebaus S, Gardoni P. Performance-based response evaluation of reinforced concrete columns subject to vehicle impact [J]. International Journal of Impact Engineering, 2012,43(5):52-62.
    [89]Tsang H H, Lam N. Collapse of reinforced concrete column by vehicle impact [J]. Computer Aided CMI and Infrastructure Engineering,2008,23(6):427436.
    [90]Itoh Y, Liu C L, Kusama R. Dynamic simulation of collisions of heavy high-speed trucks with concrete barriers [J]. Chaos, Solitonsv & Fractals,2007,34(4):1239-1244
    [91]余敏、查小雄.实空心钢管混凝土柱在汽车撞击下的性能研究[J],建筑钢结构进展,2011,13(1):57-64.
    [92]马祥禄、高志升、张丹华.不同速度超高车辆碰撞下跨线桥动态响应分析[J],山西建筑,2009,35(20):304-306.
    [93]许琦,张南.车辆碰撞钢筋混凝土桥墩撞击力计算方法研究[J].四川建筑科学研究,201],37(1):40—44
    [94]陆新征、何水涛、黄盛楠.超高车辆撞击桥梁上部结构研究一一破坏机理、设计方法和防护对策[M].北京:中国建筑工业出版社,2011.
    [95]陆新征、何水涛、黄盛楠.超高车辆撞击桥梁上部结构研究一一破坏机理与撞击荷载[J1.中国公路学报,2009,22(5):60-67.
    [96]张圣炎、陆新征、宁静、姜见鲸.超高车辆撞击组合结构桥梁的仿真分析[J],交通与计算机,25(3),2007,65-69.
    [97]刘静、叶莉、汪晶.车辆撞击桥墩近似分析方法及结构防护措施[J],2009,29(4):12—15.
    [98]Christensen F T, Timco G W, Nwogu O G. Compliant model tests with the Great Belt West Bridge piers in ice Part Ⅱ:Analyses of results [J]. Cold Regions Science and Technology, 1995,23(2):165-182.
    [99]Riska K. Models of ice-structure contact for engineering applications [J]. Studies in Applied Mechanics, Mechanics of Geomaterial Interfaces,1995,42:77-103.
    [100]Yue Q J, Guo F W, Kama T, Dynamic ice forces of slender vertical structures due to ice crushing [J]. Cold Regions Science and Technology,2009,56(2-3):77-83.
    [101]Ning Xu, Qianjin Yue, Yan Qu, Xiangjun Bi, Andrew Palmer. Results of field monitoring on ice actions on conical structures [J]. Journal of Offshore Mechanics and Arctic Engineering, 2011,133(41):502-508.
    [102]Huang Y, Shi Q Z, Song A. Model test study of the interaction between ice and a compliant vertical narrow structure [J]. Cold Regions Science and Technology,2007,49(2):151-160.
    [103]Vershinini S A. Dynamic ice loads on vertical structures [A]. Proc. POAC [C], Canada,2001: 403-412.
    [104]Zhang Bi-bo. Influence of Pier Nonlinear, impact Angle and Colum Shape on Pier Response to Barge Impact Loading [D]. Florida:University of Florida,2004.
    [105]Xiong F and Xu G. Numerical investigation of river ice-bridge pier interaction [A]. Proceedings of the 2009 Structures Congress-Don't Mess with Structural Engineers: Expanding Our Role [C],2009:48-57. http://www.ascelibrary.org.
    [106]R. Frederking, D. Sudom Maximum ice force on the Molikpaq during the April 12,1986 event [J]. Cold Regions Science and Technology 46 (2006) 147-166
    [107]Fasanella E I, Jackson K E. Best practices for crash modeling and simulation [R]. NASA/ TM-2002-211944,2002.
    [108]Yu B J, Wu W H, et al. Numerical simulation of dynamic ice force on conical structure [A]. Proc. the 19th International Conference on Port and Ocean engineering under Arctic Conditions [C], Dalian:2007.
    [109]卢远兴、卢远芳.流冰对佳木斯松花江公路桥梁的动力反应[J].科技与经济.2003,4:7-8.
    [110]韩艳.河冰对桥梁桥墩结构作用的计算方法研究[D],哈尔滨建筑大学硕士论文,2000.
    [111]袁正国.内河冰凌力学性能及其对桥墩撞击力作用的研究[D].东北林业大学博士论文,2010.
    [112]于天来,王金峰,杜峰.呼玛河冰灾害试验研究[J].自然灾害学报,2007,16(4):43-48.
    [113]Yu T L, Yuan Z G, Huang M L. Experiment Research on Mechanical Behavior of River Ice [A]. Proc. the 19th International Symposium on Ice[C], Vancouver:519-530
    [114]王金峰.河冰力学性能及其对桥墩撞击力的研究[D].东北林业大学硕士论文,2007.
    [115]柳春光.桥梁结构在地震和冰荷载作用下的响应[J].地震工程与工程振动.2005,25(5):141-146.
    [116]蔡之瑞,孙柏涛,郭世荣等.冰荷载的实验研究与计算方法[J],地震工程与工程振动,1997.17(4):49-56.
    [117]段忠东.冰对海洋平台结构的作用及冰振反应分析[R].哈尔滨工业大学博士后研究工作报告.1998.12.
    [118]孙秋华.冰的力学性能及其与结构相互作用力问题的研究[D],哈尔滨工程大学博士论文[D],2005.
    [119]张运良.冰荷载的识别及冰激振动的实验与数值模拟[D].大连理工大学博士论文,2002.
    [120]蔡之瑞,逢永湖,孟宪义.1995年流冰撞击佳木斯公路大桥的冰荷载[J].世界地震工程,1995,(4):55—57
    [121]陆钦年,汤爱平,钟南萍.河冰对桥墩作用的冰荷载计算方法(I)[J].自然灾害学报,2002,11(2):75—79
    [122]陆钦年,段忠东,欧进萍,等.河冰对桥墩作用的冰荷载计算方法(II)[J].自然灾害学报,2002,11(4):112-118
    [123]肖波,王爽,吴卫国等.桥墩防撞装置碰撞动力学分析[J1.武汉理工大学学报(交通科学与工程版),2005,29(1):49-51.
    [124]齐念.冰激桥墩振动模型试验研究及冰荷载的识别[D].大连理工大学硕士论文,2009.
    [125]宣言,张煅.因船只撞击桥墩引起铁路桥梁上列车的脱轨.国外桥梁.2001(4).60—64.
    [128]Tanabe M, Yamada Y. Model method for interaction of train and bridge [J]. Computers & Structures,1987,27(1):119-127.
    [131]Diana G, et al. Wind effects on the dynamic behavior of suspension bridge [R]. International Report, Milano,1986.
    [132]Baker C J. A simplified analysis of various types of wind-induced road vehicle accidents [J]. Journal of Wind Engineering and Industrial Aerodynamics,1986,22:69-85.
    [133]Baker C J. Measures to control vehicle movement at exposed sites during windy periods [J]. Journal of Wind Engineering and Industrial Aerodynamics,1987,25:151-161.
    [134]Antolin P, Goicolea J M, Lateral Dynamic Response of Railway Vehicles on Bridges: Numerical Model and Applications [A]. Proc. of the Tenth Int. Conf. on Computational Structures Technology[C], Civil-Comp Press, Stirlingshire, Scotland.2010.
    [135]Rui D, Goicolea J M, A study of the lateral dynamic behavior of high speed railway viaducts and its effect on vehicle ride comfort and stability [A]. Bridge Maintenance, Safety, Management, Health Monitoring and Informatics [C]. London.2008
    [136]郭文华,郭向荣,曾庆元.京沪高速铁路南京长江大桥斜拉桥方案车桥系统振动分析[J].土木工程学报,1999,32(3):23-27.
    [137]郭向荣,曾庆元.京沪高速铁路南京长江斜拉桥方案行车临界风速分析[J].铁道学报,2001,23(5):75-80.
    [138]Xia H, Xu Y L, Chan T H T. Dynamic interaction of long suspension bridges with running trains [J], Journal of Sound & Vibration,2000,237(2):263-280.
    [139]Guo W W, Xu Y L, Xia H, Zhang W S, Shum K M. Dynamic Response of Suspension Bridge to Typhoon and Trains II:Numerical Results [J]. Journal of Structural Engineering, ASCE, 2007,133(1),12-21.
    [140]Guo W W, Xia H, Xu Y L, Running safety analysis of a train on the Tsing Ma Bridge under turbulent wind [J], Earthquake Engineering and Engineering Vibration,2010,9(3):307-318.
    [141]郭薇薇.风荷载作用下大跨度桥梁的动力响应及行车安全性分析[D].北京:北京交通大学博士论文,2004.
    [142]郭薇薇,夏禾,徐幼麟.风荷载作用下大跨度悬索桥的动力响应及列车运行安全分析[J1.工程力学,2006,23(2):103-110.
    [143]Li Yongle, Qiang Shizhong, Liao Haili, Xu Y L. Dynamics of wind-rail vehicle-bridge systems [J]. Journal of Wind Engineering and Industrial Aerodynamics,2005,93:483-507
    [144]李永乐,廖海黎,强士中.车桥系统气动特性的节段模型风洞试验研究[J].铁道学报,2004,26(3):71—75.
    [145]李永乐,强士中,廖海黎.风-车-桥系统空间耦合振动研究[J].土木工程学报,2005,38(7):61-64,70.
    [146]Xu Y L, Zhang N, Xia H. Vibration of coupled train and cable-stayed bridge systems in crosswinds [J]. Engineering Structures,2004,26(10):1389-1406.
    [147]Xu Y L, Guo W H. Effects of bridge motion and crosswind on ride comfort of road vehicles. Journal of Wind Engineering and Industrial Aerodynamics,2004,92:641-662.
    [148]Guo W H. Dynamic analysis of coupled road vehicle and long span cable-stayed bridge systems under cross winds [D]. Hong Kong:The Hong Kong Polytechnic University,2003.
    [149]Diana G, Cheli F. Dynamic interaction of railway systems with large bridges [J]. Vehicle System Dynamics,1989,18(1-3):71-106.
    [150]Miyamoto T., Ishida H., Matsuo M. Running safety of railway vehicle as earthquake occurs [R]. Quarterly Report of RTRI,1997,38(3),117-122.
    [151]Yang Y B, Wu Y S. Dynamic stability of trains moving over bridges shaken by earthquakes [J]. Journal of Sound and Vibration,2002,258(1):65-94.
    [152]Fryba L, Yau J D. Suspended bridges subjected to moving loads and support motions due to earthquake Original Research Article [J]. Journal of Sound and Vibration,2009,319 (1-2) 218-227..
    [153]Yau J D, Vibration of arch bridges due to moving loads and vertical ground motions [J]. Journal of Chinese Institute of Engineers,2006,29:1017-1027.
    [154]熊建珍,高芒芒,俞翰斌.天兴洲长江大桥斜拉桥在地震作用下的车桥耦合振动分析[J].中国铁道科学,2006,27(5):54-59.
    [155]谭长建,祝兵.地震作用下高速列车与桥梁耦合振动分析[J].振动与冲击,2009,28(1):4-8.
    [156]Xia H, De Roeck G, Zhang H R, Zhang N. Dynamic analysis of train-bridge system and its application in steel girder reinforcement [J]. Computers & Structures, 2001, 79: 1851-1860.
    [157]Xia H, De Roeck G, Zhang Nan, Maeck J. Dynamic analysis of high-speed railway bridge under articulated trains [J]. Computers & Structures, 2003, 81: 2467-2478.
    [158]Xia H, Zhang N, De Roeck G Experimental analysis of high-speed railway bridge under Thalys trains [J]. Journal of Sound & Vibration, 2003, 268: 103-113.
    [159]Xia H, Zhang N. Dynamic analysis of railway bridge under high-speed trains [J], Computers & Structures, Vol.83, No.1-4, 2005, 1891-1901.
    [160]Xia H, Guo W W. Analysis of resonance mechanism and conditions of train-bridge system [J], Journal of Sound & Vibration, 2006, 297(2): 810-822.
    [161]Xia H, Han Y, Guo W W. Dynamic analysis of train-bridge system subjected to non-uniform seismic excitations [J], Journal of Earthquake Engineering & Structural Dynamics, 2006, (35): 1563-1579.
    [162]Xia H, Zhang N. Dynamic analysis of a train-bridge system under wind action [J], Computers & Structures, 2008, 86: 1845-1855.
    [163]Xia H, Guo W W. Lateral dynamic interaction analysis of a train-girder-pier system [J], Journal of Sound & Vibration, 2008 (318):927-942.
    [164]Xia H, et al. Dynamic interaction analysis of a LIM train and elevated bridge system [J], Journal of Mechanical Science and Technology, 2009, 23(3): 3257-3270.
    [165]Xu Y L, Xia H, Yan Q S. Dynamic response of suspension bridge to high wind and running train [J], Journal of Bridge Engineering, ASCE, 2003, 8(1): 46-55.
    [166]Xu Y L, Guo W W, Chen J, Shum K M, Xia H. Dynamic response of suspension bridge to typhoon and trains. I: Field measurement results [J], Journal of Structural Engineering, ASCE, 2007, 133(1): 3-11.
    [167]Zhang N, Xia H, Vehicle-bridge vibration analysis under high-speed trains [J]. Journal of Sound & Vibration, 2008, 268: 103-113.
    [168]Zhang N, Xia H, A vehicle-bridge linear interacted model and its validation [J]. International Journal of Structural Stability and Dynamics, 2010, 9(2): 9(2): 335-361.
    [169]Zhang N, Xia H, Vehicle-bridge vibration analysis under high-speed trains [J]. Journal of Civil Engineering & Architecture, 2009, 3(3): 31-38.
    [170]Zhang N, Xia H, Dynamic analysis of train-bridge system under multi-support seismic excitations [J], Journal of Mechanical Science and Technology, 2010, 24 (11): 1-8.
    [171]Cooperrider N K., Gordon J J. Shock and impact levels on North American locomotives [J]. Journal of Sound and Vibration, 2008, 318(4-5): 809-819.
    [ 172]De Pater A D. A non-linear model of a single wheel-set moving with constant speed on a purely straight track [J]. International Journal of Non-Linear Mechanics, 1980, 15(4-5): 315-324.
    [173]Kalker J J. Wheel-rail rolling contact theory [J]. Wear, 1991, 144(1-2): 243-261.
    [174]Kalker J J, Periard F. Wheel-rail noise: impact, random, corrugation and tonal noise [J]. Wear, 1996, 191(1-2): 184-187.
    [175]翟婉明.车辆一轨道耦合动力学[M],第三版,北京:科学出版社,2007.
    [176]中华人民共和国行业标准.公路桥梁设计通用规范(JTG D60-2004)[S].北京:人民交通出版社.2004.
    [177]中华人民共和国铁道部.铁路桥涵设计基本规范(TB10002.1—99)[s].北京:中国铁道出版社,1999.
    [178]Consolazio G R, Chung J H, Gurley K R. Impact simulation and full-scale crash testing of a low profile concrete work zone barrier [J]. Computers & Structures,2003,81(13): 1359-1374.
    [179]European Standard. Eurocode EN1991-1-7:Actions sur les structures Partie 1-7:Actions generales-Actions accidentelles [S]. Comite Europeen de Normalisation.1991.
    [180]British Standard BS EN1991-1-7:Eurocode 1-Actions on structures General action: accidental actions [S].2006.
    [181]Wang L L, Yang L M, Huang D J, et al. An impact dynamics analysis on a new crashworthy device against ship-bridge collision [J]. International Journal of Impact Engineering,2008, 35(8):895-904
    [182]颜海泉.桥梁船撞有限元仿真分析[D],同济大学硕士学位论文,2004.
    [183]陈诚.桥梁设计船撞力及损伤状态仿真研究[D],同济大学硕士学位论文,2006.
    [184]Fan W, Yuan W C. Shock spectrum analysis method for dynamic demand of bridge structures subjected to barge collisions [J]. Computers and Structures,2012,90-91:1-12.
    [185]陈向东,金先龙,杜新光.基于并行算法的船桥碰撞数值模拟分析[J].振动与冲击.2008,27990;82-86.
    [186]何振星.路桥损伤及破坏中若干力学问题的研究[D].太原理工大学博士学位论文,2008.
    [187]罗琳.船桥碰撞理论及猎德大桥防撞装置的性能研究[D].长沙理工大学硕士论文.2008.
    [188]李升玉,王曙光,刘伟庆,徐秀丽,方海.船舶与桥墩防撞系统碰撞的数值仿真分析[J].自然灾害学报.2006,15(5):100—106.
    [189]胡志强,顾永宁,高震,李雅宁.基于非线性数值模拟的船桥碰撞力快速计算[J].工程力学,2005,22(3):235-240.
    [190]中华人民共和国行业标准.高速铁路桥梁设计规范(试行)(TBl0621—2009)[S].北京:中国铁道出版社.2009.
    [191]中华人民共和国铁道部.铁路桥梁检定规范(铁运函[2004]120号)[S].北京:中国铁道出版社.2004.
    [192]Thilakarathna H M I, Thambiratnam D P, Dhanasekar M, Perera N. Numerical simulation of axially loaded concrete columns under transverse impact and vulnerability assessment [J]. International Journal of Impact Engineering,2010,37(11):1100-1112.
    [193]Qiao P Z, Yang M J, Mosallam A S. Impact analysis of I-Lam sandwich system for over-height collision protection of highway bridges [J], Engineering Structures,2004,26(7): 1003-1012.
    [194]Qiao P Z, Yang M J. Impact analysis of fiber reinforced polymer honeycomb composite sandwich beams [J]. Composites:Part B,2007,38:739-750.
    [195]Yang M. J, Qiao P Z. Analysis of cushion systems for impact protection design of bridges against over height vehicle collision [J]. International Journal of Impact Engineering,2010, 37(12):1220-1228
    [196]苏联运输工程科学研究院.苏联铁路、公路、城市道路桥涵设计技术规范:CH200-62[s].张琳等译.北京:人民交通出版社,1963.
    [197]Standards Council of Canada. Highway Bridge Design Code (The ninth edition) (CAN3-S6-M78) [S], Toronto, Canada,1978.
    [198]Standards Council of Canada. Highway Bridge Design Code (The ninth edition) (CAN/CSA-S6-00) [S], Toronto, Canada,2000.
    [199]American Petroleum Institute. Guidelines for the definition of onshore gas gathering lines (API 1980) [S], US,1980.
    [200]中华人民共和国交通部.公路桥涵设计通用规范(JTG D60-2004) [S]北京:人民交通出版社.1991.
    [201]郭峰玮.基于实验数据分析的直立结构挤压冰荷载研究[D].大连理工大学博士论文,2010.
    [202]屈衍.基于现场实验的海洋结构随机冰荷载分析[D].大连理工大学博士论文.2006.
    [203]Yue Q J, et al. Study of ice load on conical structure based on field measurements [R]. Report of Dalian University of China Offshore Oil Bohai Corporation.
    [204]岳前进等.基于现场试验的锥形结构冰荷载研究[R],大连理工大学、中国海洋石油渤海公司,1999.
    [205]Liu Y. Numerical simulation of dynamic ice action on cross-sea bridge foundation [A],2nd International Conference on Mechanic Automation and Control Engineering [C], MACE, 2011:6625-6628.
    [206]Tuhkuri J. Experimental observations of the brittle failure process of ice and ice-structure contact [J]. Cold Regions Science and Technology.1995,23:265-278.
    [207]Zhang Y L, Lin G, Li Z J, et al. Application of DDA approach to simulate ice-breaking process and evaluate ice force exerting on the structure [J]. China Ocean Engineering,2002, 16(3):273-282.
    [208]武文华,于佰杰,许宁,岳前进.海冰与锥体抗冰结构动力作用的数值模拟[J].工程力学,2008,25(11):192-196
    [209]李奇,吴定俊,李俊.混编货车通过中小跨度桥梁时车桥振动分析[J].同济大学学报(自然科学版),2007,35(2):171—175.
    [210]柯在田,杨宜谦等.九江长江大桥运营性能试验报告[R].中国铁道科学研究院铁道建筑研究所.2007.
    [211]高芒芒等.京沪高速铁路仿真分析报告[R],中国铁道科学研究院.北京,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700