甘油氢解制丙二醇的催化剂及反应机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的发展和人们环保意识的提高,开发和利用可再生能源成为全世界关注的热点。生物柴油具有原料来源广、环境友好、可再生、安全性高、可替代石化柴油等优点,已经成为化石燃料的重要补充,而且其生产规模逐年扩大。然而生物柴油生产过程中的主要副产物—甘油的产量严重过剩,因此,研究甘油的深加工技术具有重要的意义,其中甘油氢解制备丙二醇被广泛认为是一条具有重要应用前景的转化途径。
     目前文献报道的甘油氢解的催化剂主要可以分为贵金属催化剂和以Cu, Ni, Co为代表的非贵金属催化剂,其中铜基催化剂由于价格低廉和对1,2-丙二醇的高选择性而受到人们的青睐。因此,本论文以含铜水滑石为前驱体,通过可控的干燥、焙烧及还原等工艺制备了系列多功能催化剂,先后通过引入第二活性金属、优化催化剂的酸碱特性、引入骨架稳定助剂等手段对催化剂的结构、性能和反应活性进行了系统的调控和优化,并对反应机理进行了探究。研究得到的主要成果如下:
     先后采用Pd, Rh, Ru和Re作为第二活性金属,经水滑石前驱体制备出了系列高活性的贵金属-Cu双金属/固体碱催化剂,详细表征、研究了催化剂的结构和它们在甘油氢解反应中的活性。实验发现:引入第二活性金属可以大幅降低反应温度和反应压力,同时缩短了反应时间。表征结果发现:Pd等第二金属的加入可以促进Cu2+的还原、增加H2的吸附量。2.0MPa H2、180℃下反应10小时(h), Pd0.04Cu0.4/Mg5.56Al2O8.56催化剂上表面Cu原子的平均比活性达到9.7mol-gly/mol-Cu/h,1,2-丙二醇的选择性达97%以上。
     通过调控四组分水滑石前驱体(Cu0.4Zn5.6-XMgXAl2(OH)16CO3)中的Zn/Mg比,制备了一系列酸碱可调的Cu/Zn-Mg-Al催化剂,详细表征了这些催化剂的酸碱性、形貌、结构、铜的分散度、氢溢流以及甘油吸附等特性。实验发现:在Cu0.4/Zn0.6Mg5.0Al2O8.6催化剂上,表面Cu原子的平均比活性高达9.7mol-gly/mol-Cu/h (180℃,2.0MPa H2,10h),这一活性与贵金属Pd改进的Cu/固体碱催化剂的活性相当;同时,这个催化剂的重复使用活性良好。在上述结果的基础上详细探讨了甘油氢解反应的机理及催化剂的构效关系规律,这个规律可以简单地概括为:Cu/Zn-Mg-Al系列催化剂在甘油氢解反应中的活性主要取决于催化剂的碱性和铜的分散度,除此以外,ZnO与Cu之间的氢溢流作用也可以明显促进甘油的转化。
     针对前面研究中发现的水滑石基催化剂高温焙烧后层板无序堆积、比表面积低、金属利用效率低等问题,采用机械强度高、热稳定性好、具有氢溢流特性的多壁碳纳米管作为支撑,合成了结构稳定、具有高比表面积和双介孔结构的多壁碳纳米管柱撑的水滑石材料。表征结果发现:多壁碳纳米管(MWCNT)与水滑石层板的紧密接触促进了层板中Cu2+的还原和MWCNT到Cu表面的氢转移。这种催化材料在甘油氢解反应中展现出优异的催化活性,表面Cu原子的平均比活性最高可达17.2mol-gly/mol-Cu/h (180℃)
     为了有效解决催化剂回收和重复利用的难题,本文还进一步设计和制备出了具有磁性的核壳型Fe2O3@CuMgAl催化剂,并将其用于甘油氢解反应中。通过XRD、N2-全吸附、H2-TPR、SEM、TEM、CO2-TPD、XPS等表征手段发现:核壳型Fe2O3@CuMgAl催化剂中铜的分散度较高,同时,水滑石层板沿Fe203微球有序的生长也使得这些层板的热稳定性得到了很大程度的提高,这种磁性催化剂易分离、循环使用效率高。
     最后,我还尝试了采用原位氢转移手段在惰性氛围下进行1,2-丙二醇的合成反应,详细考察了Cu-Mg-Al催化剂的碱性、氢转移试剂的种类等对甘油氢解制备丙二醇的反应活性和机理的影响。实验发现,Cu是一种高效的氢转移催化组分,乙醇的脱氢和甘油的氢解主要发生在Cu的表面;催化剂的活性还取决于其碱性,碱性的增强也有利于氢转移反应的进行。采用乙醇作为氢转移试剂,Cu0.4/Mg6.28Al1.32O8.26催化剂上甘油的转化率可达95.1%,1,2-丙二醇的选择性高于90%(210℃)。
Recently, much attention has been paid to the utilisation of renewable energy. Among them, biodiesel, which could replace petro-diesel, has been reported popularly all over the world for its safety and renewability. Biodiesel is produced from vegetable oils or animal fats via the transesterification process. Glycerol, as a major byproduct, is largely produced in this process. In recent years, with the expanding demand for biodiesel, glycerol is oversupplied. It is of great importance to convert glycerol into value-added chemicals. Hydrogenolysis of glycerol to propanediols (PDOs) has been regarded as one of the most promising processes.
     Cu-based catalyst has been investigated popularly for its lower price and high selectivity to1,2-propanediol (1,2-PDO) owing to its lower activity for C-C bond cleavage. The aim of this dissertation is to synthesize highly effective catalysts via layered double hydroxide (LDH) precursors under controlled drying, calcinations, and reduction. The main achievements of this work are:
     Highly effective bimetallic noble metal-Cu/solid base catalysts have been prepared from the LDH precursors by introducing a second active metal (Pd, Rh, Ru, Re). Characterizations disclosed that Pd, Rh, Ru, and Re promoted the reduction of Cu2+, enhanced its ability of adsorbing hydrogen, and lowered the reaction temperature, pressure and time significantly. The activity of surface Cu atoms in Pdo.o4Cuo.4/Mg5.56Al2O8.56reached9.7mol-gly/mol-Cu/h at180℃.
     A series of Cu/Zn-Mg-Al catalysts with different Zn/Mg molar ratios were prepared. The morphology, structure, acid-base properties, the dispersion of copper and hydrogen spillover were characterized. It was found that the acidity (and basicity) of these catalysts could be manipulated by adjusting the molar ratio of Zn/Mg. Cuo.4/Zn0.6Mg5.0Al2O8.6exhibited the best performance for hydrogenolysis of glycerol in aqueous solution at180℃. The calculated activity of surface Cu atom reached9.7mol-gly/mol-Cu/h, which was comparable to that of bimetallic Pd-Cu/solid base catalyst. It was concluded that the conversion of glycerol over Cu/Zn-Mg-Al catalyst depended strongly on both the basicity and the dispersion of Cu. At the same time, hydrogen spillover from ZnO to Cu also enhanced its performance. The catalyst could be recycled while maintaining a good catalytic activity.
     During the controlled thermal decomposition of LDH, the decomposition of interlayer anions and dehydroxylation of brucite-like sheets lead to the disordered stacking of lamellae. Certain places of the lamella could not be used efficiently owing to the overlap of lamellae. In order to solve this problem, multiwall carbon nanotube (MWCNT) was selected as the support, and a series of MWCNT-pillared layered Cu0.4/Mg5.6Al2O8.6materials with stable structure, doublet meso-pore channels and high surface area were fabricated and used for glycerol hydrogenolysis. Characterizations disclosed that the close contact of layered Cuo.4/Mg5.6Al2O8.6with MWCNT enhanced the reducibility of Cu2+. And the hydrogen spillover from MWCNT to Cu contributed to the conversion of glycerol. This material showed enhanced catalytic performance in glycerol hydrogenolysis reactions. The highest activity of surface Cu atom reached as high as17.2mol-gly/mol-Cu/h at180℃.
     Core-shell structured magnetic Fe2O3@CuMgAl LDH catalysts were synthesized for selective hydrogenolysis of glycerol. Characterizations of XRD, N2-adsorption, H2-TPR, SEM, TEM, CO2-TPD and XPS disclosed that the thermal stability of the LDH framework, the dispersion of Cu and its activity were enhanced simultaneously in the presence of Fe2O3. These magnetic catalysts could be easily separated by an external magnetic field and showed high efficiency in reuse.
     At last, synthesis of1,2-PDO with the required hydrogen produced from hydrogen donor molecule instead of H2was carried out. The reactions were performed over Cu-Mg-Al catalysts with different (Cu+Mg)/Al molar ratios. Different alcohols were selected as the hydrogen donors. It was found that the performance of Cu-Mg-Al catalysts for this reaction depended mainly on their basicity, and Cu was indispensable for this reaction because alcohol dehydrogenation was performed on Cu. With ethanol as the hydrogen donor, the conversion of glycerol over Cu0.4/Mg6.28Al1.32O8.26reached95.1%at210℃, and the selectivity of1,2-PDO is higher than90%in most experiments.
引文
[1]C.H. Zhou, J.N. Beltramini, Y.X. Fan, G.Q. Lu. Chemoselective catalytic conversion of glycerol as a biorenewable source to valuable commodity chemicals. Chem. Soc. Rev.2008,37: 527-549.
    [2]P.J. Lammers, B.J. Kerr, T.E. Weber, W.A. Dozier, M.T. Kidd, K. Bregendahl, M.S. Honeyman. Digestible and metabolizable energy of crude glycerol for growing pigs. J. Anim. Sci. 2008,86:602-608.
    [3]M. Ayoub, A.Z. Abdullah. Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renew. Sust. Energ. Rev.2012,16:2671-2686.
    [4]M. Pagliaro, R. Ciriminna, H. Kimura, M. Rossi, C. Della Pina. From Glycerol to Value-Added Products. Angew. Chem. Int. Ed.2007,46:4434-4440.
    [5]B. Katryniok, S. Paul, F. Dumeignil. Recent Developments in the Field of Catalytic Dehydration of Glycerol to Acrolein. ACS Catal.2013,3:1819-1834.
    [6]Z. Lin, H. Chu, Y. Shen, L. Wei, H. Liu, Y. Li. Rational preparation of faceted platinum nanocrystals supported on carbon nanotubes with remarkably enhanced catalytic performance. Chem. Commun.2009,7167-7169.
    [7]M.A. Dasari, P.P. Kiatsimkul, W.R. Sutterlin, G.J. Suppes. Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl. Catal. A 2005,281:225-231.
    [8]C.W. Chiu, M.A. Dasari, W.R. Sutterlin, G.J. Suppes. Removal of Residual Catalyst from Simulated Biodiesel's Crude Glycerol for Glycerol Hydrogenolysis to Propylene Glycol. Ind. Eng. Chem. Res.2005,45:791-795.
    [9]T. Kurosaka, H. Maruyama, I. Naribayashi, Y. Sasaki. Production of 1,3-propanediol by hydrogenolysis of glycerol catalyzed by Pt/WO3/ZrO2. Catal. Commun.2008,9:1360-1363.
    [10]J. Oh, S. Dash, H. Lee. Selective conversion of glycerol to 1,3-propanediol using Pt-sulfated zirconia. Green Chem.2011,13:2004-2007.
    [11]Y. Amada, Y. Shinmi, S. Koso, T. Kubota, Y. Nakagawa, K. Tomishige. Reaction mechanism of the glycerol hydrogenolysis to 1,3-propanediol over Ir-ReOx/SiO2 catalyst. Appl. Catal. B 2011, 105:117-127.
    [12]L. Huang, Y. Zhu, H. Zheng, G. Ding, Y. Li. Direct Conversion of Glycerol into 1,3-Propanediol over Cu-H4SiW12O40/SiO2, in Vapor Phase. Catal. Lett.2009,131:312-320.
    [13]Y. Nakagawa, X. Ning, Y. Amada, K. Tomishige. Solid acid co-catalyst for the hydrogenolysis of glycerol to 1,3-propanediol over Ir-ReOx/SiO2. Appl. Catal. A 2012,433-434:128-134.
    [14]Y. Nakagawa, M. Tamura, K. Tomishige. Catalytic materials for the hydrogenolysis of glycerol to 1,3-propanediol. J. Mater. Chem.2014.
    [15]B.C. Miranda, R.J. Chimentao, J.B.O. Santos, F. Gispert-Guirado, J. Llorca, F. Medina, F.L. Bonillo, J.E. Sueiras. Conversion of glycerol over 10%Ni/y-Al2O3 catalyst. Appl. Catal. B 2014,147: 464-480.
    [16]R.K. Saxena, P. Anand, S. Saran, J. Isar. Microbial production of 1,3-propanediol:Recent developments and emerging opportunities. Biotechnol. Adv.2009,27:895-913.
    [17]G.P. da Silva, M. Mack, J. Contiero. Glycerol:A promising and abundant carbon source for industrial microbiology. Biotechnol. Adv.2009,27:30-39.
    [18]J. Chaminand, L.a. Djakovitch, P. Gallezot, P. Marion, C. Pinel, C. Rosier. Glycerol hydrogenolysis on heterogeneous catalysts. Green Chem.2004,6:359-361.
    [19]Y. Kusunoki, T. Miyazawa, K. Kunimori, K. Tomishige. Highly active metal-acid bifunctional catalyst system for hydrogenolysis of glycerol under mild reaction conditions. Catal. Commun.2005, 6:645-649.
    [20]T. Miyazawa, Y. Kusunoki, K. Kunimori, K. Tomishige. Glycerol conversion in the aqueous solution under hydrogen over Ru/C+an ion-exchange resin and its reaction mechanism. J. Catal. 2006,240:213-221.
    [21]T. Miyazawa, S. Koso, K. Kunimori, K. Tomishige. Development of a Ru/C catalyst for glycerol hydrogenolysis in combination with an ion-exchange resin. Appl. Catal. A 2007,318: 244-251.
    [22]C. Montassier, D. Giraud, J. Barbier. Polyol conversion by liquid phase heterogeneous catalysis over metals. Stud. Surf. Sci. Catal.1988,41:165-170.
    [23]D.G. Lahr, B.H. Shanks. Kinetic Analysis of the Hydrogenolysis of Lower Polyhydric Alcohols:Glycerol to Glycols. Ind. Eng. Chem. Res.2003,42:5467-5472.
    [24]D.G. Lahr, B.H. Shanks. Effect of sulfur and temperature on ruthenium-catalyzed glycerol hydrogenolysis to glycols. J. Catal.2005,232:386-394.
    [25]T. Miyazawa, S. Koso, K. Kunimori, K. Tomishige. Glycerol hydrogenolysis to 1,2-propanediol catalyzed by a heat-resistant ion-exchange resin combined with Ru/C. Appl. Catal. A 2007,329:30-35.
    [26]E.S. Vasiliadou, E. Heracleous, I.A. Vasalos, A.A. Lemonidou. Ru-based catalysts for glycerol hydrogenolysis—Effect of support and metal precursor. Appl. Catal. B 2009,92:90-99.
    [27]J. Wang, S. Shen, B. Li, H. Lin, Y. Yuan. Ruthenium Nanoparticles Supported on Carbon Nanotubes for Selective Hydrogenolysis of Glycerol to Glycols. Chem. Lett.2009,38:572-573.
    [28]M. Balaraju, V. Rekha, B.L.A.P. Devi, R.B.N. Prasad, P.S.S. Prasad, N. Lingaiah. Surface and structural properties of titania-supported Ru catalysts for hydrogenolysis of glycerol. Appl. Catal. A 2010,384:107-114.
    [29]A. Alhanash, E. Kozhevnikova, I. Kozhevnikov. Hydrogenolysis of Glycerol to Propanediol Over Ru:Polyoxometalate Bifunctional Catalyst. Catal. Lett.2008,120:307-311.
    [30]S. Bolado, R.E. Trevino, M.T. Garcia-Cubero, G. Gonzalez-Benito. Glycerol hydrogenolysis to 1,2 propanediol over Ru/C catalyst. Catal. Commun.2010,12:122-126.
    [31]E.P. Maris, R.J. Davis. Hydrogenolysis of glycerol over carbon-supported Ru and Pt catalysts. J. Catal.2007,249:328-337.
    [32]E.P. Maris, W.C. Ketchie, M. Murayama, R.J. Davis. Glycerol hydrogenolysis on carbon-supported PtRu and AuRu bimetallic catalysts. J. Catal.2007,251:281-294.
    [33]L. Ma, D. He. Hydrogenolysis of Glycerol to Propanediols Over Highly Active Ru-Re Bimetallic Catalysts. Top. Catal.2009,52:834-844.
    [34]T. Jiang, Y. Zhou, S. Liang, H. Liu, B. Han. Hydrogenolysis of glycerol catalyzed by Ru-Cu bimetallic catalysts supported on clay with the aid of ionic liquids. Green Chem.2009,11: 1000-1006.
    [35]I. Furikado, T. Miyazawa, S. Koso, A. Shimao, K. Kunimori, K. Tomishige. Catalytic performance of Rh/SiO2 in glycerol reaction under hydrogen. Green Chem.2007,9:582-588.
    [36]Y. Shinmi, S. Koso, T. Kubota, Y. Nakagawa, K. Tomishige. Modification of Rh/SiO2 catalyst for the hydrogenolysis of glycerol in water. Appl. Catal. B 2010,94:318-326.
    [37]O.M. Daniel, A. DeLaRiva, E.L. Kunkes, A.K. Datye, J.A. Dumesic, R.J. Davis. X-ray Absorption Spectroscopy of Bimetallic Pt-Re Catalysts for Hydrogenolysis of Glycerol to Propanediols. ChemCatChem 2010,2:1107-1114.
    [38]Z. Yuan, P. Wu, J. Gao, X. Lu, Z. Hou, X. Zheng. Pt/Solid-Base:A Predominant Catalyst for Glycerol Hydrogenolysis in a Base-Free Aqueous Solution. Catal. Lett.2009,130:261-265.
    [39]J. ten Dam, F. Kapteijn, K. Djanashvili, U. Hanefeld. Tuning selectivity of Pt/CaCO3 in glycerol hydrogenolysis—A Design of Experiments approach. Catal. Commun.2011,13:1-5.
    [40]M.G. Musolino, L.A. Scarpino, F. Mauriello, R. Pietropaolo. Selective transfer hydrogenolysis of glycerol promoted by palladium catalysts in absence of hydrogen. Green Chem.2009,11: 1511-1513.
    [41]Y. Nakagawa, Y. Shinmi, S. Koso, K. Tomishige. Direct hydrogenolysis of glycerol into 1,3-propanediol over rhenium-modified iridium catalyst. J. Catal.2010,272:191-194.
    [42]S. Zhu, Y. Zhu, S. Hao, L. Chen, B. Zhang, Y. Li. Aqueous-Phase Hydrogenolysis of Glycerol to 1,3-propanediol Over Pt-H4SiW12O40/SiO2. Catal. Lett.2012,142:267-274.
    [43]S. Wang, H. Liu. Selective hydrogenolysis of glycerol to propylene glycol on Cu-ZnO catalysts. Catal. Lett.2007,117:62-67.
    [44]A. Bienholz, R. Blume, A. Knop-Gericke, F. Girgsdies, M. Behrens, P. Claus. Prevention of Catalyst Deactivation in the Hydrogenolysis of Glycerol by Ga2O3-Modified Copper/Zinc Oxide Catalysts. J. Phys. Chem.2010,115:999-1005.
    [45]A. Bienholz, F. Schwab, P. Claus. Hydrogenolysis of glycerol over a highly active CuO/ZnO catalyst prepared by an oxalate gel method:influence of solvent and reaction temperature on catalyst deactivation. Green Chem.2010,12:290-295.
    [46]J. Zhou, L. Guo, X. Guo, J. Mao, S. Zhang. Selective hydrogenolysis of glycerol to propanediols on supported Cu-containing bimetallic catalysts. Green Chem.2010,12:1835-1843.
    [47]Z. Zhou, X. Li, T. Zeng, W. Hong, Z. Cheng, W. Yuan. Kinetics of Hydrogenolysis of Glycerol to Propylene Glycol over Cu-ZnO-Al2O3 Catalysts. Chin. J. Chem. Eng.2010,18: 384-390.
    [48]R. Connor, K. Folkers, H. Adkins. THE PREPARATION OF COPPER-CHROMIUM OXIDE CATALYSTS FOR HYDROGENATION. J. Am. Chem. Soc.1932,54:1138-1145.
    [49]C. Montassier, J.M. Dumas, P. Granger, J. Barbier. Deactivation of supported copper based catalysts during polyol conversion in aqueous phase. Appl. Catal. A 1995,121:231-244.
    [50]L. Guo, J. Zhou, J. Mao, X. Guo, S. Zhang. Supported Cu catalysts for the selective hydrogenolysis of glycerol to propanediols. Appl. Catal. A 2009,367:93-98.
    [51]C. Liang, Z. Ma, L. Ding, J. Qiu. Template Preparation of Highly Active and Selective Cu-Cr Catalysts with High Surface Area for Glycerol Hydrogenolysis. Catal. Lett.2009,130:169-176.
    [52]Z. Huang, F. Cui, H. Kang, J. Chen, C. Xia. Characterization and catalytic properties of the CuO/SiO2 catalysts prepared by precipitation-gel method in the hydrogenolysis of glycerol to 1,2-propanediol:Effect of residual sodium. Appl. Catal. A 2009,366:288-298.
    [53]M. Akiyama, S. Sato, R. Takahashi, K. Inui, M. Yokota. Dehydration-hydrogenation of glycerol into 1,2-propanediol at ambient hydrogen pressure. Appl. Catal. A 2009,371:60-66.
    [54]L.C. Meher, R. Gopinath, S.N. Naik, A.K. Dalai. Catalytic Hydrogenolysis of Glycerol to Propylene Glycol over Mixed Oxides Derived from a Hydrotalcite-Type Precursor. Ind. Eng. Chem. Res.2009,48:1840-1846.
    [55]Z. Xiao, S. Jin, X. Wang, W. Li, J. Wang, C. Liang. Preparation, structure and catalytic properties of magnetically separable Cu-Fe catalysts for glycerol hydrogenolysis. J. Mater. Chem. 2012,22:16598-16605.
    [56]S. Zhu, X. Gao, Y. Zhu, Y. Zhu, H. Zheng, Y. Li. Promoting effect of boron oxide on Cu/SiO2 catalyst for glycerol hydrogenolysis to 1,2-propanediol. J. Catal.2013,303:70-79.
    [57]X. Guo, Y. Li, R. Shi, Q. Liu, E. Zhan, W. Shen. Co/MgO catalysts for hydrogenolysis of glycerol to 1,2-propanediol. Appl. Catal. A 2009,371:108-113.
    [58]Q. Liu, X. Guo, Y. Li, W. Shen. Dual roles of stearic acid in the synthesis of Co nanomaterials in polyol. Mater. Lett.2009,63:1407-1409.
    [59]A. Marinoiu, G. Ionita, C.L. Gaspar, C. Cobzaru, S. Oprea. Glycerol hydrogenolysis to propylene glycol. React. Kinet. Catal. Lett.2009,97:315-320.
    [60]J. Zhao, W. Yu, C. Chen, H. Miao, H. Ma, J. Xu. Ni/NaX:A Bifunctional Efficient Catalyst for Selective Hydrogenolysis of Glycerol. Catal. Lett.2010,134:184-189.
    [61]W. Yu, J. Xu, H. Ma, C. Chen, J. Zhao, H. Miao, Q. Song. A remarkable enhancement of catalytic activity for KBH4 treating the carbothermal reduced Ni/AC catalyst in glycerol hydrogenolysis. Catal. Commun.2010,11:493-497.
    [62]W. Yu, J. Zhao, H. Ma, H. Miao, Q. Song, J. Xu. Aqueous hydrogenolysis of glycerol over Ni-Ce/AC catalyst:Promoting effect of Ce on catalytic performance. Appl. Catal. A 2010,383: 73-78.
    [63]M. Balaraju, V. Rekha, P.S.S. Prasad, B.L.A.P. Devi, R.B.N. Prasad, N. Lingaiah. Influence of solid acids as co-catalysts on glycerol hydrogenolysis to propylene glycol over Ru/C catalysts. Appl. Catal. A 2009,354:82-87.
    [64]I. Gandarias, P.L. Arias, J. Requies, M.B. Guemez, J.L.G. Fierro. Hydrogenolysis of glycerol to propanediols over a Pt/ASA catalyst:The role of acid and metal sites on product selectivity and the reaction mechanism. Appl. Catal. B 2010,97:248-256.
    [65]Y. Li, L. Ma, H. Liu, D. He. Influence of HZSM5 on the activity of Ru catalysts and product selectivity during the hydrogenolysis of glycerol. Appl. Catal. A 2014,469,45-51.
    [66]J. Feng, J. Wang, Y. Zhou, H. Fu, H. Chen, X. Li. Effect of Base Additives on the Selective Hydrogenolysis of Glycerol over Ru/TiO2 Catalyst. Chem. Lett.2007,36:1274-1275.
    [67]Z. Yuan, J. Wang, L. Wang, W. Xie, P. Chen, Z. Hou, X. Zheng. Biodiesel derived glycerol hydrogenolysis to 1,2-propanediol on Cu/MgO catalysts. Bioresour. Technol.2010,101:7088-7092.
    [68]Z. Yuan, L. Wang, J. Wang, S. Xia, P. Chen, Z. Hou, X. Zheng. Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts. Appl. Catal. B 2011,101:431-440.
    [69]J.A. Gursky, S.D. Blough, C. Luna, C. Gomez, A.N. Luevano, E.A. Gardner. Particle-Particle Interactions between Layered Double Hydroxide Nanoparticles. J. Am. Chem. Soc.2006,128: 8376-8377.
    [70]G.R. Williams, D. O'Hare. Towards understanding, control and application of layered double hydroxide chemistry. J. Mater. Chem.2006,16:3065-3074.
    [71]A.M. Fogg, A.L. Rohl, G.M. Parkinson, D. O'Hare. Predicting Guest Orientations in Layered Double Hydroxide Intercalates, Chem. Mater.1999,11:1194-1200.
    [72]X. Guo, F. Zhang, D.G. Evans, X. Duan. Layered double hydroxide films:synthesis, properties and applications. Chem. Commun.2010,46:5197-5210.
    [73]S. He, Z. An, M. Wei, D.G. Evans, X. Duan. Layered double hydroxide-based catalysts: nanostructure design and catalytic performance. Chem. Commun.2013,49:5912-5920.
    [74]J. He, M. Wei, B. Li, Y. Kang, D.G. Evans, X. Duan. Preparation of Layered Double Hydroxides. Struct. Bond.2006,119:89-119.
    [75]Y. Zhao, F. Li, R. Zhang, D.G. Evans, X. Duan. Preparation of Layered Double-Hydroxide Nanomaterials with a Uniform Crystallite Size Using a New Method Involving Separate Nucleation and Aging Steps. Chem. Mater.2002,14:4286-4291.
    [76]H. Liu, E. Min. Catalytic oxidation of mercaptans by bifunctional catalysts composed of cobalt phthalocyanine supported on Mg-Al hydrotalcite-derived solid bases:effects of basicity. Green Chem.2006,8:657-662.
    [77]J.T. Feng, Y.J. Lin, D.G. Evans, X. Duan, D.Q. Li. Enhanced metal dispersion and hydrodechlorination properties of a Ni/Al2O3 catalyst derived from layered double hydroxides. J. Catal.2009,266:351-358.
    [78]L. He, Y. Huang, A. Wang, Y. Liu, X. Liu, X. Chen, J.J. Delgado, X. Wang, T. Zhang. Surface modification of Ni/Al2O3 with Pt:Highly efficient catalysts for H2 generation via selective decomposition of hydrous hydrazine. J. Catal.2013,298:1-9.
    [79]C. Qi, J.C. Amphlett, B.A. Peppley. Product composition as a function of temperature over NiAl-layered double hydroxide derived catalysts in steam reforming of methanol. Appl. Catal. A 2006,302:237-243.
    [80]F. Li, J. Liu, D.G. Evans, X. Duan. Stoichiometric Synthesis of Pure MFe2O4 (M=Mg, Co, and Ni) Spinel Ferrites from Tailored Layered Double Hydroxide (Hydrotalcite-Like) Precursors. Chem. Mater.2004,16:1597-1602.
    [1]C.J.G Van Der Grift, A.F.H. Wielers, B.P.J. Jogh, J. Van Beunum, M. De Boer, M. Versluijs-Helder, J.W. Geus, Effect of the reduction treatment on the structure and reactivity of silica-supported copper particles. J. Catal.1991,131:178-189.
    [2]A. Gervasini, S. Bennici, Dispersion and surface states of copper catalysts by temperature-programmed-reduction of oxidized surfaces (s-TPR). Appl. Catal., A 2005,281: 199-205.
    [1]Z. Yuan, J. Wang, L. Wang, W. Xie, P. Chen, Z. Hou, X. Zheng. Biodiesel derived glycerol hydrogenolysis to 1,2-propanediol on Cu/MgO catalysts. Bioresour. Technol.2010,101:7088-7092.
    [2]Z. Yuan, L. Wang, J. Wang, S. Xia, P. Chen, Z. Hou, X. Zheng. Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts. Appl. Catal. B 2011,101:431-440.
    [3]M.G. Musolino, L.A. Scarpino, F. Mauriello, R. Pietropaolo. Glycerol Hydrogenolysis Promoted by Supported Palladium Catalysts. ChemSusChem 2011,4:1143-1150.
    [4]O.M. Daniel, A. DeLaRiva, E.L. Kunkes, A.K. Datye, J.A. Dumesic, R.J. Davis. X-ray Absorption Spectroscopy of Bimetallic Pt-Re Catalysts for Hydrogenolysis of Glycerol to Propanediols. ChemCatChem 2010,2:1107-1114.
    [5]Y. Amada, Y. Shinmi, S. Koso, T. Kubota, Y. Nakagawa, K. Tomishige. Reaction mechanism of the glycerol hydrogenolysis to 1,3-propanediol over Ir-ReOx/SiO2 catalyst. Appl. Catal. B 2011,105: 117-127.
    [6]S. Kannan, A. Dubey, H. Knozinger. Synthesis and characterization of CuMgAl ternary hydrotalcites as catalysts for the hydroxylation of phenol. J. Catal.2005,231:381-392.
    [7]I. Melian-Cabrera, M.L. Granados, J.L.G. Fierro. Pd-Modified Cu-Zn Catalysts for Methanol Synthesis from CO2/H2 Mixtures:Catalytic Structures and Performance. J. Catal.2002,210: 285-294.
    [8]O.M. Ilinich, E.N. Gribov, P.A. Simonov. Water denitrification over catalytic membranes: hydrogen spillover and catalytic activity of macroporous membranes loaded with Pd and Cu. Catal. Today 2003,82:49-56.
    [9]D.R. Luebke, L.S. Vadlamannati, V.I. Kovalchuk, J.L. d'Itri. Hydrodechlorination of 1,2-dichloroethane catalyzed by Pt-Cu/C:effect of catalyst pretreatment. Appl. Catal. B 2002,35: 211-217.
    [10]C.J.G Van Der Grift, A.F.H. Wielers, B.P.J. Jogh, J. Van Beunum, M. De Boer, M. Versluijs-Helder, J.W. Geus. Effect of the reduction treatment on the structure and reactivity of silica-supported copper particles. J. Catal.1991,131:178-189.
    [11]H. Wilmer, T. Genger, O. Hinrichsen. The interaction of hydrogen with alumina-supported copper catalysts:a temperature-programmed adsorption/temperature-programmed desorption/isotopic exchange reaction study. J. Catal.2003,215:188-198.
    [12]T. Miyazawa, S. Koso, K. Kunimori, K. Tomishige. Development of a Ru/C catalyst for glycerol hydrogenolysis in combination with an ion-exchange resin. Appl. Catal. A 2007,318: 244-251.
    [13]C.W. Chiu, M.A. Dasari, W.R. Sutterlin, GJ. Suppes. Removal of Residual Catalyst from Simulated Biodiesel's Crude Glycerol for Glycerol Hydrogenolysis to Propylene Glycol. Ind. Eng. Chem. Res.2005,45:791-795.
    [14]Z. Yuan, P. Wu, J. Gao, X. Lu, Z. Hou, X. Zheng. Pt/Solid-Base:A Predominant Catalyst for Glycerol Hydrogenolysis in a Base-Free Aqueous Solution. Catal. Lett.2009,130:261-265.
    [15]J. Feng, J. Wang, Y. Zhou, H. Fu, H. Chen, X. Li. Effect of Base Additives on the Selective Hydrogenolysis of Glycerol over Ru/TiO2 Catalyst. Chem. Lett.2007,36:1274-1275.
    [16]S. Wang, H. Liu. Selective hydrogenolysis of glycerol to propylene glycol on Cu-ZnO catalysts. Catal. Lett.2007,117:62-67.
    [17]A. Bienholz, F. Schwab, P. Claus. Hydrogenolysis of glycerol over a highly active CuO/ZnO catalyst prepared by an oxalate gel method:influence of solvent and reaction temperature on catalyst deactivation. Green Chem.2010,12:290-295.
    [18]J. Liang, R. Ma, N. Iyi, Y. Ebina, K. Takada, T. Sasaki. Topochemical Synthesis, Anion Exchange, and Exfoliation of Co-Ni Layered Double Hydroxides:A Route to Positively Charged Co-Ni Hydroxide Nanosheets with Tunable Composition. Chem. Mater.2009,22:371-378.
    [19]T. Genger, O. Hinrichsen, M. Muhler. The temperature-programmed desorption of hydrogen from copper surfaces. Catal. Lett.1999,59:137-141.
    [1]R.B. Mane, A. A. Ghalwadkar, A.M. Hengne, Y.R. Suryawanshi, C.V. Rode. Role of promoters in copper chromite catalysts for hydrogenolysis of glycerol. Catal. Today 2011,164:447-450.
    [2]L. Guo, J. Zhou, J. Mao, X. Guo, S. Zhang. Supported Cu catalysts for the selective hydrogenolysis of glycerol to propanediols. Appl. Catal. A 2009,367:93-98.
    [3]S. Wang, H. Liu. Selective hydrogenolysis of glycerol to propylene glycol on Cu-ZnO catalysts. Catal. Lett.2007,117: 62-67.
    [4]Z. Yuan, L. Wang, J. Wang, S. Xia, P. Chen, Z. Hou, X. Zheng. Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts. Appl. Catal. B 2011,101:431-440.
    [5]G. Busca. Bases and Basic Materials in Chemical and Environmental Processes. Liquid versus Solid Basicity. Chem. Rev.2010,110:2217-2249.
    [6]J.S. Valente, H. Pfeiffer, E. Lima, J. Prince, J. Flores. Cyanoethylation of alcohols by activated Mg-Al layered double hydroxides: Influence of rehydration conditions and Mg/Al molar ratio on Bronsted basicity. J. Catal.2011,279:196-204.
    [7]Y. Xi, R.J. Davis. Influence of water on the activity and stability of activated MgAl hydrotalcites for the transesterification of tributyrin with methanol. J. Catal. 2008,254: 190-197.
    [8]A. Corma, S.B.A. Hamid, S. Iborra, A. Velty. Lewis and Bronsted basic active sites on solid catalysts and their role in the synthesis of monoglycerides. J. Catal.2005,234:340-347.
    [9]S. Xia, Z. Yuan, L. Wang, P. Chen, Z. Hou. Hydrogenolysis of glycerol on bimetallic Pd-Cu/solid-base catalysts prepared via layered double hydroxides precursors. Appl. Catal. A 2011, 403:173-182.
    [10]I. Melian-Cabrera, M.L. Granados, J.L.G. Fierro. Pd-Modified Cu-Zn Catalysts for Methanol Synthesis from CO2/H2 Mixtures: Catalytic Structures and Performance. J. Catal. 2002, 210: 285-294.
    [11]H. Wilmer, T. Genger, O. Hinrichsen. The interaction of hydrogen with alumina-supported copper catalysts: a temperature-programmed adsorption/temperature-programmed desorption/isotopic exchange reaction study. J. Catal. 2003,215:188-198.
    [12]F. Arena, G. Italiano, K. Barbera, S. Bordiga, G. Bonura, L. Spadaro, F. Frusteri. Solid-state interactions, adsorption sites and functionality of Cu-ZnO/ZrO2 catalysts in the CO2 hydrogenation to CH3OH. Appl. Catal. A 2008,350:16-23.
    [13]S. Chai, H. Wang, Y. Liang, B. Xu. Sustainable production of acrolein: investigation of solid acid-base catalysts for gas-phase dehydration of glycerol. Green Chem.2007,9:1130-1136.
    [14]A.A. Vargas-Tah, R.C. Garcia, L.F.P. Archila, J.R. Solis, A.J.G. Lopez. A study on sulfur reduction in FCC gasoline using Zn-Mg-Al spinels. Catal. Today 2005,107-108:713-718.
    [15]A. Mudalige, J.E. Pemberton. Raman spectroscopy of glycerol/D2O solutions. Vib. Spectrosc 2007,45:27-35.
    [16]D. Liang, J. Gao, H. Sun, P. Chen, Z. Hou, X. Zheng. Selective oxidation of glycerol with oxygen in a base-free aqueous solution over MWNTs supported Pt catalysts. Appl. Catal. B 2011, 106:423-432.
    [17]J. Gao, D. Liang, P. Chen, Z. Hou, X. Zheng. Oxidation of Glycerol with Oxygen in a Base-free Aqueous Solution over Pt/AC and Pt/MWNTs Catalysts. Catal. Lett.2009,130:185-191.
    [18]I. Gandarias, P.L. Arias, J. Requies, M.B. Guemez, J.L.G. Fierro. Hydrogenolysis of glycerol to propanediols over a Pt/ASA catalyst: The role of acid and metal sites on product selectivity and the reaction mechanism. Appl. Catal. B 2010,97:248-256.
    [19]J. Zhou, J. Zhang, X. Guo, J. Mao, S. Zhang. Ag/Al2O3 for glycerol hydrogenolysis to 1,2-propanediol: activity, selectivity and deactivation. Green Chem.2012,14:156-163.
    [21]E.S. Vasiliadou, A.A. Lemonidou. Investigating the performance and deactivation behaviour of silica-supported copper catalysts in glycerol hydrogenolysis. Appl. Catal. A 2011,396:177-185.
    [22]Z. Wu, Y. Mao, X. Wang, M. Zhang. Preparation of a Cu-Ru/carbon nanotube catalyst for hydrogenolysis of glycerol to 1,2-propanediol via hydrogen spillover. Green Chem.2011,13: 1311-1316.
    [23]S. Xia, Z. Yuan, L. Wang, P. Chen, Z. Hou. Catalytic production of 1,2-propanediol from glycerol in bio-ethanol solvent. Bioresour. Technol.2012,104:814-817.
    [1]Z.P. Xu, G.Q. Lu. Hydrothermal Synthesis of Layered Double Hydroxides (LDHs) from Mixed MgO and A12O3:LDH Formation Mechanism. Chem. Mater.2005,17:1055-1062.
    [2]Z. Yuan, L. Wang, J. Wang, S. Xia, P. Chen, Z. Hou, X. Zheng. Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts. Appl. Catal. B 2011,101:431-440.
    [3]S. Xia, Z. Yuan, L. Wang, P. Chen, Z. Hou. Hydrogenolysis of glycerol on bimetallic Pd-Cu/solid-base catalysts prepared via layered double hydroxides precursors. Appl. Catal. A 2011, 403:173-182.
    [4]H.B. Zhang, X. Dong, G.D. Lin, X.L. Liang, H.Y. Li. Carbon nanotube-promoted Co-Cu catalyst for highly efficient synthesis of higher alcohols from syngas. Chem. Commun.2005,5094-5096.
    [5]X. Dong, X.L. Liang, H.Y. Li, G.D. Lin, P. Zhang, H.B. Zhang. Preparation and characterization of carbon nanotube-promoted Co-Cu catalyst for higher alcohol synthesis from syngas. Catal. Today 2009,147:158-165.
    [6]Z. Wu, Y. Mao, X. Wang, M. Zhang. Preparation of a Cu-Ru/carbon nanotube catalyst for hydrogenolysis of glycerol to 1,2-propanediol via hydrogen spillover. Green Chem. 2011,13: 1311-1316.
    [7]S. Zhu, X. Gao, Y. Zhu, Y. Zhu, H. Zheng, Y. Li. Promoting effect of boron oxide on Cu/SiO2 catalyst for glycerol hydrogenolysis to 1,2-propanediol. J. Catal.2013,303:70-79.
    [1]I. Gandarias, J. Requies, P.L. Arias, U. Armbruster, A. Martin. Liquid-phase glycerol hydrogenolysis by formic acid over Ni-Cu/Al2O3 catalysts. J. Catal.2012,290:79-89.
    [2]A. Martin, U. Armbruster, I. Gandarias, P.L. Arias. Glycerol hydrogenolysis into propanediols using in situ generated hydrogen-A critical review. Eur. J. Lipid Sci. Technol.2013,115:9-27.
    [3]R.B. Mane, C.V. Rode. Simultaneous glycerol dehydration and in situ hydrogenolysis over Cu-Al oxide under an inert atmosphere. Green Chem.2012,14:2780-2789.
    [4]E. D'Hondt, S. Van de Vyver, B.F. Sels, P.A. Jacobs. Catalytic glycerol conversion into 1,2-propanediol in absence of added hydrogen. Chem. Commun.2008,6011-6012.
    [5]A. Yin, X. Guo, W. Dai, K. Fan. The synthesis of propylene glycol and ethylene glycol from glycerol using Raney Ni as a versatile catalyst. Green Chem.2009,11:1514-1516.
    [6]D. Roy, B. Subramaniam, R.V. Chaudhari. Aqueous phase hydrogenolysis of glycerol to 1,2-propanediol without external hydrogen addition. Catal. Today 2010,156:31-37.
    [7]I. Gandarias, P.L. Arias, J. Requies, M. El Doukkali, M.B. Guemez. Liquid-phase glycerol hydrogenolysis to 1,2-propanediol under nitrogen pressure using 2-propanol as hydrogen source. J. Catal.2011,282:237-247.
    [8]A. Wolfson, C. Dlugy, Y. Shotland, D. Tavor. Glycerol as solvent and hydrogen donor in transfer hydrogenation-dehydrogenation reactions. Tetrahedron Lett.2009,50:5951-5953.
    [9]M.G Musolino, L.A. Scarpino, F. Mauriello, R. Pietropaolo. Selective transfer hydrogenolysis of glycerol promoted by palladium catalysts in absence of hydrogen. Green Chem.2009,11: 1511-1513.
    [10]I. Gandarias, P.L. Arias, S.G. Fernandez, J. Requies, M. El Doukkali, M.B. Guemez. Hydrogenolysis through catalytic transfer hydrogenation: Glycerol conversion to 1,2-propanediol. Catal. Today 2012,195:22-31.
    [11]Z. Yuan, P. Wu, J. Gao, X. Lu, Z. Hou, X. Zheng. Pt/Solid-Base: A Predominant Catalyst for Glycerol Hydrogenolysis in a Base-Free Aqueous Solution. Catal. Lett.2009,130:261-265.
    [12]Z. Yuan, L. Wang, J. Wang, S. Xia, P. Chen, Z. Hou, X. Zheng. Hydrogenolysis of glycerol over homogenously dispersed copper on solid base catalysts. Appl. Catal. B 2011,101:431-440.
    [13]G. Busca. Bases and Basic Materials in Chemical and Environmental Processes. Liquid versus Solid Basicity. Chem. Rev.2010,110:2217-2249.
    [14]J.S. Valente, H. Pfeiffer, E. Lima, J. Prince, J. Flores. Cyanoethylation of alcohols by activated Mg-Al layered double hydroxides: Influence of rehydration conditions and Mg/Al molar ratio on Bronsted basicity. J. Catal.2011,279:196-204.
    [15]Y. Xi, R.J. Davis. Influence of water on the activity and stability of activated MgAl hydrotalcites for the transesterification of tributyrin with methanol. J. Catal.2008,254:190-197.
    [16]A. Corma, S.B.A. Hamid, S. Iborra, A. Velty. Lewis and Bronsted basic active sites on solid catalysts and their role in the synthesis of monoglycerides. J. Catal.2005,234: 340-347.
    [17]S. Xia, R. Nie, X. Lu, L. Wang, P. Chen, Z. Hou. Hydrogenolysis of glycerol over Cu0.4/Zn5.6-xMgxAl2O8.6 catalysts: The role of basicity and hydrogen spillover. J. Catal.2012,296: 1-11.
    [18]G Carotenuto, R. Tesser, M. Di Serio, E. Santacesaria. Kinetic study of ethanol dehydrogenation to ethyl acetate promoted by a copper/copper-chromite based catalyst. Catal. Today 2013,203:202-210.
    [19]F.W. Chang, H.C. Yang, L.S. Roselin, W.Y. Kuo. Ethanol dehydrogenation over copper catalysts on rice husk ash prepared by ion exchange. Appl. Catal. A 2006,304:30-39.
    [20]M.A. Dasari, P.-P. Kiatsimkul, W.R. Sutterlin, G.J. Suppes. Low-pressure hydrogenolysis of glycerol to propylene glycol. Appl. Catal. A 2005,281:225-231.
    [21]Y. Nakagawa, Y. Shinmi, S. Koso, K. Tomishige. Direct hydrogenolysis of glycerol into 1,3-propanediol over rhenium-modified iridium catalyst. J. Catal.2010,272:191-194.
    [22]Y Amada, Y. Shinmi, S. Koso, T. Kubota, Y. Nakagawa, K. Tomishige. Reaction mechanism of the glycerol hydrogenolysis to 1,3-propanediol over Ir-ReOx/SiO2 catalyst. Appl. Catal. B 2011,105: 117-127.
    [23]C. Pendem, P. Gupta, N. Chaudhary, S. Singh, J. Kumar, T. Sasaki, A. Datta, R. Bal. Aqueous phase reforming of glycerol to 1,2-propanediol over Pt-nanoparticles supported on hydrotalcite in the absence of hydrogen. Green Chem.2012,14: 3107-3113.
    [24]R.B. Mane, C.V. Rode. Continuous Dehydration and Hydrogenolysis of Glycerol over Non-Chromium Copper Catalyst: Laboratory-Scale Process Studies. Org. Process Res. Dev. 2012, 16:1043-1052.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700