以鳞片石墨为原料的多功能碳材料的制备与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多功能碳材料是一种石墨层间化合物(GIC),它的热膨胀产物—膨胀石墨具有发达的网络状孔型结构,以及比较高的比表面积和表面活性。这种材料具有耐热、耐辐射,密封和自润滑性,耐腐蚀性和各向异性等特点,可制成优异的导电、导热、隔热、保温等材料,也可以作为催化剂或催化剂载体。为深入开发和利用多功能碳材料,本研究主要做了一下工作:
     1.进一步研究和探索了制备制备多功能碳材料的新工艺和新方法,主要涉及:将实验室制备与工业生产紧密地结合,成功地研究制备出完全拥有知识产权的不使用浓硝酸、稀硝酸等含硝基化合物的不含硫的、低温可膨胀的多功能碳材料的制备方法,并采用这些技术制备了多功能碳材料,它不仅满足了本的研究需要,还为大规模生产奠定了基础。另外,制备了应用研究过程中需要的起始膨胀温度高的多功能碳材料,为生产市场需要的该种材料提供了技术。更重要的是还用超声波技术建立了制备多功能碳材料的技术,它是继电化学法和化学氧化法之后,制备多功能碳材料的第三种技术,也是对生产多功能碳材料工艺路线的一次重要革新。
     2.以鳞片石墨为原料,采用化学氧化法和超声波法制备多功能碳材料路线为基础,制备出膨胀石墨负载的含硫的和不含硫的纳米二氧化钛的复合物(Nano-TiO2/EGC)。用X-衍射、扫描电镜和透射电镜对膨胀石墨负载的纳米二氧化钛复合材料进行了表征。模拟研究了含硫的Nano-TiO2/EGC对甲基橙与农药污水的吸附和光催化降解作用,结果说明Nano-TiO2/EGC对甲基橙和多种农药的有良好的吸附作用和光催化降解功能。实验还发现不同的膨化温度对纳米二氧化钛的晶形结构有影响,硫含量对光催化降解甲基橙和农药也有影响。
     3.建立了以多功能碳材料作为石墨固体膨胀剂,与苯胺单体原位聚合合成可膨胀聚苯胺/石墨固体膨胀剂复合物,然后进行热膨胀的原位聚合-热膨胀的技术。用这种原位聚合-热膨胀技术,并且成功地合成了聚苯胺/膨胀石墨复合物。X-衍射、扫描电镜和红外等手段表征显示聚苯胺/膨胀石墨复合物具有聚苯胺包覆在膨胀石墨上的结构,这种复合材料将聚苯胺的形貌改变成泡沫状,增强了其导电性能,降低了密度,它有望在航天及其它高科技领域得到应用。
     综上所述,本研究不仅为制被性能各异的多种多功能碳材料提供了工艺路线,同时也为制备可回收利用催化剂、环境污染治理和导电复合材料奠定了理论与实验基础,因此具有较好的理论与应用价值。
Preparation and application research of multifunction carbon materials (MCM; trade name: Expandable graphite) had been reported. In the paper, Flake graphite was applied as raw materials, and the methods of chemistry oxidation and ultrasonic were used to prepare MCM. On the basement of the methods, the characteristic of heat expansion was applied to prepare the composites, of which exfoliated graphite loaded sulfur-containing and sulfur-free nanometer TiO2 (Nano-TiO2/expanded graphite composites, Nano-TiO2/EGC), and containing-sulfur nano-TiO2/EGC was used to photocatalyze degradation and adsorb for methyl orange (MO) and pesticides simulation wastewater. Meanwhile, Flake graphite was applied as as raw materials, and the methods of chemistry oxidation and ultrasonic were used to prepare MCM which had the characteristic of sulfur-free and low temperature expansion. The MCM was applied as graphite solid vesicant, and polyaniline/graphite composites were prepared in situ synthesis by the heat expansion technology. The morphlogy of polyaniline was changed in the process of heat expansion, and the conductivity of polyaniline was also enhanced.
     In the process of MCM preparation, the research was combined with the production close. Sulfur-free MCM was prepared successfully by the chemistry oxidation method which possessed intellectual property right completely and concentrated or thin nitric acid or nitrogen-containing compounds was not applied. Meanwhile, sulfur-MCM provided with the characteristics of low temperature expansion. The method not only satisfied with the research in the paper, but also established a foundation for producing MCM on a large scale. In addition, MCM which possessed higher expansion temperature was also prepared by the methods of chemistry oxidation and ultrasonic, and the methods would also supply a foundation for producing the MCM. It was very important that ultrasound irradiation technology was applied to prepare MCM. Meanwhile, the technology was also a renovation of technics route.
     In the process of MCM application, the characteristic of heat expansion was applied to prepare sulfur-containing and sulfur-free Nano-TiO2/EGC for the first time via changing the intercalation compounds. The characterization of XRD, SEM and TEM exhibited that they were composed by nanometer TiO2 and exfoliated graphite. The experiment results illuminated that Nano-TiO2/EGC owned the photocatalysis degradation of Nano-TiO2 and the adsorption capability of exfoliated graphite for MO and pesticides simulation wastewater synchronously. Meanwhile, the experiment results also exhibited that the crystal structure of Nano-TiO2 were influenced by the expansion temperatures, and the photocatalysis degradation for MO and pesticides was influenced by the sulfur content inside Nano-TiO2/EGC. In addition, MCM was used as graphite solid vesicant (GSV), and the technology of which polyaniline/exfoliated graphite composites (PAN/EGC) were prepared by in situ synthesis and heat expansion was set up by synthesizing expandable polyaniline/GSV composites (EPAN/GSVC) and heating the expansion of EPAN/GSVC later. The characterization of XRD, SEM and IR shew that PAN/EGC provided with the spumous morphology and the structure which polyaniline covered on exfoliated graphite.
引文
[1]李冀辉,李晶,刘淑芬,使用50目鳞片石墨制备多功能碳材料,非金属矿,2007年,第30卷第4期,14-16页
    [2]Xiling Chen, Kemin Song, Jihui Li, Preparation of lower-sulfur content and expandable graphite, Carbon 1996, Vol.34, No.12, pp.1599-1603.
    [3]李冀辉, 黎梅, 扈海英, 高风格,制备低硫可膨胀石墨的新方法,新型炭材料,1999年,第14卷第1期,65-67页
    [4]黎梅,李冀辉,扈海英,浓硫酸在可膨胀石墨制备中的作用,河北师范大学学报(自然科学版),1999年,第23卷第2期,238-240页
    [5]李冷,曾宪滨,石墨层间化合物(GIC)的研究及应用,非金属矿,1994年,第97卷,58-63页
    [6]传秀云,石墨层间化合物的合成技术及应用前景,非金属矿,1997年,第4期,18-21页
    [7]田金星,丁荣芝,石墨层间化合物的开发与应用前景,国外金属矿选矿,1994年,第1期,20-26页
    [8]康飞宇,石墨层间化合物和膨胀石墨,新型炭材料,2000年,15卷第4期,80页
    [9]任京成,沈万慈,杨赞中,袁伟,柔性石墨材料和膨胀石墨材料的现状及发展趋势,非金属矿,1999年,第22卷第5期,5-9页
    [10]郭丽华,石墨层间化合物的结构及合成技术,哈尔滨师范大学学报(自然科学报),2005年,第21卷第3期,68-72页
    [11]周伟,董建,兆恒,沈万慈,康飞宇,膨胀石墨结构的研究,炭素技术,2000年,第4期,26-30页
    [12]曹乃珍,沈万慈,温诗铸,膨胀石墨微观孔结构的特点及其表征,物理化学学报,1996年,第12卷第8期,766-768
    [13]刘国钦,肖开淮,何琳玲,王重生,膨胀石墨及其制备技术,攀枝花大学学报,1995年,第12卷第1期,39-46页
    [14]Wei Li, Chong Han, Wei Liu, Minghui Zhang, Keyi Tao, Expanded graphite applied in the catalytic process as a catalyst support, Catalysis Today,2007,125 (3-4) 278-281.
    [15]李冀辉,刘占荣,刘巧云,可膨胀石墨催化合成乙酸苄酯,2003年,第20卷第4期,371-372页
    [16]李冀辉,武戈,杨丽娜,可膨胀石墨催化合成季戊四醇双缩苯甲醛,化学世界2004,148-153页
    [17]刘占荣,张萍,魏青,许保恩,李冀辉,可膨胀石墨催化合成三乙酸甘油酯,河北师范大学学报(自然科学版),第30卷第3期,329-335页
    [18]刘占荣,张萍,许保恩,武戈,李冀辉,可膨胀石墨催化合成乳酸正丁酯,2007年,第29卷第11期,693-694页
    [19]周迎春,刘兴江,孟立凯,可膨胀石墨催化合成丙烯酸甲酯,天津化工,2004年,第18卷第1期,14-15页
    [20]周迎春,刘兴江,孟立凯,可膨胀石墨催化合成醋酸丁酯,化工生产与技术,2003年,第10卷第6期,21-22页
    [21]张英群,王春,刘卉闵,贾欣欣,可膨胀石墨催化合成醋酸正丁酯研究,化学世界,2001年第5期,259-260页
    [22]Applicants:Seiren Co Ltd and Daikyo Chemical Co Ltd, Japan, Seal with expandable graphite, Sealing Technology,2007 (1) 16.
    [23]N.E. Sorokina, A.V. Redchitz, S.G Ionov, V.V. Avdeev, Different exfoliated graphite as a base of sealing materials, Journal of Physics and Chemistry of Solids,2006,67 (5-6)1202-1204.
    [24]Mary Roe, Andrew Torrance, Performance prediction of exfoliated graphite seals:Determination of parameters and verification of model, Sealing Technology,2008, (4) 6-13.
    [25]赵雪飞,车传仁,张殿友,新型膨胀石墨复合保温材料的研究,冶金能源,2001,第20卷5期,42-44页
    [26]Zhenyu Wang, Enhou Han, Wei Ke, Influence of expandable graphite on fire resistance and water resistance of flame-retardant coatings, Corrosion Science,2007,49 (5) 2237-2253.
    [27]M. Modesti, A. Lorenzetti, F. Simioni, G. Camino, Effects of EG and MoSi2 on thermal degradation of intumescent coating, Polymer Degradation and Stability,2007,92 (4) 569-579.
    [28]Guoxin Li, Guozheng Liang, Tingshu He, Qinli Yang, Xuefeng Song, Synergistic effects of expandable graphite with some halogen-free flame retardants in polyolefin blends, Polymer Degradation and Stability,2001,71 (3) 375-380.
    [29]Rongcai Xie, Baojun Qu, Thermo-oxidative degradation behaviors of expandable graphite-based intumescent halogen-free flame retardant LLDPE blends, Polymer Degradation and Stability,2001,71 (3) 395-402.
    [30]Hidetaka Konno, Takahiro Morishita, Chuanyun Wan, Takashi Kasashima, Hiroki Habazaki, Michio Inagaki, Si-C-O glass-like compound/exfoliated graphite composites for negative electrode of lithium ion battery, Carbon,2007,45 (3) 477-483.
    [31]Bryan Debelak, Khalid Lafdi, Use of exfoliated graphite filler to enhance polymer physical properties, Carbon,2007,45 (9) 1727-1734.
    [32]Arup Bhattacharya, Ashoke Hazra, Someswar Chatterjee, Pratik Sen, Soumi Laha, I. Basumallick, Expanded graphite as an electrode material for an alcohol fuel cell, Journal of Power Sources,2004, 136(2)208-210.
    [33]F. Vieira, I. Cisneros, M.T.C. Sansiviero, A.M. Miranda, N.G. Rosa, U.B. Lima, N.D.S. Mohallem, Preparation processes and properties of expanded graphite for alkaline batteries, Journal of Physics and Chemistry of Solids,2006,67 (5-6) 1208-1212.
    [34]L.N. Song, M. Xiao, X.H. Li, Y.Z. Meng, Short carbon fiber reinforced electrically conductive aromatic polydisulfide/expanded graphite nanocomposites, Materials Chemistry and Physics,2005,93 (1) 122-128.
    [35]张紫浩,郭炳彦,张永强,膨胀石墨对毫米波衰减性能研究,光电技术应用,2007年,第22卷第5期,24-34页
    [36]周明善,李澄俊,徐铭,吴正东,膨胀石墨复合材料的电磁特性及其3mm、8mm波动态衰减性能研究,无机材料学报,2007年第22卷第3期,5.9-513页
    [37]Sagar Mitra, K.S. Lokesh, S. Sampath, Exfoliated Graphite-Ruthenium Oxide Composite Electrodes for Electrochemical Supercapacitors, Journal of Power Sources, In Press, Accepted Manuscript, Available online 18 September 2008.
    [38]Chuanyun Wan, Kazuhisa Azumi, Hidetaka Konno, Hydrated Mn(Ⅳ) oxide-exfoliated graphite composites for electrochemical capacitor, Electrochimica Acta,2007,52 (9) 3061-3066.
    [39]李冀辉,冯莉莉,贾志欣,以膨胀石墨为填料的防静电涂料的研究,上海涂料,第43卷第12期,1-2页
    [40]李冀辉,发明专利公报,2005年6月29日,第21卷,第26号(总第1007)申请号200410009754.X,公开号CN1632002A,188页
    [41]刘淑芬,李冀辉,杨丽娜,膨胀石墨对直接染料废水吸附脱色研究,化工环保,2006年,第26卷第3期,182-184页
    [42]李冀辉,高元哲,刘淑芬,杨丽娜,膨胀石墨对酸性染料废水的吸附脱色作用,四川大学学报(自然科学版),2007年,第44卷第2期,399-402页
    [43]刘淑芬,李冀辉,膨胀石墨对活性艳红X-3B染料的吸附脱色,城市环境与城市生态,2006年第19卷2期,23-24页
    [44]李冀辉,杨丽娜,武戈,膨胀石墨对水相中酸性媒介黄GG的吸附研究,化工环保,2004年第24卷,374-375页
    [45]李冀辉,刘淑芬,膨胀石墨与活性炭对工业油吸附性的对比研究,化学世界,2005年第9期,513-515页
    [46]刘淑芬,李冀辉,膨胀石墨与活性炭对几种工业油吸附性研究,四川大学学报(自然科学版),2005年,第42卷第6期,1210-1212页
    [47]李冀辉,刘淑芬,膨胀石墨吸附工业油品的研究,河北师范大学学报(自然科学版),2004年,第28卷第6期,599-601页
    [48]李冀辉,刘淑芬,膨胀石墨孔结构及其吸附性能研究,非金属矿,2004年,第27卷第4期,44-45页
    [49]Mei Li, Ji-Tai Li, Han-Wen Sun, Sonochemical decolorization of acid black 210 in the presence of exfoliated graphite, Ultrasonics Sonochemistry,2008,15(1) 37-42.
    [50]Ji-Tai Li, Mei Li, Ji-Hui Li, Han-Wen Sun, Decolorization of azo dye direct scarlet 4BS solution using exfoliated graphite under ultrasonic irradiation, Ultrasonics Sonochemistry,2007,14 (2) 241-245.
    [51]Ji-Tai Li, Mei Li, Ji-Hui Li, Han-Wen Sun, Removal of disperse blue 2BLN from aqueous solution by combination of ultrasound and exfoliated graphite, Ultrasonics Sonochemistry,2007,14 (1) 62-66.
    [52]Michio Inagaki, Akihiro Kawahara, Hidetaka Konno, Recovery of heavy oil from contaminated sand by using exfoliated graphite, Desalination,2004,170 (1) 77-82.
    [53]Masahiro Toyoda, Yoko Nishi, Norio Iwashita, Michio Inagaki, Sorption and recovery of heavy oils using exfoliated graphite Part Ⅳ:Discussion of high oil sorption of exfoliated graphite, Desalination,2003,151 (2) 139-144.
    [54]Masahiro Toyoda, Michio Inagaki, Sorption and Recovery of Heavy Oils by Using Exfoliated Graphite, Spill Science & Technology Bulletin,2003,8 (5-6) 467-474.
    [55]F. Vieira, I. Cisneros, N.G. Rosa, G.M. Trindade, N.D.S. Mohallem, Influence of the natural flake graphite particle size on the textural characteristic of exfoliated graphite used for heavy oil sorption, Carbon,2006,44 (12) 2590-2592.
    [56]王丽娟,田军,石墨层间化合物的发展、合成及应用,材料导报,2003年,第14卷第3期,52-53页
    [57]刘平桂,龚克成,石墨嵌入化合物的研究和发展。化学世界,1999年第5期227-232页
    [58]宋克敏,陈希陵,付华景,冯玉玲,阎秋燕, 制备低硫可膨胀石墨的新方法.合成化学,1996年,第4卷第3期,282-284页
    [59]陈希陵,宋克敏,李冀辉,藏大桥,付华景,以冰醋酸为介质制备低硫可膨胀石墨,无机材料学报,1996年,第11卷第2期,381-383页
    [60]靳通收,马艳然,李强,可膨胀石墨的制备,无机化学学报,1997年,第13卷第2期,231-233页
    [61]郭孟狮,杨靖华,李荀,刘军伟,陈琦,张凌紫,郗英欣,TiO2纳米管研究及应用进展,化工新型材料,2006年,第34卷第7期,14-23页
    [62]张涛,吴介达,混合价氧化钛的制备和研究进展,无机盐工业,2002年第34卷第11期,17-18页
    [63]曹妍综述,骆丹审校,防晒化妆品中的纳米技术,中国美容医学,2006年10月第15卷第10期,1206-1208页
    [64]冉景,张萍,杨为中,刘恒,周大利。食品添加剂用超微二氧化钛改性研究,食品工业科技,2006年,第一期,148-151页
    [65]胡巧青,朱光明,孔德鹏,吕方,纳米二氧化钛薄膜的制备技术,化学工业与工程,2008年,第25卷第1期,76-80页
    [66]李蓓,赵铱民,杨聚才,董智伟,比较纳米载银抗菌剂与纳米二氧化钛抗菌剂抗白色念珠菌性能的实验研究,临床口腔医学杂志,2008年,第24卷,第270-72页
    [67]刘洋,尚静,王忠,TiO2纳米粒子光催化降解室内挥发性有机污染物苯的研究,环境污染治理 技术与设备,2006年,第7卷第10期,43-46页
    [68]Luigi Stradella, Photochemical reactions of halogenated hydrocarbons on pure and doped titanium dioxide, Chemosphere,1993,27 (7) 1129-1136.
    [69]Kuo-Hua Wang, Yung-Hsu Hsieh, Heterogeneous photocatalytic degradation of trichloroethylene in vapor phase by titanium dioxide, Environment International,1998,24 (3) 267-274.
    [70]C. Euvananont, C. Junin, K. Inpor, P. Limthongkul, C. Thanachayanont, TiO2 optical coating layers for self-cleaning applications, Ceramics International,2008,34 (4) 1067-1071.
    [71]K.O. Awitor, A. Rivaton, J.-L. Gardette, A.J. Down, M.B. Johnson, Photo-protection and photo-catalytic activity of crystalline anatase titanium dioxide sputter-coated on polymer films, Thin Solid Films,2008,516(8) 2286-2291.
    [72]Zhiqin Chen, Wenkui Li, Weijun Zeng, Mingsheng Li, Junhuai Xiang, Zehua Zhou, Junlin Huang, Microwave hydrothermal synthesis of nanocrystalline rutile, Materials Letters,2008,62 (28) 4343.4344.
    [73]Kunio Funakoshi, Toru Nonami, Influences of saturation ratios on crystallization of anatase titanium dioxide by a titanium alkoxide hydrolysis, Ceramics International,2008,34 (7) 1637-1642.
    [74]Carraway E.R, Hoffman A.J, Hoffman M.R, Environmental Science Technology,1994,28, (5): 786-793
    [75]Balcioglu I., Journal of Environmental Science and Engineering & Toxic and Hazardous Substance Control,1996,31(1):123-138
    [76]马战红任风章,不同原料制备钛酸铝陶瓷性能比较,陶瓷,2007年,第10期,33-35页
    [77]余海湖,李小甫,许丕池,姜德生,采用静电自组装技术在光纤上制备光学薄膜的研究,光通信研究,2002年,第3期,43-46页
    [78]Christos Sarantopoulos, Alain N. Gleizes, Francis Maury, Chemical vapor infiltration of photocatalytically active TiO2 thin films on glass microfibers, Surface and Coatings Technology,2007,201 (22-23) 9354-9358.
    [79]李文丹,陈建华,陆洪彬,冯春霞,二氧化钛包覆空心玻璃微珠隔热涂料,涂料工业,2008年,第38卷第3期,33-36页
    [80]D.S. Tsoukleris, T. Maggos, C. Vassilakos, P. Falaras, Photocatalytic degradation of volatile organics on TiO2 embedded glass spherules, Catalysis Today,2007,129 (1-2) 96-101.
    [81]王程,龚文琪,雷绍民,郝骞,熊毕华,石英表面自组装二氧化钛光催化材料,无机盐工业,2006年,第38卷第7期,35-38页
    [82]汪铭,丁新更,曹旭丹,杨辉,不锈钢基片上制备Ag+/TiO2抗菌薄膜的研究,材料科学与工程学报,2003年,第21卷第3期,379-382页
    [83]P. Evans, D.W. Sheel, Photoactive and antibacterial TiO2 thin films on stainless steel, Surface and Coatings Technology,2007,201 (22-23) 9319-9324.
    [84]刘守新,陈曦,TiO2/活性炭负载型光催化剂的溶胶-凝胶法合成及表征,催化学报,2008年,第29卷第1期,19-24页
    [85]Yunfeng Zhu, Shoubin Xu, Long Jiang, Keliang Pan, Yi Dan, Synthesis and characterization of polythiophene/titanium dioxide composites, Reactive and Functional Polymers,2008,68 (10) 1492-1498.
    [86]Te-Cheng Mo, Hong-Wen Wang, San-Yan Chen, Yun-Chieh Yeh, Synthesis and dielectric properties of polyaniline/titanium dioxide nanocomposites, Ceramics International,2008,34 (7) 1767-1771.
    [87]Huiling Tai, Yadong Jiang, Guangzhong Xie, Junsheng Yu, Xuan Chen, Fabrication and gas sensitivity of polyaniline-titanium dioxide nanocomposite thin film, Sensors and Actuators B: Chemical,2007,125 (2) 644-650.
    [88]H. Toku, R.S. Pessoa, H.S. Maciel, M. Massi, U.A. Mengui, The effect of oxygen concentration on the low temperature deposition of TiO2 thin films, Surface and Coatings Technology,2008,202 (10) 2126-2131.
    [89]Ki-Taek Byun, Kook Won Seo, Il-Wun Shim, Ho-Young Kwak, Syntheses of ZnO and ZnO-coated TiO2 nanoparticles in various alcohol solutions at multibubble sonoluminescence (MBSL) condition, Chemical Engineering Journal,2008,135 (3) 168-173.
    [90]Gonghu Li, Shannon Ciston, Zoran V. Saponjic, Le Chen, Nada M. Dimitrijevic, Tijana Rajh, Kimberly A. Gray, Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photo-oxidation and photoreduction applications, Journal of Catalysis,2008,253 (1) 105-110.
    [91]Ruey-an Doong, Sue-min Chang, Yu-chin Hung, I-ling Kao, Preparation of highly ordered titanium dioxide porous films:Characterization and photocatalytic activity, Separation and Purification Technology,2007,58 (1) 192-199.
    [92]Dingning Ke, Huajun Liu, Tianyou Peng, Xun Liu, Ke Dai, Preparation and photocatalytic activity of WO3/TiO2 nanocomposite particles, Materials Letters,2008,62 (3) 447-450.
    [93]国伟林,王西奎,林志明,宋广智,超声波作用下的钛醇盐水解法制备纳米Ti02,高等学校化学学报,2002年,第23卷第8期,1592-1594页
    [94]Shiying Zhang, Quming Yu, Zhenhua Chen, Yunlong Li, Yang You, Nano-TiO2 particles with increased photocatalytic activity prepared by the miniemulsion method, Materials Letters,2007,61 (26) 4839-4842.
    [95]Akio Nasu, Yasufumi Otsubo, Effects of polymeric dispersants on the rheology and UV-protecting properties of complex suspensions of titanium dioxides and zinc oxides, Colloids and Surfaces A: Physicochemical and Engineering Aspects,2008,326 (1-2) 92-97.
    [96]Youji Li, Mingyuan Ma, Shuguo Sun, Wenbin Yan, Yuzhu Ouyang, Preparation of TiO2-carbon surface composites with high photoactivity by supercritical pretreatment and sol-gel processing, Applied Surface Science,2008,254 (13) 4154-4158.
    [97]Chien-I Wu, Jiann-Wen Huang, Ya-Lan Wen, Shaw-Bing Wen, Yun-Hwei Shen, Mou-Yung Yeh, Preparation of TiO2 nanoparticles by supercritical carbon dioxide, Materials Letters,2008,62 (12-13) 1923-1926.
    [98]Guimin An, Wanhong Ma, Zhenyu Sun, Zhimin Liu, Buxing Han, Shiding Miao, Zhenjiang Miao, Kunlun Ding, Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation, Carbon,2007,45 (9)1795-1801.
    [99]马军委,张海波,董振波,吴雪文,韩团辉,纳米二氧化钛制备方法的研究进展无机盐工业,2006年,第38卷第10期,5-7页
    [100]刘小风,曹晓燕,纳米二氧化钛的制备与应用,上海涂料,2007年,第45卷第7期,30-33页
    [101]Yu Guo, Xi-wen Zhang, Wei-Hao Weng, Gao-rong Han, Structure and properties of nitrogen-doped titanium dioxide thin films grown by atmospheric pressure chemical vapor deposition, Thin Solid Films,2007,515 (18) 7117-7121.
    [102]戴智铭,陈爱平,杨阳,朱中南,顾明元,TiOSO4热水解法制备超细Ti02颗粒光催化剂,华 东理工大学学报,2002年,第28卷第2期,180-183页
    [103]戴智铭,陈爱平,杨阳,古宏晨,顾明元,TiOSO4热水解法制备超细TiO2粉末光催化剂,中国粉体技术,2001年,第7卷第2期,14-17页
    [104]刘继进,阮建明,邹俭鹏,异丙醇水溶液加热法制备二氧化钛超细粉,中南大学学报(自然科学版),2005年,第36卷第5期,795-799页
    [105]叶惟勤,钱崇濂,染料发色原理新论(一),印染助剂,2002年,第17卷第1期,36-39页
    [106]李家珍等著,染料、染色工业废水处理,北京化学工业出版社,1997年
    [107]蒋少军,印染废水处理的探讨,染料工业,2002年,第39卷第4期,39-42页
    [108]余颖,庄源益,邹其猛,辛宝平,满悦芝,李莹,有机絮凝剂对水中染料的絮凝作用探讨,环境化学,2000年第19卷第2期142-147页
    [109]马霞,冯莉,王彬果,宋说讲,曹素红,刘炯天,蒙脱土协同新生MnO2对甲基橙模拟废水的脱色研究,环境化学,2008年,第27卷第4期,468-471页
    [110]冯秀娟,刘晓军,晏萍,崔金虎,赖志强,胡晓亮,金属矿废渣制备脱色吸附球及应用研究,环境科学与技术,2008年,第31卷第2期,80-82页
    [111]李仲民,童张法,唐艳葵,聚合铝蒙脱土的制备及其吸附染料性能,工业水处理,2008年,第28卷第2期,55-57页
    [112]李鑫,曾庆轩,冯长根,周绍箕,阴离子交换纤维对活性染料废水的脱色研究,合成纤维上业,2005年,第28卷第5期,4-7页
    [113]贾志谦刘忠洲,杜振霞,膜分离技术在染料工业中的应用进展,环境污染治理技术与设备,2001年,第2卷第4期,34-38页
    [114]王军芳,朱世云,程鼎,蔡伟民,臭氧氧化法处理染料废水技术进展,工业水处理,2008年,第28卷第6期,8-11页
    [115]施银桃,夏东升,李海燕,曾庆福,臭氧氧化法处理染料废水研究,化工环保,2004年,第24卷,20-22页
    [116]吴志敏,韦朝海,吴超飞,H2O2湿式氧化处理含酸性红B染料模拟废水的研究,环境科学学报,2004年,第24卷第5期,809-814页
    [117]解庆范,滕龙妹,王冬梦,陈礼明,谢少齐,催化内电解法处理活性大黑染料废水的研究,化学工程与装备,2007年,第6期,31-34页
    [118]张林生,蒋岚岚,肖璐宁,活性炭纤维处理染料废水脱色性能的研究,东南大学学报(自然科学版),2001年,第31卷第1期,100-103页
    [119]陈中颖,余刚,蒋展鹏,张彭义,活性炭纤维对染料的吸附性能研究,环境污染与防治,2001年,第04期,151-154页
    [120]郑雅芹,王毅力,卢佳,李春成,袁学培,杜白雨,粘土颗粒吸附直接染料的分形特征,环境科学学报,2008年,第28卷第4期,634-646页
    [121]张如春,改性凹凸棒土对染料废水脱色初步实验,广州环境科学,2007年,第22卷第3期,6-20页
    [122]陈天虎,改性凹凸棒石粘土吸附对比实验研究,非金属矿,2000年,第23卷第3期,11-12页
    [123]阎存仙,周红,李世雄,粉煤灰对染料废水的脱色研究,2000年05期,3-9页
    [124]马文鑫,王业节,陈春峰,严间浪,沈润溥,粉煤灰处理染料废水研究,云南化工,2008年,第35卷第3期,15-17页
    [125]Mei Li, Ji-Tai Li, Han-Wen Sun, Sonochemical decolorization of acid black 210 in the presence of exfoliated graphite, Ultrasonics Sonochemistry,2008,15(1) 37-42.
    [126]Mei Li, Ji-Tai Li, Han-Wen Sun, Decolorizing of azo dye Reactive red 24 aqueous solution using exfoliated graphite and H2O2 under ultrasound irradiation, Ultrasonics Sonochemistry,2008,15(5) 717-723.
    [127]Ji-Tai Li, Mei Li, Ji-Hui Li, Han-Wen Sun, Decolorization of azo dye direct scarlet 4BS solution using exfoliated graphite under ultrasonic irradiation, Ultrasonics Sonochemistry,2007,14 (2) 241-245.
    [128]Ji-Tai Li, Mei Li, Ji-Hui Li, Han-Wen Sun, Removal of disperse blue 2BLN from aqueous solution by combination of ultrasound and exfoliated graphite, Ultrasonics Sonochemistry,2007,14 (1) 62-66.
    [129]Yon S. Sohn, York R. Smith, Manoranjan Misra, Vaidyanathan (Ravi) Subramanian, Electrochemically assisted photocatalytic degradation of methyl orange using anodized titanium dioxide nanotubes, Applied Catalysis B:Environmental,2008,84 (3-4) 372-378.
    [130]Sylwia Mozia, Antoni W. Morawski, Masahiro Toyoda, Michio Inagaki, Effectiveness of photodecomposition of an azo dye on a novel anatase-phase TiO2 and two commercial photocatalysts in a photocatalytic membrane reactor (PMR), Separation and Purification Technology,2008,63 (2) 386-391.
    [131]N. Sobana, K. Selvam, M. Swaminathan, Optimization of photocatalytic degradation conditions of Direct Red 23 using nano-Ag doped TiO2, Separation and Purification Technology,2008,62 (3) 648-653.
    [132]Antonia Sandoval Gonzalez, Susana Silva Martinez, Study of the sonophotocatalytic degradation of basic blue 9 industrial textile dye over slurry titanium dioxide and influencing factors, Ultrasonics Sonochemistry,2008,15 (6) 1038-1042.
    [133]F. Harrelkas, A. Paulo, M.M. Alves, L. El Khadir, O. Zahraa, M.N. Pons, F.P. van der Zee, Photocatalytic and combined anaerobic-photocatalytic treatment of textile dyes, Chemosphere,2008, 72(11)1816-1822.
    [134]Rajeev Jain, Meenakshi Shrivastava, Photocatalytic removal of hazardous dye cyanosine from industrial waste using titanium dioxide, Journal of Hazardous Materials,2008,152 (1) 216-220.
    [135]Ekaterina V. Skorb, Elena A. Ustinovich, Anatoly I. Kulak, Dmitry V. Sviridov. Photocatalytic activity of TiO2:In2O3 nanocomposite films towards the degradation of arylmethane and azo dyes, Journal of Photochemistry and Photobiology A:Chemistry,2008,193 (2-3) 97-102.
    [136]Carlos E. Bonancea, Gustavo M. do Nascimento, Michele L. de Souza, Marcia L.A. Temperini, Paola Corio, Surface-enhanced Raman study of electrochemical and photocatalytic degradation of the azo dye Janus Green B, Applied Catalysis B:Environmental,2008,77 (3-4) 339-345.
    [137]Jun Wang, Ronghe Li, Zhaohong Zhang, Wei Sun, Rui Xu, Yingpeng Xie, Zhiqiang Xing, Xiangdong Zhang, Efficient photocatalytic degradation of organic dyes over titanium dioxide coating upconversion luminescence agent under visible and sunlight irradiation, Applied Catalysis A: General,2008,334 (1-2) 227-233.
    [138]Sylwia Mozia, Maria Tomaszewska, Antoni W. Morawski, Photocatalytic membrane reactor (PMR) coupling photocatalysis and membrane distillation—Effectiveness of removal of three azo dyes from water, Catalysis Today,2007,129 (1-2) 3-8.
    [139]B. Mounir, M.N. Pons, O. Zahraa, A. Yaacoubi, A. Benhammou, Discoloration of a red cationic dye by supported TiO2 photocatalysis, Journal of Hazardous Materials,2007,148 (3) 513-520.
    [140]V.K. Gupta, Rajeev Jain, Alok Mittal, Megha Mathur, Shalini Sikarwar, Photochemical degradation of the hazardous dye Safranin-T using TiO2 catalyst, Journal of Colloid and Interface Science,2007, 309 (2) 464-469.
    [141]Galina N. Kryukova, Galina A. Zenkovets, Alexei A. Shutilov, Michael Wilde, Kerstin Gunther, Dieter Fassler, Klaus Richter, Structural peculiarities of TiO2 and Pt/TiO2 catalysts for the photocatalytic oxidation of aqueous solution of Acid Orange 7 Dye upon ultraviolet light, Applied Catalysis B:Environmental,2007,71 (3-4) 169-176.
    [142]Sylwia Mozia, Maria Tomaszewska, Antoni W. Morawski, Photodegradation of azo dye Acid Red 18 in a quartz labyrinth flow reactor with immobilized TiO2 bed, Dyes and Pigments,2007,75 (1) 60-66.
    [143]Sylwia Mozia, Maria Tomaszewska, Antoni W. Morawski, Removal of azo-dye Acid Red 18 in two hybrid membrane systems employing a photodegradation process, Desalination,2006,198 (1-3) 183-190.
    [144]Claudia Gomes Silva, Wendong Wang, Joaquim Luis Faria, Photocatalytic and photochemical degradation of mono-, di- and tri-azo dyes in aqueous solution under UV irradiation, Journal of Photochemistry and PhotobiologyA:Chemistry,2006,181 (2-3) 314-324.
    [145]Beata Wawrzyniak, Antoni W. Morawski, Solar-light-induced photocatalytic decomposition of two azo dyes on new TiO2 photocatalyst containing nitrogen, Applied Catalysis B:Environmental,2006, 62(1-2)150-158.
    [146]M. Qamar, M. Saquib, M. Muneer, Titanium dioxide mediated photocatalytic degradation of two selected azo dye derivatives, chrysoidine R and acid red 29 (chromotrope 2R), in aqueous suspensions, Desalination,2008,186 (1-3) 255-271.
    [147]Sylwia Mozia, Maria Tomaszewska, Antoni W. Morawski, A new photocatalytic membrane reactor (PMR) for removal of azo-dye Acid Red 18 from water, Applied Catalysis B:Environmental,2005, 59(1-2) 131-137.
    [148]Mohammad Hossein Habibi, Ali Hassanzadeh, Shahla Mahdavi, The effect of operational parameters on the photocatalytic degradation of three textile azo dyes in aqueous TiO2 suspensions, Journal of Photochemistry and Photobiology A:Chemistry,2005,172 (1) 89-96.
    [149]Abdelkahhar Aguedach, Stephan Brosillon, Jean Morvan, El Kbir Lhadi, Photocatalytic degradation of azo-dyes reactive black 5 and reactive yellow 145 in water over a newly deposited titanium dioxide, Applied Catalysis B:Environmental,2005,57 (1) 55-62.
    [150]M. Qamar, M. Saquib, M. Muneer, Photocatalytic degradation of two selected dye derivatives, chromotrope 2B and amido black 10B, in aqueous suspensions of titanium dioxide, Dyes and Pigments,2005,65 (1) 1-9.
    [151]Marta Mrowetz, Elena Selli, Effects of iron species in the photocatalytic degradation of an azo dye in TiO2 aqueous suspensions, Journal of Photochemistry and Photobiology A:Chemistry,2004,162 (1) 89-95.
    [152]Beata Zielinska, Joanna Grzechulska, Ryszard J. Kalenczuk, Antoni W. Morawski, The pH influence on photocatalytic decomposition of organic dyes over All and P25 titanium dioxide, Applied Catalysis B:Environmental,2003,45 (4) 293-300.
    [153]Maria Stylidi, Dimitris I. Kondarides, Xenophon E. Verykios, Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions, Applied Catalysis B: Environmental,2003,40 (4) 271-286.
    [154]Zhenshi Sun, Yingxu Chen, Qiang Ke, Ye Yang, Jun Yuan, Photocatalytic degradation of a cationic azo dye by TiO2/bentonite nanocomposite, Journal of Photochemistry and Photobiology A: Chemistry,2002,149 (1-3) 169-174.
    [155]Joanna Grzechulska, Antoni Waldemar Morawski, Photocatalytic decomposition of azo-dye acid black 1 in water over modified titanium dioxide, Applied Catalysis B:Environmental,2002,36 (1), 45-51.
    [156]王尤景, 浅析新形势下的农药营销,农药市场信息,2008年10期,22-24页
    [157]王晓光,宋阳,农药的新分类及性能,林业科技,2003年,第28卷第6期,25-27页
    [158]项平,高浓度有机磷农药废水的治理,环境导报,1995年02期,27-27页
    [159]华小梅,江希流,高效微生物在农药废水治理中的应用,污染防治技术,1999年,第3期,149-151页
    [160]谢珊,刘俊新,李琳,乔传令,利用基因工程菌BL21处理机磷混合农药废水的研究,环境工 程学报,2008年,第2卷第7期,869-874页
    [161]胥维昌,我国农药废水处理现状及展望,化工进展,2000年,第5期,18-23页
    [162]王毓芳等,光催化降解水中有机污染物徐伯兴,上海化工,1999年,第16卷,14-16页
    [163]金重阳,郑玉峰,光催化降解有机污染物技术现状及发展方向,环境保护科学,2003年,第3期,12-15页
    [164]Chunmei Zhu, Liangyan Wang, Linren Kong, Xi Yang, Liansheng Wang, Shaojian Zheng, Feili Chen, Feng MaiZhi, Huang Zong, Photocatalytic degradation of AZO dyes by supported TiO2+UV in aqueous solution, Chemosphere,2000, (41) 303-309.
    [165]景遐斌,王利祥,王献红,耿延候,王佛松,导电聚苯胺的合成、结构、性能和应用高分子学报,2005年,第5期,655-661页
    [166]戈明亮,导电高分子材料的研究概况,,现代塑料加工应用,2002年,第4卷第14期,43-46页
    [167]朱嫦娥,任丽,王立新,安颢瑗,锂二次电池正极——聚苯胺/炭黑导电复合材料的制备与表征,高分子材料科学与工程,2005年,第6卷第21期,217-220页
    [168]张红萍,对甲基苯磺酸掺杂聚苯胺/聚乙烯醇防腐涂料的研究,南华大学学报(自然科学版),2006,第20卷第3期,54-57页
    [169]N.P. Lavery, Mathematical framework for predicting solar thermal build-up of spectrally selective coatings at the Earth's surface, Applied Mathematical Modelling,2007,31 (8) 1635-1651。
    [170]唐英,张进,李维一,郭惠,李娟,导电聚苯胺的研究进展,西南民族大学学报(自然科学版),2003年,第29卷第5期,544-547页
    [171]廖川平;孙世刚;周绍民;姚士冰;苯胺的无电聚合,精细化工,2000年,17卷增刊,20-24页
    [172]李文连,P—共轭高分子光电性能及聚合物LED,液晶与显示,1997,第12卷第3期12(3):215-222页
    [173]封伟,韦玮,吴洪才,有机磺酸掺杂聚苯胺的光电性能,半导体光电,1999,20(4):265-268页
    [174]孙建平,吴洪才,李宝铭,封伟,韦玮,侧链环酞箐铜功能基的聚苯胺的制备与性能研究,高等学校化学学报,2003年,第24卷第9期,1708-1711页
    [175]D. Ouinas, B.B. Bouiadjra, B. Serier, M. SaidBekkouche, Comparison of the effectiveness of boron/epoxy and graphite/epoxy patches for repaired cracks emanating from a semicircular notch edge, Composite Structures,2007,80 (4) 514-522。
    [176]F. Masdarolomoor, P.C. Innis, G.G. Wallace, Electrochemical synthesis and characterisation of polyaniline/poly(2-methoxyaniline-5-sulfonic acid) composites, Electrochimica Acta,2008,53 (12) 4146-4155.
    [177]V. Ferreira, A.C. Cascalheira, L.M. Abrantes, Electrochemical copolymerisation of luminol with aniline:A new route for the preparation of self-doped polyanilines, Electrochimica Acta,2008,53 (11) 3803-3811.
    [178]Chien-Hsin Yang, Tsun-Chih Yang, Self-doped polyaniline-modified anode for polymer light-emitting diode, Journal of Physics and Chemistry of Solids,2008,69 (2-3) 169-774.
    [179]M.L. Singla, Sajeela Awasthi and Alok Srivastava, Humidity sensing; using polyaniline/Mn3O4 composite doped with organic/inorganic acids, Sensors and Actuators B:Chemical,2007,127 (2) 580-585.
    [180]Xuefeng Ding, Dongxue Han, Zhijuan Wang, Xiaoyu Xu, Li Niu, Qiang Zhang, Micelle-assisted synthesis of polyaniline/magnetite nanorods by in situ self-assembly process, Journal of Colloid and Interface Science,2008,320 (1) 341-345.
    [181]Nilofar Asim, S. Radiman and M.A.bin Yarmo, Preparation and characterization of core-shell polyaniline/V2O5 nanocomposite via microemulsion method, Materials Letters,2008,62 (6-7) 1044-1047.
    [182]Fernando G. Souza Jr., B.G. Soares, Siddaramaiah, A. Manjunath, R. Somashekar, Blends of styrene-butadiene-styrene tri-block copolymer/polyaniline—Characterization by SAXS, Materials Science and Engineering:2008,476 (1-2) 240-247.
    [183]Dan Shan, Shanxia Wang, Yuanyuan He, Huaiguo Xue, Amperometric glucose biosensor based on in situ electropolymerized polyaniline/poly(acrylonitrile-co-acrylic acid) composite film, Materials Science and Engineering,2008,28 (2) 213-217.
    [184]Sevil Cetinkaya, Meral Karakisla, Ali Ozer, Mehmet Sacak, Conductive potassium feldspar/polyaniline composites prepared by in situ chemical polymerization, Synthetic Metals,2007, 157(18-20)702-707.
    [185]Seok Kim, Soo-Jin Park, Electroactivity of Pt-Ru/polyaniline composite catalyst-electrodes prepared by electrochemical deposition methods, Ionics,2008,178 (37-38) 1915-1921.
    [186]Subhasis Roy, Kajari Kargupta, Saikat Chakraborty, Saibal Ganguly, Preparation of polyaniline nanofibers and nanoparticles via simultaneous doping and electro-deposition, Materials Letters,2008,62 (15-16) 2535-2538.
    [187]Jing Jiang, Liangchao Li, Mingli Zhu, Polyaniline/magnetic ferrite nanocomposites obtained by in situ polymerization, Reactive and Functional Polymers,2008,68 (1) 57-62.
    [188]Shuangxi Xing, Hongwei Zheng, Guoku Zhao, Preparation of polyaniline nanofibers via a novel interfacial polymerization method, Synthetic Metals,2008,158 (1-2) 59-63.
    [189]G.K. Paul, A. Bhaumik, A.S. Patra, S.K. Bera, Enhanced photo-electric response of ZnO/polyaniline layer-by-layer self-assembled films, Materials Chemistry and Physics,2007,106 (2-3) 360-363.
    [190]范颖,刘丽敏,李长江,胶体分散的聚苯胺/氧化钇纳米复合物的合成与表征,高分子材料科学与工程,2005年,第3卷第21期,70-72页
    [191]Chun-yu Guo, Cheng-yang Wang, Study on preparation of activated mesocarbon microbeads/expanded graphite composites for electrical double layer capacitors, Composites Science and Technology,2007,67 (7-8) 1747-1750.
    [192]周慧,陶杰,聚苯胺/纳米TiO2复合粒子的制备,云南大学学报《自然科学版》,2005年,第27卷(3A),181-183页
    [193]Arindam Adhikari, Per Claesson, Jinshan Pan, Christofer Leygraf, Andra Dedinaite, Eva Blomberg, Electrochemical behavior and anticorrosion properties of modified polyaniline dispersed in polyvinylacetate coating on carbon steel, Electrochimica Acta,2008,53 (12) 4239-4247.
    [194]Nirmal Prabhakar, G. Sumana, Kavita Arora, Harpal Singh, B.D. Malhotra, Improved electrochemical nucleic acid biosensor based on polyaniline-polyvinyl sulphonate, Electrochimica Acta,2008,53 (12) 4344-4350.
    [195]Wei Yan, Xiaomiao Feng, Xiaojun Chen, Wenhua Hou, Jun-Jie Zhu, A super highly sensitive glucose biosensor based on Au nanoparticles-AgCl@polyaniline hybrid material, Biosensors and Bioelectronics,2008,23 (7) 925-931.
    [196]Vandana Singh, Swati Mohan, G. Singh, P.C. Pandey, Rajiv Prakash, Synthesis and characterization of polyaniline-carboxylated PVC composites:Application in development of ammonia sensor, Sensors and Actuators B:Chemical,2008,132 (1) 99-106.,
    [197]Kouji Fujimto, Jin-Ho Kim, Kiwako Ohmori, Akinobu Ono, Seimei Shiratori, Colloids and Surfaces A:Flexible multilayer electrode films consisted of polyaniline and polyelectrolyte by layer-by-layer self-assembly, Physicochemical and Engineering Aspects,2008,313-314,387-392.
    [198]Xueqing-Yue, Ruijun-Zhang, Wenying-Wang, Liqin-Wang, Yulin-Yang, Effect of TiO2 doping technique on decomposition of crude oil absorbed into expanded graphite, Materials Letters,2008, 62(12-13)1919-1922.
    [199]李冀辉,刘巧云,黎梅,刘占荣,低硫可膨胀石墨的制备,精细化工,第20卷第6期,341-342页
    [200]Ji-hui Li, Li-li Feng, Zhi-xin Jia, Preparation of expanded graphite with 160 μm mesh of fine flake graphite, Materials Letters,2006,60 (6) 746-749.
    [201]Ji-hui Li, Qian Liu, Hui-fang Da, Preparation of sulfur-free exfoliated graphite at a low exfoliation temperature, Materials Letters,2007,61 (8-9) 1832-1834.
    [202]Jihui-Li, Huifang-Da, Qian-Liu, Shufen-Liu, Preparation of sulfur-free expanded graphite with 320 μm mesh of flake graphite, Materials Letters,2006,60 (29-30) 3927-3930.
    [203]冯若,李化茂,声化学及其应用,安徽科学技术出版社,1992.1-3
    [204]冯若,超声手册,南京大学出版社,1999年
    [205]贾卫国,张鹏,刘振荣,李慧芳,杨奇,王君,超声化学的研究与应用,辽宁大学学报(自然科学版),2002年,第29卷第3期,198—202页
    [206]李廷盛,尹其光.超声化学.北京:科学出版社,1995年
    [207]李记太,臧洪俊,超声波应用于有机合成方面的新进展,河北大学学报(自然科学版),2000年,第20卷第1期,96-102页
    [208]Jihui Li, Jing Li, Mei Li, Preparation of expandable graphite with ultrasound irradiation, Materials Letters,2007,61 (28) 5070-5073.
    [209]Jing Li, Jihui Li, Mei Li, Ultrasound irradiation prepare sulfur-free and lower exfoliate-temperature expandable graphite, Materials Letters,2008,62 (14) 2047-2049.
    [210]李冀辉,贾志欣,冯莉莉,刘淑芬,二氧化钛嵌入膨胀石墨材料制备,非金属矿,2006年第29卷第5期,39-41页
    [211]李冀辉,贾志欣,冯莉莉,负载二氧化钛的膨胀石墨的制备及表征,材料导报,2006年,增刊,97-108页
    [212]李冀辉,米彩丽,李晶,贾志欣,刘淑芬,徐洋,纳米TiO2嵌入膨胀石墨处理甲基橙染料污水的研究,非金属矿,2008年,第31卷第2期,21-26页
    [213]李冀辉,刘淑芬,贾志欣,冯莉莉,TiO2嵌入膨胀石墨处理农药污水研究,非金属矿,第30卷第5期,54-56页
    [214]王积森,冯忠彬,孙金全,贾明剑,宋振雷,纳米TiO2的光催化机理及其影响因素分析,微纳电子技术,2008年第1期,28-32页
    [215]Yong Jiang, Ping Zhang, Zuwu Liu, Fu Xu, The preparation of porous nano-TiO2 with high activity and the discussion of the cooperation photocatalysis mechanism, Materials Chemistry and Physics,2006,99 (2-3) 498-504.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700