几种低维材料的制备、微结构与性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当人们所熟知的块体材料至少有一维缩小到纳米尺度时,材料本身的性能,如电学、力学、光学、磁学以及化学性质便产生奇异的变化。因此低维材料的制备、微结构及其性能的研究一直是材料领域、凝聚态物理和材料化学等领域的前沿课题和研究热点。本文以多功能碳材料为代表,研究了零维热解碳球、一维纳米碳管以及碳的其它纳米结构的制备、微结构及其性能。二维材料选取了具有高导电性和低电迁移性的金属铜薄膜以及计算机硬盘用镍—磷非晶薄膜作为研究对象,研究了薄膜材料在单向和循环加载下的力学性能及其尺寸效应。
     在不使用催化剂的条件下热解四氢呋喃,制备出表面光滑、圆整度高、球形度高、分散性好的实心碳球。同时研究选用芳香族化合物和具有介于芳香族和脂肪族化合物之间特征的液态化合物作为液体碳源,控制作为载气和稀释气体的种类、流量和混合比例,在不同的热解温度下合成出直径为100 nm~1 μm的热解碳球,并对这类碳球的微结构进行了系统的研究。研究表明:碳球的表面和心部分别具有两种不同的结构,碳球心部是由不发达的螺旋壳核心组成,其表面是不连续的略带弯曲的石墨烯碎片近似同心堆叠而成的结构。经2100℃石墨化处理后,心部不发达的螺旋结构转变成发达的螺旋壳结构,X射线衍射谱图在26.42°的肩膀头峰证实了心部特殊晶体结构的存在,热重分析和高分辨电镜观察证实了心部螺旋壳结构的存在,经2900℃高温石墨化处理后,螺旋壳核心转变成连续封闭的多面体次生壳,而碳球表面不连续的石墨烯碎片转变成不连续的多面体表面壳。通过热力学计算获得了碳球石墨化处理后发生微结构演化所遵循的尺寸效应,发现石墨化后转变的多面体壳距离核心越近,壳的厚度越薄;当碳球的半径大于临界半径时,碳球发生多面体转变在能量上是有利的,对于次生壳来说,任何尺寸的核心转变成六边形在能量上都是有利的。同时尝试将热解碳球及其石墨化后碳球作为锂离子电池负极材料进行了实际充放电实验,发现石墨化后的碳球有望作为锂离子电池负极材料使用。
     通过对制备条件进行优化,选择原料液体中二茂铁最佳浓度为1.995wt%的乙醇溶液,通过流动催化法制备出被填充碳管比率高且管壁石墨化度高的管内填充一维铁单晶的纳米导线。从高分辨电镜像测量发现:管内填充的一维铁单晶纳米线的最密排面的晶面间距为0.198±0.001 nm,与公式计算的铁(101)面的面间距最为接近,同时X射线衍射分析结果也表明该铁单晶纳米线具有<101>晶体学方
The properties of materials electronic, mechanical, optical, magnetic and chemical will change curiously when at least one of three dimensions of bulk materials decreases down to nano-scale. The investigations of synthesis, microstructures and properties of low-dimensional materials have been frontier fields and hot research topics in materials science, condensed physics and materials chemistry. In this dissertation, carbon, as a multi-functional material, was employed to investigate the synthesis, microstructure and their properties of zero-dimensional pyrolytic carbon spheres, one-dimensional carbon nanotubes and new carbon structures. For two-dimentional materials, thin copper films with high conductivity and low electromigration and Ni-P amorphous thin films used in computer harddisks were selected. The mechanical properties of the thin films subjected to monotonic and cyclic loading were investigated to elucidate the size effects.
    Solid carbon spheres with a smooth surface, almost perfect round shape and monodispersity were synthesized by pyrolysis of tetrahydrofuran without using any catalysts. The aromatic compounds and those with some characteristics intermediate between aromatic and aliphatic were selected to be carbon source, and the synthesis methods of pyrolytic carbon spheres were investigated as well. The carbon spheres with diameters of 100 nm to 1 μm were synthesized by using different carrier gases, controlling the flow rates and the proportions of the carrier gas. The microstructures of the carbon spheres were systematically investigated by scanning electron microscope, high-resolution transmission electron microscope (HRTEM), X-ray diffraction and Raman spectroscopy, etc. The results indicate that the spheres consist of an underdeveloped spiral-shell core and a surface with discrete fragments of concentrically arranged graphene layers. The underdeveloped spiral-shell structure changes into a well developed spiral-shell structure after heat treatment at 2100 ℃. The appearance of the shoulder peak at 26.42° in the pattern of X-ray diffraction confirms the presence of a special crystal structure in the core part of the spheres. Thermogravimetric analysis and the HRTEM observations of carbon sphere surfaces demonstrate the presence of the spiral-shell structure. It is found that the spiral-shell core transforms into continuous
引文
1. Kroto H W, Heath J R, Obrien S C, Curl R F, Smalley R E. C_(60): buckminsterfullerene[J], Nature, 1985, 318: 162-163
    2. Iijima S. Helical microtubules of graphitic carbon[J], Nature, 1991, 354: 56-58
    3. Menz W, Mohr J, Paul O. Microsystem Technology[M], Wein-heim: WILEY-VCH, 2001, 209-210
    4.王茂章,杨全红,成会明.碳的结构及其同素异性体[J],炭素技术2001,112(1):23-28
    5.成会明.纳米碳管制备、结构、物性及应用[M],北京:化学工业出版社,2002,1-9
    6. Inagaki M. Control of structure and functions, New Carbons[M], Kidlington, Oxford, UK: Elsevier Science, 2000, 6-13
    7. Serp P, Feurer R, Kalck P, Kihn Y, Faria J L, Figueiredo J L. A chemical vapour deposition process for the production of carbon nanospheres[J], Carbon, 2001, 39: 615-628
    8. Kratschmer W, Lamb L D, Fostiropoulos K, Huffman D R. Solid C-60—a new form of carbon[J], Nature, 1990, 347 (6291): 354-358
    9. Iijima S. Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy[J], J Crystal Growth, t 980, 50(3): 675-683
    10. Ugarte D. Curling and closure of graphitic networks under electron-beam irradiation [J], Nature, 1992, 359(6397): 707-709
    11. Ruoff R S, Lorents D C, Chan B, Malhorta R, Subramoney S. Single-crystal metals encapsulated in carbon nonoparticles[J], Science, 1993, 259: 346-350
    12. Banhart F, Cdharlier J C, Ajayan P M. Dynamic behavior of nickel atoms in graphitic networks. Phys Rev Lett[J], 2000, 84(4): 686-689
    13. Deheer W A, Ugarte D. Carbon onions produced by heat treatment of carbon soot and their relation to the 217.5 nm interstellar absorption feature[J], Chem Phys Lett, 1993,207(4-6):480-486
    14. Cabioch T, Jaonen M, Thune E, Guerin P, Fayoux C, Denanot M F. Carbon onions formation by high-dose carbon ion implantation into copper and silver[J], Surf Coat??Tech, 2000, 128/129:43-50
    
    15. Chen X H, Deng F M, Wang J X, Yang H S, Wu G T, Zhang X B, Peng J C, Li W Z. New method of carbon onion growth by radio-frequency plasma-enhanced chemical vapor deposition[J], Chem Phys Lett, 2001, 336(3-4): 201-204
    
    16. Roddatis V V, Kuznetsov V L, Butenko Y V, Su D S, Schlogl R. Transformation of diamond nanoparticles into carbon onions under electron irradiation [J], Physical Chemistry Chmecial Physics, 2002, 4(10): 1964-1967
    
    17. Troiani H E, Camacho B A, Armendariz V, Torresday L G, Yacaman M J. Synthesis of carbon onions by gold nanoparticles and electron irradiation[J], Chem Mater 2003, 15(5):1029-1031
    
    18. Zheng J, Ekstrom T C, Gordeev S K, Jacob M. Carbon with an onion-like structure obtained by chlorinating titaniumcarbide. J Mater Chem,2000,10(5): 1039-1041
    
    19. Zhong Z Y, Chen H Y, Tang S B, Ding J, Liu J Y, Tan K L. Catalytic growth of carbon nanoballs with and without cobalt encapsulation[J], Chem Phys Lett, 2000, 330:41-47
    
    20. Kang Z C, Wang Z L. Mixed-valent oxide-catalytic carbonization for synthesis of monodispersed nano sized carbon spheres[J], Philos Mag B, 1996, 73: 905-929
    
    21. Wang Z L, Kang Z C. Pairing of pentagonal and heptagonal carbon rings in the growth of nanosize carbon spheres synthesized by a mixed-valent oxide-catalytic carbonization process[J], J Phys Chem, 1996,100: 17725-17731
    
    22. Wang Z L, Kang Z C. Graphitic structure and surface chemical activity of nanosized carbon spheres[J], Carbon, 1997: 35: 419-426
    
    23. Sharon M, Mukhopadhyay K, Yase K, Iijima S. Spongy carbon nanobeads—a new material[J], Carbon, 1998, 36: 507-511
    
    24. Liu X Y, Huang B C, Coville N J. The Fe(CO)_5 catalyzed pyrolysis of pentane: carbon nanotube and carbon nanoball formation[J], Carbon, 2002,40: 2791-2799
    
    25. Pradhan D, Sharon M. Carbon nanotubes, nanofilaments and nanobeads by thermal chemical vapor deposition process[J], Mater Sci Eng, 2002, B96: 24-28
    
    26. Wang Q, Li H, Chen L Q, Huang X J. Monodispersed hard carbonspherules with uniform nanopores[J], Carbon, 2002, 39: 2211-2214
    
    27. Lou Z S, Chen Q W, Gao J, Zhang Y F. Preparation of carbon spheres consisting of amorphous carbon cores and graphene shells[J], Carbon, 2004, 42: 229-232
    28. Yan X B, Xu T, Xu S, Chen G, Liu H W, Yang S R. Fabrication of carbon spheres on a-C:H films by heat-treatment of a polymer precursor[J], Carbon, 2004, 42: 2735-2777
    29. Qian H S, Hart F M, Zhang B, Guo Y C, Yue J, Peng B X. Non-catalytic CVD preparation of carbon spheres with a specific size[J], Carbon, 2004, 42: 761-766
    30. Wang Y G, Chang Y C, Ishida S, Korai Y, Mochida I. Stabilization and carbonization properties of mesocarbon microbeads (MCMB) prepared from a synthetic naphthalene isotropic pitch[J], Carbon, 1999, 37(6): 969-976
    31. Yamada K, Tobisawa S. Structure and formation process of carbon blacks formed by decomposing SiC powder using a conically converging shock-wave technique [J], Carbon, 1989, 27(6): 845-852
    32. Kamegawa K, Yoshida H. Preparation and characterization of swelling porous carbon beads[J], Carbon, 1997, 35(5): 631-639
    33. Inagaki M, Washiyama M, Sakai M. Production of carbon spherules and their graphitization[J], Carbon, 1998, 26(2): 169-172
    34. Qiu J, Li Y F, Wang Y P, Liang C H, Wang T H, Wang D H. A novel form of carbon micro-balls from coal[J], Carbon, 2003, 41: 767-772
    35.郭炳熴,徐徽,王先友,肖立新.锂离子电池[M],长沙:中南大学出版社,2002,145-188
    36. Vignal V, Morawaki A W, Konno H, Inagaki M. Quantitative assessment of pores in oxidized carbon spheres using scanning tunneling microscopy[J], J Mater Res, 1999, 14(3): 1102-1112
    37. Inagaki M, Vignal V, Konno H, Morawaki A W. Effect of carbonization atmosphere and subsequent oxidation on pore structure of carbon spheres observed by scanning tunneling microscopy[J], J Mater Res, 1999, 14(7): 3152-3157
    38. Auer E, Freund A, Pietsch J, Tacker T. Carbon as support for industrial precious metal catalysts[J], 1998, 173: 259-271
    39. Dahn J R, Zheng T, Liu Y H, Xue J S. Mechanisms for lithium insertion in carbonaceous materials[J], Science, 1995, 270(5236): 590-593
    40. Nishizawa M, Hashitani R, Itoh T, Matsue T, Uchida I. Measurements of chemical diffusion coefficient of lithium ion in graphitized mesocarbon microbeads using a microelectrode[J], Electrochem Solid-State Lett, 1998, 1(1): 10-1241. Fujita M, Saito R, Dresselhaus G, Dresselhaus M S. Formation of general fullerenes by their projection on a honeycomb lattice. Phys Rev B, 1992, 45: 13834-13836
    
    42. Dresselhaus M S, Dresselhaus G, Eklund P C. Science of Fullerenes and carbon nanotubes[M], San Diego: Academic Press, March 1996
    
    43. Dresselhaus M S, Dresselhaus G, Eklund P C. Fullerenes[J]. J Mater Res, 1993, 8(8): 2054-2097
    
    44. Yuklyosi K. Encyclopedic Dictionary of Mathematics[M], Cambridge: MIT Press, 1997
    
    45. Heath J R, O'Brien S C, Zhang Q, Liu Y, Curl R F, Kroto H W, Tittel F K, Smalley R E. Lanthanum complexes of spheroidal carbon shells[J], J Am Chem Soc, 1985, 107: 7779-7780
    
    46. Pederson M R, Broughton J Q. Nanocapillarity in Fullerene Tubules[J], Phys Rev Lett, 1992, 69:2689-2692
    
    47. Ajayan P M, Iijima S. Capillarity induced filling of carbon nanotubes[J], Nature, 1993, 361,333-335
    
    48. Ajayan P M, Ebbesen T W, Ichihashi T, Iijima S, Tanigaki K, Hiura H. Opening carbon nanotubes with oxygen and implication for filling[J], Nature, 1993, 362: 522-525
    
    49. Dujardin E, Ebbesen T W, Hiura H, Tanigaki K. Capillarity of Carbon nanotubes[J], Science, 1994,265: 1850-1852
    
    50. Ugarte D, Chatelain A, deHeer W A. Nanocapillarity and chemistry in carbon nanotubes[J], Science, 1996,274: 1897-1899
    
    51. Tsang S C, Chen Y. K, Harris P J F, Green M L H. A simple chemical method of opening and filling carbon nanotubes[J], Nature, 1994, 372: 159-162
    
    52. Chen Y K, Green M L H, Tsang S C. Synthesis of carbon nanotubes filled with long continuous crystals of molybdenum oxides [J], Chem Commun, 1996, 21: 2489-2490
    
    53. Sloan J, Cook J, Heesom J R, Green M L H, Hutchison J L. The encapsulation and in situ rearrangment of polycrystalline SnO inside carbon nanotubes[J], J Cryst Growth, 1997, 173: 81-87
    
    54. Sloan J, Cook J, Green M L H, Hutchison J L, Tenne R. Crystallisation inside fullerene related structures [J], J Mater Chem, 1997, 7: 1089-1095
    55. Chen Y K, Chu A, Cook J, Green M L H, Harris P J E Synthesis of carbon nanotubes containing metal oxides and metals of the d-block and f-block transition metals and related studies[J], J Mater Chem, 1997, 7: 545-549
    
    56. Lago R M, Tsang S C, Lu K L, Chen Y K, Green M L H. Filling carbon nanotubes with small palladium metal crystallites - the effect of surface acid groups [J], J Chem Soc Commun, 1995, 13: 1355-1356
    
    57. Chu A, Cook J, Heesom R J R, Hutchison J L, Green MLH, Sloan J. Filling of carbon nanotubes with silver, gold, and gold chloride[J], Chem Mater, 1996, 8: 2751-2754
    
    58. Smith B W, Monthioux M, Luzzi D E. Encapsulated C60 in carbon nanotubes[J], Nature, 1998, 396: 323 -324
    
    59. Sloan J, Hammer J, Sibley M Z. The opening and filling of single walled carbon nanotubes (SWTs)[J], Chem Commun, 1998, (3): 347-348
    
    60. Govindaraj A, Satishkumar B C, Nath M, Rao CNR. Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles [J], Chem Mat, 2000, 12: 202-205
    
    61. Sloan J, Wright D M, Woo H G, Bailey S, Brown G, York APE, Coleman K S, Hutchison J L, Green MLH. Capillarity and silver nanowire formation observed in single walled carbon nanotubes[J], Chem Commun, 1999, 8: 699-700
    
    62. Meyer R R, Sloan J, Dunin-Borkowski R E, Kirkland A I, Novotny M C, Bailey S R, Hutchison J L, Green MLH. Discretce atom imaging of one dimensional crystals formed within single-walled carbon nanotubes[J], Science, 2000, 289: 1324-1326
    
    63. Hsu W K, Hare J P, Terrones M, Harris P J F, Kroto H W, Walton D R M. Condense-phase nanotubes [J], Nature, 1995, 377: 687-687
    
    64. Hsu W K, Terrones M, Terrones H, Grobert N, Kirkland A I, Hare J P, Prassides K, Townsend P D, Kroto P D, Walton H W. Electrochemical formation of novel nanowires and their dynamic effects[J], Chem Phys Lett, 1998, 284: 177-183
    
    65. Hsu W K, Li J, Terrones H, Terrones M, Grobert N, Zhu Y Q, Trasobares S, Hare J P, Pickett C J, Kroto H W, Walton D R M. Electrochemical production of low-melting metal nanowires [J], Chem Phys Lett, 1999, 301: 159-166
    
    66. Ruoff R S, Lorents D C, Chan B C, Malhotra R, Subramoney S. Single-crystalmetals encapsulated in carbon nanoparticles[J], Science, 1993, 259: 346-348
    
    67. Yosida Y. Synthesis of CeC_2 crystals encapsulated within gigantic super fullerenes and tituanium into carbon nanoclusters[J], Appl Phys Lett, 1993, 62: 3447-3448
    
    68. Seraphin S, Zhou D, Jiao J, Withers J C, Loutfy R. Selective encapsulation of the carbides of yttrium and titanium into carbon nanoclusters[J], Appl Phys Lett, 1993, 63: 2073-2075
    
    69. Subramoney S, Ruoff R S, Lorents D C, Ripudaman Malhotra B C, Dyer M J, Parvin K. Magnetic separation of GdC_2 encapsulated in carbon nanoparticles [J], Carbon, 1994, 32(3): 507-513
    
    70. Liu M and Cowley J M. Encapsulation of Manganese Carbides within Carbon Nanotubes and Nanoparticles [J], Carbon, 1995, 33: 749-756
    
    71. Guerret-Piecourt C, Le Bouar Y, Loiseau A, Pascard H. Relation between metal electronic structure and morphology of metal-compounds inside carbon nanotubes[J], Nature, 1994, 372: 761-765
    
    72. Loiseau A, Pascard H. Synthesis of long carbon nanotubes filled with Se, S, Sb and Ge by the arc method[J], Chem Phys Lett, 1996, 256: 246-252
    
    73. Ruoff R S, Lorents D C, Chan B, Malhotra R, Alhotra R, Subramoney S. Single-crystal metals encapsulated in carbon nanoparticles[J], Science, 1993, 259(5093): 346-348
    
    74. Saito Y, Yoshikawa T, Okuda M, Ohkohchi M, Ando Y, Kasuya A, Nishina Y. Synthesis and electron-beam incision of carbon nanocapsules encaging YC_2[J], Chem Phys Lett, 1993, 209(1-2): 72-76
    
    75. Majetich S A, Artman J O, McHenry M E, Nuhfer N T, Staley S W. Preparation and properties of carbon-coated magnetic nanocrystallites[J], Phys Rev B, 1993, 48 (22): 16845 -16848
    
    76. Scraphin S, Zhou D, Jiao J, Withers J C, Loutfy R. Selective encapsulation of the carbides of yttrium and titanuum into carbon nanoclusters. Appl Phys Lett, 1993, 63(15): 2073-2075
    
    77. Murakami Y, Shibata T, Okuyama K, Arai T, Suematsu H, Yoshida Y. Structural, magnetic and superconducting properties of graphite nanotubes and their encapsulation compounds[J], J Phys Chem Solids, 1993, 54: 1861-1870
    
    78. Ata M, Yamaura K, Hudson A J. Nested interfacial growth of carbon nanotubescatalyzed by hafnium[J], J Adv Mater, 1995, 7(3): 286-289
    
    79. Terrones M, Hsu W K, Schilder A, Terrenes H, Grobert N, Hare J P, Zhu Y Q, Schwoerer M, Prassides K, Kroto H W, Walton D R M. Novel nanotubes and encapsulated nanowires[J], Appl Phys, 1998, A 66(3): 307-317
    
    80. Kiang C H, Choi J S, Tran T T, Bacher A D. Molecular nanowires of lnm diameter from capillary filling of single-walled carbon nanotubes[J], J Phys Chem B, 1999, 103(35): 7449-7451
    
    81. Hernadi K, Fonseca A, Nagy J B, Bernaerts D, Lucas A A. Fe- catalysed carbon nanotube formation [J], Carbon, 1996, 34(10): 1249-1257
    
    82. Muller T E, Reid D G, Hsu W K, Hare J P, Kroto H W, Walton D R M. Synthesis of nanotubes via catalytic pyrolysis of acetylene: A SEM study[J], Carbon, 1997, 35 (7): 951-966
    
    83. Satishkumar B C, Govindaraj A, Sen R, RAo CNR. Single-walled nanotubes by the pyrolysis of acetylene-organometallic mixtures[J], Chem Phys Lett, 1998, 293(1-2): 47-52
    
    84. Jia Z J, Wang Z Y, Liang J, Wei B Q, Wu D H. Production of short multi-walled carbon nanotubes[J], Carbon, 1999, 37(6): 903-906
    
    85. Cui S, Lu C Z, Qiao Y L, Cui L. Large-scale preparation of carbon nanotubes by nickel catalysed decomposition of methane at 600 degrees C[J], Carbon, 1999, 37(12): 2070-2073
    
    86. Sen R, Govindaraj A, Rao CNR. Carbon nanotubes by the metallocene route[J], Chem Phys Lett, 1997, 267(3-4): 276-280
    
    87. H. M. Cheng, F. Li, G. Su, Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons[J], Appl Phys Lett, 1998, 72(24-26): 3282-3284
    
    88. Benito A M, Maniette Y, Munoz E, Martinez M T. Carbon nanotubes production by catalytic pyrolysis of benzene[J], Carbon, 1998, 36(5-6): 681-683
    
    89. Andrews R, Jacpues D, Rao A M, Derbyshire F, Qian D, Fan X, Dickey E C, Chen J. Continuous production of aligned carbon nanotubes: a step closer to commercial realization[J], Chem Phys Lett, 1999, 303(5-6): 467-474
    
    90. Zhu H W, Xu C L, Wu B H, Wei B Q, Vajtai R, Ajayan P M. Direct synthesis of long single-walled carbon nanotubes strands[J], Science, 2002, 296: 884-886
    91. Terrones M, Grobert N, Zhang J P, Terrones H, Olivares J, Hsu W K, Hare J P, CheethaM A K, Kroto H W, Walton DRM. Preparation of aligned carbon nanotubes catalysed by laser-etched cobalt thin films[J], Chem Phys Lett, 1998, 285(5-6): 299-305
    92. Grobert N, Terrones M, Osborne A J, TerroNes H, Hsu W K, Trasobares S, Zhu Y Q, Hare J P, Kroto H W, Walton D R M. Thermolysis of C60 thin film yields Ni-filled tapered nanotubes[J], Appl Phys, 1998, A67(5): 595-598
    93. Rao C N R, Sen R, Satishkumar B C, Govindaraj A. Large aligned-nanotube bundles from ferrocene pyrolysis[J], Chem Commun, 1998, 15: 1525-1526
    94. Grobert N, Hsu W K, Zhu Y Q, Hare J P, Kroto H W, Walton D R M, Terrones M, Terrones H, Redlich P H, Ruhle M, Escudero R, Morales F. Enhanced magnetic coercivities in Fe nanowires[J], Appl Phys Lett, 1999, 75(21): 3363-3365
    95. Grobert N, Mayne M, Terrones M, Ruhle M,Walton D R M, Kroto H W, Hutchison J L. Alloy nanowires: invar inside carbon nanotubes[J], Chem Commun, 2001, 5: 471-472
    96. Mayne M, Grobert N, Terrones M, KaMalakaran R, Ruhle M, Kroto H W, Walton D R M. Pyrolytic of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols [J], Chem Phys Lett, 2001, 338(2-3): 101-107
    97.徐正,徐大鹏.富勒烯的化学和物理[J],新型炭材料,2001,16(4):79-80
    98. Matsui K, Pradhan B K, Kyotani T, Tomita A. Formation of nickel oxide nanoribbons in the cavity of carbon nanotubes[J], J Phys Chem B, 2001, 105(24): 5682-5688
    99. Matsui K, Kyotani T, Tomita A. Hydrothermal synthesis of single-crystal Ni(OH)_2 nanorods in carbon-coated anodic alumina film. Adv. Mater., 2002, 14: 1216-1219
    100. Ferre R, Ounadjela K, George J M, Piraux L, Dubois S. Magnetization processes in nickel and cobalt electrodeposited nanowire[J], Phys Rev B, 1997, 56: 14066-14075
    101. Nguyen P P, Pearson D H, Tonucci R J, Babcock K. Fabrication and characterization of uniform metallic nanostructures using nanochannel glass[J], J Electrochem Soc, 1998, 145(1): 247-251
    102. Gao Y, Bando Y. Carbon nanothermometer containing gallium[J], Nature, 2002, 415(6872): 599-599103.Monthioux M. Filling single-wall carbon nanotubes. Carbon, 2002, 40(10): 1809-1823
    104.Hirahara K, Suenaga K, Bandow S, et al. One-dimensional metallofullerene crystal generated inside single-walled carbon nonotubes. Phys. Rev. Lett., 2000, 85:5384-5387
    
    105. Suenaga K, Tence M, Mory C, et al. Element-selective single atom imaging. Science, 2000, 290: 2280-2282
    
    106. Smith B W, Luzzi D E. Formation mechanism of fullerene peapods and coaxial tubes: a path to large scale synthesis. Chem. Phys. Lett., 2000, 321: 169-174
    
    107. Overney G, Zhong W, Tomanek D. Structural rigidity and low-frequency vibrational-modes of long carbon tubules[J]. Z Phys D: At Mol Clusters, 1993, 27: 93-96
    
    108. Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high young's modulus observed for individual carbon nanotubes[J], Nature, 1996, 381: 678-680
    
    109. Tibbetts G G. Why are carbon filaments tubular[J], J Cryst Grwoth, 1984, 66: 632-638
    
    110. Ruoff R S, Lorents D C. Mechanical and thermal-properties of carbon nanotubes. Carbon, 1995, 33: 925-930
    
    111. Robertson D H, Brenner D W, Mintmire J W. Energetics of nanoscale graphitic tubules[J]. Phys Rev B, 1992: 12592-12599
    
    112.Gao G H, Cagin T, Goddard W A. Energetics, structure, mechanical and vibratioanl properties of single-walled carbon nanotubes[J]. Nanotechnology, 1998, 9: 184-191
    113.Lu J P. Elastic properties of carbon naonotubes and nanoropes[J]. Phys Rev Lett, 1997,79: 1297-1300
    114.Yao N, Lordi V. Young's modulus of single-walled carbon nanotubes[J]. J Appl Phys, 1998, 84: 1939-1943
    115.Yakobson B I, Brrabec C J, Bernholc J. Nanomechanics of carbon tubes: Instabilities beyond linear response[J]. Phys Rev Lett, 1996, 76: 2511-2514
    116.Hernandez E, Goze C, Bernier P, Rubio A. Elastic properties of c and bxcynz composite nanotubes[J]. Phys Rev Lett, 1998, 80: 4502-4505
    117.Zhou X, Zhou J J, Ou-Yang Z C. Strain energy and Young's modulus of single-wall carbon nanotubes calculated from electronic energy-band theory[J]. Phys Rev B,2000,62: 13692-13696
    118.Treacy M M J, Ebbesen T W, Gibson J M. Exceptionally high young's modulus observed for individual carbon nanotubes[J], Nature, 1996, 381(6584): 678-680
    119.Krishnan A, Dujardin E, Ebbessen T W, Yianilos P N, Treacy M M J. Young's modulus of single-walled nanotubes, Phys Rev B, 1998, 58(20): 14013-14019
    120.Poncharal P, Wang Z L, Ugart D, de Heer W A. Electrostatic deflections and electromechanical resonances of carbon nanotubes[J], Science, 1999, 283(5407): 1513-1516
    121.Wong E W, Sheehan P E, Lieber C M. Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes[J], Science, 1997, 277(5334): 1971-1975
    122.Salvetat J P, Kulik A J, Bonard J M, Briggs GAD, Stockli T, Metenier K, Bonnamy S, Beguin F, Burnham N A, Forro L. Elastic modulus of ordered and disordered multiwalled carbon nanotubes[J], Adv Mater, 1999, 11(2): 161-165
    123.Salvetat J P, Briggs GAD, Bonard J M, Bacsa R R, Kulik A J, Stockli T, Burnham N A, Forro L. Elastic and shear moduli of single-walled carbon nanotube ropes[J], Phys Rev Lett, 1999, 82(5): 944- 947
    124.Shen W D, Jiang B, Han B S, Xie S S. Investigation of the radial compression of carbon nanotubes with a scanning probe microscope[J], Phys Rev Lett, 2000, 84(16): 3634-3637
    125.Yu M F, Kowalewski T, Ruoff R S. Investigation of the radial deformability of individual carbon nanotubes under controlled indentation force[J], Phys Rev Lett, 2000, 85(7): 1456-1459
    126.Lourie O, Wagner H D. Evaluation of young's modulus of carbon nanotubes by micro-Raman spectroscopy[J], J Mater Res, 1998, 13: 2418-2422
    127.Li F, Cheng H M, Bai S, Su G, Dresselhaus M S. Tensile strength of single-walled carbon nanotubes directly mesasured from their macroscopic ropes[J], Appl Phys Lett, 2000, 77:3161-3163
    128.Zhu H W, Xu C L, Wu D H, Wei B Q, Vajtai R, Ajayan P M. Direct synthesis of long single-walled carbon nanotube strands[J], Science, 2002, 296: 884-886
    129.Nix W D. Mechanical properties of thin films[J], Metall. Trans. 1989, A20: 2217
    130.Hofbeck R, Hausmann K, Ilschner B, Kuenzi H U. Fatigue of very thin copper and gold wires[J], Scripta Metall. 1986,20(11): 1601-1605
    131.Judelewicz M, Kunzi HU, Merk N, Ilschner B. Microstructural development during fatigue of copper foils 20-100 μm thick[J], Mater Sci Eng A, 1994, 186:135-142
    132.Hong S, Weil R. Low cycle fatigue of thin copper foils[J], Thin Solid Films. 1996, 283: 175-181
    133.Schwaiger R, Kraft O. Size effects in the fatigue behavior of thin Ag films[J], Acta Mater. 2003, 51: 195-206
    134.Zhang G P, Schwaiger R, Volkert C A, Kraft O. Effect of film thickness and grain size on fatigue-induced dislocation structures in Cu thin films [J], Philos Mag Lett, 2003, 83: 477-483
    135.Zhang G P, Volkert C A, Schwaiger R, Kraft O, Arzt E. Damage behaviour of 200 nm thin copper films under cyclic loading [J], J Mater Res, 2005, 20: 201-207
    1. Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E. C_(60): Buckminsterfullerene[J], Nature 1985, 318: 162-163
    2. Kroto H W, McKay K. The formation of quasi-icosahedral spiral shell carbon particles[J], Nature, 1988, 331: 328-331
    3. Lamb L D, Huffman D R, Workman R K, Howells S, Chen T, Sarid D, Ziolo R. F. Extraction and STM imaging of spherical giant fullerenes[J], Science, 1992, 255: 1413-1416
    4. Ugarte D. Curling and closure of graphitic networks under electron-beam irradiation[J], Nature, 1992,359(6397): 707-709
    5. Serp P, Feurer R, Kalck P, Kihn Y, Faria J L, Figueiredo J L.A chemical vapour deposition process for the production of carbon nanospheres[J], Carbon, 2001, 39: 615-628
    6. Deheer W A, Ugarte D. Carbon onions produced by heat-treatment of carbon soot and their relation to the 217.5 nm interstellar absorption feature[J], Chem Phys Lett, 1993,207(4-6): 480-486
    7. Yoshida M M, Castillo R, Ramos S, Rendon L, Tehuacanero S, Zou B S, Yacaman J M. High-resolution electron-microscopy studies in carbon soots[J], Carbon, 1994, 32(2): 231-246
    8. Kamegawa K, Yoshida H. Prepartion and characterization of swelling porous carbon beads[J], Carbon, 1997, 35(5): 631-639
    9. Wang Z L, Kang Z C. Pairing of pentagonal and heptagonal carbon rings in the growth of nanosized carbon spheres synthesized by a mixed-valent oxide-catalytic carbonization process[J], J Phys Chem, 1996,100: 17725-17731
    10. Sharon M, Mukhopadhyay K, Yase K, Iijima S, Ando Y, Zhao X L. Spongy carbon nanobeads-a new material[J], Carbon, 1998, 36(5-6): 507-511
    11. Liu X Y, Huang B C, Coville N J. The Fe(CO)_5 catalyzed pyrolysis of pentane: carbon nanotube and carbon nanoball formation[J], Carbon, 2002, 40:2791-2799
    12. Lou Z S, Chen Q W, Gao J, Zhang Y F. Preparation of carbon spheres consisting of amorphous carbon cores and graphene shells[J], Carbon, 2004, 42: 219-23813. Qiu J S, Li Y F, Wang Y P, Liang C H, Wang T H, Wang D H. A novel form of carbon micro-balls from coal[J], Carbon, 2003, 41: 767-772
    
    14. Qian H S, Han F M, Zhang B, Guo Y C, Yue J, Peng B X. Non-catalytic CVD preparation of carbon spheres with a specific size[J], Carbon, 2004, 42: 761-766
    
    15. Kang Z C, Wang Z L. Mixed-valent oxide-catalytic carbonization for synthesis of monodispersed nano sized carbon spheres[J], Philos Mag, 1996, B73(73): 905-929
    
    16. Yamada K, Tobisawa S. Structure and formation process of carbon blacks formed by decomposing SiC powder using a conically converging shock-wave technique[J], Carbon, 1989, 27(6): 845-852
    
    17. Jones S S, Woodruff E M. Microstructure of carbon blacks in pitch-bonded graphites and structural changes produced by gas—graphite oxidation reactions [J], Carbon, 1971, 9(3): 259-262
    
    18. Clinton D, Kaye G. Characterization of bonded carbons by ultra-thin sectioning[J], Carbon, 1965,2:341-345
    
    19. Ugarte D. Onion-like graphitic particles[J], Carbon, 1995, 33(7): 989-993
    
    20. Sano N, Wang H L, Chhowalla M, Alexandrou I, Amaratunga G A J. Synthesis of carbon 'onions' in water[J], Nature, 2001, 414: 506-507
    
    21.Gogotsi Y, Libera J A, Kalashnikov N, Yoshimura M. Graphite polyhedral crystals[J], Science, 2000, 290: 317-320
    
    22. Matthews M J, Pimenta M A, Dresselhaus G, Dresselhaus M S, Endo M. Origin of dispersive effects of the Raman D band in carbon materials[J], Phys Rew B, 1999, 59(10): R6585-R8588
    
    23. Zhang B, Bai S, Cheng H M, Cai Q K. Graphitization induced microstructural changes in tetrahydrofuran derived pyrolytic carbon spheres, J Mater Res, 2006, accepted
    
    24. Saito Y, Yoshikawa T, Inagaki M. Growth and structure of graphitic tubules and polyhedral particles in arc-discharge [J], Chem Phys Lett, 1993, 204: 277-282
    
    25. Harris P J F. Structure of non-graphitising carbons[J], Inter Mater Rev, 1997, 42: 206-218
    
    26. Speck J S, Endo M, Dresselhaus M S. Structure and intercalation of thin benzene derived carbon fibers[J], J Cryst Growth, 1989, 94: 834-848
    
    27. Tibbetts G G. Why are carbon filaments tubular[J], J Cryst Growth, 1984, 66:632-6381. Kroto H W, Heath J R, O'Brien S C, Curl R F, Smalley R E. C_(60): Buckminsterfullerene[J]. Nature, 1985, 318: 162-163
    2. Iijima S. Helical mierotubes of graphitic carbon[J]. Nature, 1991, 354: 56-58
    3. Terrones M, Grobert N, Zhang J P, Terrones H, Olivares J, Hus W K, Hare J P, Cheetham A K, Kroto H W, Walton D R M. Preparation of aligned carbon nanotubes catalysed by laser-etched cobalt thin films[J], Chem Phys Lett, 1998, 285(5-6): 299-305
    4. Grobert N, Terrones M, Osborne O J, Terrones H, Hsu W K, Trasobares S, Zhu Y Q, Hare J P, Kroto H W, Walton D R M. Thermolysis of C-60 thin films yields Ni-filled tapered nanotubes[J], Appl Phys A, 1998, 67(5): 595-598
    5. Rao C N R, Sen R, Satishkumar B C, Govindaraj L. Large aligned-nanotube bundles from ferrocene pyrolysis[J], Chem Commun, 1998, 15: 1525-1526
    6. Grobert N, Hsu W K, Zhu Y Q, Hare J P, Kroto H W, Walton D R M, Terrones M, Terrones H, Redlich P, Ruhle M, Escudero R, Morales F. Enhanced magnetic coercivities in Fe nanowires[J], Appl Phys Lett, 1999, 75(21): 3363-3365
    7. Elias A L, Rodriguez-Manzo J A, McCartney M R, Golberg D, Zamudio A, Baltazar S E, Lopez-Urias F, Munoz-Sandoval E, Gu L, Tang C C, Smith D J, Bando Y, Terrones H, Terrones M. Production and characterization of single-crystal FeCo nanowires inside carbon nanotubes[J], Nano Lett, 2005, 5: 467-472
    8. Hata K, Futaba D N, Mizuno K, Namai T, Yumura M, Iijima S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes[J], Science, 2004, 306: 1362-1364
    9. Fodor P S, Tsoi G M, Wenger L E. Fabrication and characterization of Co_(1-c)Fe_x alloy nanowires[J], J Appl Phys, 2002, 91(10): 8186-8188
    10.成会明编著.纳米碳管制备、结构、物性及应用[M].北京:化学工业出版社,2002.91-93
    11. Chen ZY, Zhan QF, Xue DS, Li FS, Zhou XZ, Kunkel H, Williams G. Mossbauer study of Fe-Co nanowires[J], J Phys Condens Matter, 2002, 14(3): 613-620
    12. Zhan Q F, Chen Z, Xue D H, Li F, Kunkel H, Zhou X Z, Roshko R, Williams G.??Structure and magnetic properties of Fe-Co nanowires in self-assembled arrays[J], Phys Rev B, 2002, 66(13): 134436-1334436
    13. Tang S L, Chen W, Lu M, Yang S G, Zhang F M, Du Y W. Nanostructure and magnetic properties of Fe_(69)Co_(31)nanowire arrays[J], Chem Phys Lett, 2004, 384(1-3): 1-4
    14. Pierce J P, Plummer E W, Shen J. Ferromagnetism in cobalt-iron alloy nanowire arrays on W(110)[J], Appl Phys Lett, 2002, 81(10): 1890-1892
    15. Lee G H, Huh S H, Jeong J W, Kim S H, Choi B J, Ri H C, Kim B, Park J H. Arrays of ferromagnetic FeCo and FeCr binary nanocluster wires[J], J Appl Phys, 2003, 94(6): 4179-4183
    16. Dujardin E, Ebbesen T W, Hiura H, Tanigaki K. Capillarity of Carbon nanotubes [J], Science, 1994, 265(5180): 1850-1852
    17. Terrones M, Grobert N, Zhang J P, Terrones H, Olivares J, Hsu W K, Hare J P, Cheetham A K, Kroto H W, Walton D R M. Preparation of ahgned carbon nanotubes catalysed by laser-etched cobalt thin films. Chem Phys Lett, 1998, 285(5-6): 299-305
    18. Grobert N, Mayne M, Terrones M, Sloan J, Dunin-Borkowski R E, Kamalakaran R, Seeger T, Terrones H, Ruhle M, Walton D R M, Kroto H W, Hutchison J L. Alloy nanowires: invar inside carbon nanotubes[J], Chem Commun, 2001, 5: 471-472
    19. Mayne M, Grobert N, Terrones M, Kamalakaran R, Ruhle M, Kroto H W, Walton D R M. Pyrolytic of aligned carbon nanotubes from homogeneously dispersed benzene-based aerosols. Chem Phys Lett, 2001, 338(2-3): 101-107
    20. Mukhopadhyay K, Koshio A, Sugai T, Tanaka N, Shinohara H, Konya Z, Nagy J B. Bulk production of quasi-aligned carbon nanotube bundles by the catalytic chemical vapour deposition (CCVD) method[J], Chem Phys Lett, 1999, 303 (1-2): 117-124
    21. Maruyama S, Kojima R, Miyauchi Y, Chiashi S, Kohno M. Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol[J], Chem Phys Lett, 2002, 360(3-4): 229-234
    22.张滨,刘常升,国玉军,傅淑云,才庆魁,张世伟,巴德纯.用激光将廉价有机硅烷合成SiC纳米粉的研究[J],中国激光,1999,A26(1):93-961. Maruyama S, Kojima R, Miyauchi Y, Chiashi S, Kohno M. Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol[J], Chem Phys Lett, 2002, 360: 229-234
    2. Hata K, Futaba D N, Mizuno K, Namai T, Yumura M, Iijima S. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes[J], Science, 306(19): 1362-1364
    3. Murayama H, Maeda T. A novel form of filamentous graphite[J], Nature, 1990, 345: 791-793
    4. Dong J, Shen W C, Kang F Y, Tatarchuk B. Whiskers with apex angle 135° growing by a disclination growth mechanism[J], J cryst growth, 2002, 245: 77-831. Iijima S. Helical microtubes of graphitic carbon[J], Nature, 1991, 354: 56-58
    2. Vigolo B, Poulin P. Improved structure and properties of single-wall carbon nanotubes spun fibers[J], Appl Phys Lett, 2002, 81: 1210-1212
    3. Baughman R, Zakhidov A, de Heer W. Carbon nanotubes-the ruoute toward applications[J], Science, 2002, 297: 787-792
    4. Delmotte J, Rubio A. Mechanical properties of carbon nanotubes: a fiber digest for beginners[J], Carbon, 2002, 40(10): 1729-1734
    5. Qi H J, Teo K B K, Lau K K S, Boyce M C, Milne W I, Robertson J, Gleason K K. Determination of mechanical properties of carbon nanotubes and vertiecally aligned carbon nanotube forests using nanoindentation[J], J Mech Phys Solids, 2003, 51(11-12): 2213-2237
    6. Ruoff R, Qian D, Liu W. Mechanical properties of carbon nanotubes: theoretical predictions and experimental measurements[J], Physique, 2003, 4: 993-1008
    7. Abe H, Shmitzu T, Ando A, Tokumoto H. Electric transport and mechanical strength measurements of carbon nanotubes in scanning electron microscope[J], Physica E, 2004, 24: 42-45
    8. Ajayan O, Banhart F. Nanotubes: Strong bundles[J], Nat Mater, 2004, 3: 135-136
    9. Li Y J, Wang K L, Wei J Q, Gu ZY, Wang Z C, Luo J B, Wu D H. Tensile properties of long aligned double-walled carbon nanotube strands[J], Carbon, 2005, 43(1): 31-35
    10. Popov V. Carbon nanotubes: properties and application[J], Mater Sci Eng R, 2004, 43: 61-102
    11. Zhu H W, Xu C L, Wu D H, Wei B Q, Vajtai R, Ajayan P M. Direct synthesis of long single-wall carbon nanotubes strands[J], Science, 2002, 296: 884-886
    12. Ericson L M., Fan H, Peng H Q, Davis V A, Zhou W, Sulpizio J, Wang Y H, Booker R, Vavro J, Guthy C, Parra-Vasquez A N G, Kim M J, Ramesh S, Saini R K, Kittrell C, Lavin G, Schmidt H, Adams W W, Billups W E, Pasquali M, Hwang W F, Hauge R H, Fischer J E, Smalley R E. Macroscopic, neat, single-walled carbon nanotube fibers[J], Science, 2004, 305: 1447-1450
    13. Vigolo B, Penicaud A, Coulon C, Sauder C, Pailler R, Journet C, Bernier P, Poulin P.??Macroscopic fibers and ribbons of oriented carbon nanotubes[J], Science, 2000, 290: 1331-1334
    14. Dalton A B, Collins S, Mufioz E, Razal J M, Ebron V H, Ferraris J P, Coleman J N, Kim B G, Baughman R H. Super-tough carbon-nanotube fibres[J], Nature, 2003, 423: 703
    15. Lau K, Hui D. The revolutionary creation of new advanced materials—carbon nanotube composites[J], Composites, Part B, 2002, 33: 263-277
    16. Allaoui S, Bai S, Cheng H, Bai J. Mechanical and electrical properties of a MWNT/epoxy composite[J], Compos Sci Technol, 2002, 62: 1993-1998
    17. Thostenson E, Chou T. On the elastic properties of carbon nanotube-based composites: modeling and characterization[J], J Phys D, 2003, 36: 573-582
    18. Meguid S, Sun Y. On the tensile and shear strength of nano-reinforced composite interfaces[J], Mater Des, 2004, 25: 289-296
    19. Meincke O, Kaempfer D, Weickmann H, Friedrich C, Vathauer M, Warth H. Mechanical properties and electrical conductivity of carbon-nanotube filled polyamide-6 and ites blends with acrylonitrile /butadience /styrene[J], Polymer, 2004, 45: 739-748
    20. Wang C, Guo Z, Fu S, Wu W, Zhu D. Polymers containing fullerene or carbon nanotube structures[J], Prog Polym Sci, 2004, 29: 1079-1141
    21. Rao A M, Richter E, Bandow S, Chase B, Eklund P C, Williams K A, Fang S, Subbaswamy K R, Menon M, Thess A, Smalley R E, Dresselhaus G, Dresselhaus M S. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes[J], Science, 1997(5297): 187-191
    22. Bandow S, Asaka S, Saito Y, Rao AM, Grigorian L, Richter E, Eklund PC. Effect of the growth temperature on the diameter distribution and chirality of single-wall carbon nanotubes[J], Phys Rev Lett, 1998, 80(17): 3779-3782
    23. Alvarez L, Righi A, Guillard T, Rols S, Anglaret E, Laplaze D, Sauvajol J L. Resonant Raman study of the structure and electionic properties of single-wall carbon nanotubes[J], Chem Phys Lett, 2000, 316(3-4): 186-190
    24. Sugano M, Kasuya A, Tohji K, Saito Y, Nishina Y. Resonance Raman scattering and diameter-dependent electronic states in single-wall carbon nanotubes[J], Chem Phys Lett, 1998, 192(4-6): 575-57925. Jorio A, Saito R, Hafner J H, Lieber C M, Hunter M, McClure T, Dresselhaus G, Dresselhaus M S. Structural(n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering[J], Phys Rev Lett, 2001, 86(6): 1118-1121
    26. Jorio A, Souza A G, Dresselhaus G, Dresselhaus M S, Saito R, Hafner J H, Lieber C M, Matinaga F M, Dantas M S S, Pimenta M A. Joint density of electronic states for one isolated single-wall carbon nanotube studied by resonant Raman scattering[J], Phys Rev B, 2001, 63(24): art. No.-245416
    27. Souza A G, Jorio A, Hafner J H, Lieber C M, Saito R, Pimenta M A, Dresselhaus G, Dresselhaus M S. Electronic transition energy E-ii for an isolated (n, m) single-wall carbon nanotube obtained by anti-Stokes/Stokes resonant Raman intensity ratio[J], Phy Rev B, 2001, 63(24): art. No.-241404
    28. Dresselhaus M S, Dresselhaus G, Jorio A, Souza A G, Pimenta M A, Saito R. Single nanotube Raman spectroscopy[J], Accounts of Chem Res, 2002, 35(12): 1070-1078
    29. Dresselhaus M S, Eklund P C. Phonons in carbon nanotubes[J], Adv in Phys, 2000, 49(6): 705-814
    30. Venkateswaran U D, Rao A M, Richter E, Menon M, Rinzler A, Smalley R E, Eklund P C. Probing the single-wall carbon nanotube bundle: Raman scattering under high pressure[J], Phys Rev B, 1999, 59: 10928-10934
    31.李峰.有机物催化热解法制备单壁纳米碳管及其物理性能[D],沈阳:中国科学院金属研究所博士学位论文,2001
    32. Thess A, Lee R, Nikolaev P, Dai H J, Petit P, Robert J, Xu C H, Lee Y H, Kim S G, Rinzler A G, Colbert D T, Scuseria G E, Tomanek D, Fischer J E, Smalley R E. Crystalline ropes of metallic carbon nanotubes[J], Science, 1996, 273(5274): 483-487
    33. Huang J Y, Chen S, Wang Z Q, Kempa K, Wang Y M, Jo S H, Cheng G, Dresselhauss M S, Ren Z F. Superplastic carbon nanotubes[J], Nature, 2006, 439: 1
    34. Motta M, Li Y L, Kinloch L, Windle A. Mechanical properties of continuously spun fibers of carbon nanotubes[J], Nano Lett, 2005, 5(8): 1529-1533
    35. Li F, Cheng H M, Bai S, Su G, Dresselhaus M S. Tensil strength of single-walled carbon nanotubes directly measured from their macroscopic ropes, Appl Phys Lett, 2000, 77: 3161-31631. Nix W D. Mechanical properties of thin films [J], Metall Trans, 1989, A20: 2217-
    2. Schwaiger R, Kraft O. Size effects in the fatigue behavior of thin Ag films [J], Acta Mater, 2003, 51: 195-206
    3. Zhang G P. Schwaiger R, Volkert C A, Kraft O. Effect of film thickness and grain size on fatigue-induced dislocation structures in Cu thin films [J], Philos Mag Lett, 2003, 83: 477-483
    4. Zhang G P. Volkert C A, Schwaiger R, Arzt E, Kraft O. Damage behaviour of 200 nm thin copper films under cyclic loading [J], J Mater Res, 2005, 20: 201-207
    5.张滨,孙恺红,宫骏,孙超,才庆魁,张广平.100nm厚铜薄膜拉伸性能的研究[J],材料研究学报,2006,10(1):29-32
    6.张滨,孙恺红,刘永东,张广平.亚微米厚度铜薄膜的微观结构与疲劳损伤行为的研究[J],金属学报,2006,42(1):1-5
    7. Courtney T H. Mechanical Behavior of Materials[M], (The McGraw-Hill Companies, Inc. 2000)北京:机械工业出版社, 2004, 347-352
    8. Macionczyk F, Bruckner W. Tensile testing of AlCu thin films on polyimide foils[J], J Appl Phys, 1999, 86: 4922-4929
    9. Hommel M, Kraft O. Deformation behavior of thin copper films on deformable substrates [J], Acta mater, 2001, 49: 3935-3947
    10. Yu D Y W, Spaepen F. The yield strength of thin copper films on Kapton [J], J Appl Phys, 2004, 95: 2991-2997
    11. Gao H, Nix W D. Geometrically necessary dislocation and size-dependent plasticity [J], Script Mater, 2003, 48: 113-118
    12. Zhang B, Wang W, Zhang G P. Depth-dependent hardness variation in Ni-P amorphous film under nanoindentation [J], Mater Sci Tech, 2006, in press

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700