基于STM32的大功率超声电源的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油田近井处理所需要的大功率超声电源具有容量大、频率稳定、输出功率因数高、保护全面的特点。在实际应用中,由于储存石油的地层条件复杂,不同沉积环境下所形成的砂岩声学参数变化大,所以不同地区、不同地层的套管井所构成的声学系统差异比较大。为了有效地将井内激发的大功率超声振动能量通过套管井的井内液体、套管和水泥环送入声学参数不同的地层,套管井的声学参数需要随时测量,作业参数需要实时的调整。
     为满足以上需求,本文选择了数据处理功能比较强的STM32单片机作为电源系统的主控芯片。基于其精确的定时器实现PWM输出,提供IGBT工作所需的波形;用其双路A/D同时采集作业时的电流和电压波形;用数字信号处理的方法快速处理电压和电流波形的相位差及幅值比,以此为基础调节发射波形的频率,使其与套管井条件下探头的谐振频率一致,实现频率跟踪和有效激发;借助于理论模型进一步处理电压和电流波形,可得套管井条件下的声阻抗,以便监测作业过程中套管井的声阻抗变化。
     本文首先给出了电源系统的整体设计方案,然后根据系统的结构依次介绍了各部分的硬件电路设计及软件的实现方案。重点介绍了电源变压器的设计,通过对磁芯进行开气隙,增大了磁感应强度达到饱和时的磁场强度,使变压器能承受更大电流;通过并联磁芯,增加了磁路的有效面积,满足了大功率传输的要求。基于磁路基本定律,对相关参数进行了数学计算。并用matlab对开气隙后磁芯的磁滞回线进行了仿真。在论文的最后,给出了实验的结果。从结果可看出,IGBT的门极输出波形比较稳定;当给电源系统接上电缆和换能器后,测量可得从电源中输出的最大电流达到了94A,电压达到了565V,实际输出的电功率达到了53kW。
The high-power ultrasonic power supply needed by former oil well processing near borehole zones has the characteristics of large capacity、stable frequency、high output power factor and comprehensive protect. In actual work, we find the key parameters of the system need real-time measurement and so related parameters need to be adjusted in real time due to complex formation condition. In actual work, due to complex conditions of formation which can storage oil, the acoustic parameters of sandstone in different sedimentary environment are different, so that acoustic system formed in different region and different strata has large differences. In order to send the high power ultrasonic vibration energy, which is stimulated in the well, into different strata with different acoustic parameters through the well fluids、casing and cement of the well casing, the key parameters of the system need real-time measurement and so related parameters need to be adjusted in real time.
     To meet these needs, the MCS STM32 is selected as the core of the system. Based on its precise timer, PWM output can be realized so as to provide waveform which makes IGBT work; Using the method of digital signal processing, MCS STM32 can automatically process the phase difference and amplitude ratio information of current and voltage waveforms, which are collected by STM32’s dual AD converter at the same time. Take this as the foundation, we can adjust the frequency of the transmitted waveform to the resonance frequency of probe. Ultimately frequency track and effective stimulation can be realized. Otherwise, with the help of the theoretical model,we can obtain the acoustic impedance in cased well from further processing of voltage and current.So that the acoustic impedance change during the actual work can be monitored.
     First, the overall design of the power system is introduced. Second the design of every part of the hardware is presented in turn according to the structure of the system, and the software implementation is described. Then the design process of the power transformer is demonstrated in detail. Increase the saturation magnetic flux density when the magnetic induction is saturated by opening air gap on the core,so that the transformer can withstand more current;Increase the effective area of the magnetic circuit,so that to meet the power transmission requirements. Calculate relevant parameters based on the basic law of magnetic circuit. Simulate the hysteresis loop of the core with air gap using matlab. At the end, the result is given. It shows that the output waveform of the IGBT gate is relatively stable. If connecting cable and transducer to the power system, the maximum current of the system can reach 94A and the voltage can reach 565V,so that the actual output electric power can reach 53kV.
引文
[1]李云凌,从石油对国民经济的推动作用看我国石油的进出口贸易,黑龙江对外经贸,2008,(07):12~14
    [2]Lai Nanjun,New energy development and utilization of the China National Offshort Oil Corporation,Renewable and Sustainable Energy,2011,347~353:1172~1179
    [3]诸大建,孟维华,中国经济增长中的能源效应分析,科学发展,2009,(01):26~37
    [4]Tze-Chi Jao,Chip Hewette,Dava DeGona etc,Development of Fuel Economy Gear Oil Technology,Oil Research and Application,2010,25(03):11~19
    [5]王军民,中国石油海外发展研究,硕士学位论文,对外经济贸易大学,2010
    [6]黄燕文,中国能源回弹效应研究,硕士学位论文,厦门大学,2009
    [7]段颖姣,减缓气候变化的财税政策研究,硕士学位论文,首都经济贸易大学,2010
    [8]童晓光,赵林,汪如朗,对中国石油对外依存度问题的思考,经济与管理研究,2009,(01):60~65
    [9]常伟,李军文,桃野正等,超声波熔体处理方法对纯铝铸锭凝固组织的影响,轻合金加工技术,2007,35(03):19~22
    [10]杨元俊,声现象知识疑难问题盘点,中学教与学,2009,(06):9
    [11]李冀辉,以鳞片石墨为原料的多功能碳材料的制备与应用研究,博士学位论文,河北大学,2009
    [12]郑茂俊,严炽培,储俊,超声波在油田开发中的应用及作用机理,物理,1996,25(09):549~551
    [13]王阳恩,超声波采油技术的原理及应用,物理学与高新技术,2002,32(03):11~14
    [14]孙国民,孙晓雷,高良艳等,超声波流量计在油田测试中的应用,油气田地面工程,2003,22(01):29~30
    [15]刘清云,李俊成,郑刚等,采油用超声波与化学防垢技术研究及应用,青岛大学学报(工程技术版),2010,25(04):83~86
    [16]苏凤岐,汪建新,孙建平,基于PWM大功率超声波电源的设计,电源技术,2006,(12):122~124
    [17]裴玖玲,屈百达,基于单片机8089的超声波电源控制技术的研究,数控技术,2008,(09):102~104
    [18]于猛,刘润华,刘静,基于56F803型DSP的大功率超声波电源的研究,国外电子元器件,2006,(04):52~55
    [19]秦进平,乔爽,盛程潜,超声高效气化燃油的研究,交通科技与经济,2007,9(04):67~69
    [20]徐涛,超声波发生器电源技术的发展,洗净技术,2003,(04):10~15
    [21]武一民,引线键合系统设计理论与关键技术,博士学位论文,天津大学,2008
    [22]乔治,钟利民,大功率超声清洗机发生器,声学与电子工程,2008,(01):41~42
    [23]周康,超声波清洗机用发生器的研制,硕士学位论文,华中科技大学,2008
    [24]Dai Hua,Luo Ercang,Hu Jianying etc,A novel coupling configuration for thermoacoustically-driven pulse tube coolers:Acoustic amplifier,2005,50(18):2112~2114
    [25]Wang Yongshun,Li Hairong,Wang Ziting etc,Improvements on high voltage performance of power static induction transistors,Journal of Semiconductors,2009,30(10):104003-1~104003-5
    [26]Young-Mun,Kim,Ju-Yong,etc,The Design of Inverter Power System for Plasma Generator,Proceedings of the Eighth International Conference on Electrical Machines and Systems(VolumeⅡ),2005
    [27]柯励伟,浅谈电力电子电路的控制技术,科技资讯,2006,(29):154
    [28]陈学深,数字化PT燃油泵试验台监控系统的设计,硕士学位论文,东北林业大学,2006
    [29]姚惠林,张松兰,DSP与单片计算机,洛阳工业高等专科学校学报,2003,13(04):25~26
    [30]黄洁,可编程逻辑器件及其应用前景,中国科技信息,2005,(13):38
    [31]张琴琴,兰金虎,孙勇,基于I2C总线的ZLG7290与AVR单片机接口技术及应用,仪表技术与传感器,2005,(09):41~43
    [32]STM32F101xx STM32F103xx Datasheets,STMicroeletronics,2007
    [33]STM32F103数据手册,STMicroelectronics,2007
    [34]Elsevier,宋岩,ARM Cortex-M3权威指南,北京:北京航空航天大学出版社,2009.7
    [35]Yu Bai,A Study on System-Level Power Management in View of STM32,Proceedings of 2010 Asia-pacific International Symposium on Aerospace Technology,2010,1,2(13-15):707~710
    [36]吴军,关于单片机复位系统的讨论,光通信研究,1993,(02):16~20
    [37]丘凯伦,嵌入式系统调试方法的分析与比较,现代计算机(下半月刊),2005,(11):82~84
    [38]杨战胜,嵌入式系统在自动化监控中的研究,硕士学位论文,华北水利水电学院,2007
    [39]STM32F101xx and STM32F103xx advanced ARM-based 32-bit MCUs Reference manual,STMicroelectronics,2008
    [40]马建伟,基于STM32的空气动力学数据采集系统的设计,硕士学位论文,西南交通大学,2007
    [41]黄欣,矩形波交流原油脱水电源的研究,硕士学位论文,中国石油大学(华东),2007
    [42]高伯发,魏淑珍,徐志国,大功率晶闸管整流电路串联顺序控制,电气自动化,1999,(04):28~29
    [43]蔡子亮,马俊朋,一种新型电力系统蓄电池放电装置的设计,继电器,2007,35(14):38~41
    [44]王可恕,绝缘栅双极晶体管(IGBT),国外电子元器件,1995,(07):35~42
    [45]Hefner A R.An Investigation of the Drive Circuit Requirements for the power IGBT [J].IEEE Transactions on Power Electronics,1991,6(2):208~212
    [46]孙汉卿,袁磊,余周等,IGBT的驱动和过流保护电路的研究,微计算机信息,2009,25(6-2):279~280
    [47]陈祥富,李宝军,IGBT的吸收电路,石家庄铁道学院学报,1997,10(增刊):101~104
    [48]文亚凤,赵莲清,刘向军,ICL7650_CMOS斩波集成运放简介及应用,现代电子技术,2006,(12):19~20
    [49]吕勇军,模拟光耦HCNR201及在数据采集系统中的应用,国外电子元器件,2003,(04):68~69
    [50]范斐,井周超声成像测井仪部分电路研制,硕士学位论文,西安石油大学,2010
    [51]夏中权,键盘芯片ZLG7290按键功能实现,电脑编程技巧与维护,2008(08):79~80、89
    [52]邹红,蔡益宇,数字电路抗干扰研究,数据通信,2003,(05):54~55
    [53]赵金龙,集中器与主站通信协议的设计与实现,硕士学位论文,西安科技大学,2010
    [54]ARM-based 32-bit MCU STM32F101xx and STM32F103xx firmware library user manual,STMicroelectronics,2008
    [55]温耀军,基于STM32F107VC+CS495313的数字调音台的设计与开发,硕士学位论文,湖南大学,2010
    [56]翟伟翔,智能化大功率超声电源的研制,硕士学位论文,华北电力大学,2002
    [57]刘燕,王京梅,高频开关电源功率变压器的漏感,磁性材料及器件,2006,37(05):54~55
    [58]B.F.Hamonic,O.B.Wilson,J.N.Decarpigny(Eds),Power transducers forsonics and ultrasonics,Springer-Verlag,1996(1)
    [59]张佳,铁酸镍锌-硒化镉磁性荧光复合微球的制备与表征,硕士学位论文,北京化工大学,2010
    [60]孙广领,集肤效应电伴热在胜利油田埕岛海底输油管道上的应用研究,石油工程建设,2006,32(03):31~34
    [61]王伟,非对称半桥式数字开关电源设计,硕士学位论文,东南大学,2009
    [62]刘振来,曹丰文,邓焰等,多路输出开关电源中变压器及电感设计,电气应用,2005,24(06):83~86
    [63]胡新伟,大功率压电换能器的非线性研究,硕士学位论文,陕西师范大学,2007
    [64]Alpaslan H , Yuce E , Bandwidth Expansion Methods of Inductance Simulation Circuits and voltage-mode Biquads,Journal of Circuits systems and computers,2011,20(03):557~572
    [65]周强,基于半桥谐振带APFC的通信整流器的设计与研究,硕士学位论文,上海交通大学,2009

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700