超声波条件下制备膨胀石墨负载的纳米二氧化钛及偶氮染料污水处理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文回顾了磷片石墨、石墨层间化合物(可膨胀石墨)和膨胀石墨的结构和特点,以及近几年以磷片石墨为原材料制备石墨层间化合物和膨胀石墨的方法,以详实的实验数据介绍了膨胀石墨近年来在水体油污染、水体染料污染治理上的应用。同时,简要地回顾了纳米二氧化钛的制备,以及在水体污染治理上的应用。经过对比分析指出,尽管膨胀石墨具有较强的吸附功能,纳米二氧化钛具有较强的光催化降解功能,但是这两种材料在应用于水体污染治理过程中的作用均是单一的。因此,制备一种新的复合物材料,将膨胀石墨的吸附性能和纳米二氧化钛的光催化降解性能结合是十分必要的。
     本论文在我们研究室拥有完全独立知识产权的制备膨胀石墨负载的纳米二氧化钛复合材料的基础上,对现有的制备方法进行改造,引入超声波进一步简化制备工艺路线,首次发明了在超声波条件下制备膨胀石墨负载的纳米二氧化钛复合材料的新工艺。并对该复合物材料进行了扫描电子显微镜、透射电子显微镜、X-射线衍射的结构表征,这些表征说明该复合材料与我们以前制备的膨胀石墨负载的纳米二氧化钛复合材料具有相同的形貌和结构。另外,这种新方法也首次被证明不仅可以制备出含硫的膨胀石墨负载的纳米二氧化钛复合材料,还可以制备出不含硫的膨胀石墨负载的纳米二氧化钛复合材料。
     在研究过程中,我们以偶氮染料(甲基橙、活性艳红X-3B、酸性黄42~#、酸性红249、酸性媒介棕RH)的水溶液作为模拟废水,分别用不含硫的和含硫的膨胀石墨负载的纳米二氧化钛复合材料对上述废水样品进行实验。实验结果显示辐射源、膨胀石墨负载的纳米二氧化钛复合材料的用量、废水溶液的酸性、废水溶液的浓度和反应温度对模拟废水的脱色率有影响。尽管不含硫的和含硫的膨胀石墨负载的纳米二氧化钛复合材料都具有膨胀石墨的吸附能力和纳米二氧化钛的光催化降解能力,但是在上述影响因素上产生出来的脱色率是不同的。
     实验结果充分证明在超声波条件下制备的膨胀石墨负载的纳米二氧化钛复合材料具有较强的吸附和光催化降解的能力,也证明了含硫的和不含硫的膨胀石墨复合材料在处理模拟染料废水过程中的处理能力不一样,为应用膨胀石墨负载的纳米二氧化钛复合新材料处理实际染料废水提供了实验基础。在本论文的最后一章中,我们对膨胀石墨负载的纳米二氧化钛复合材料对模拟废水产生的吸附和光降解的机理进行了探讨,也获得了一些有意义的结论。相关的研究报告已经在国外Ultrasonics Sonochemistry(SIC影响因子2007年2.434)和国内核心期刊《非金属矿》上进行了报告。
     本论文要做的主要工作如下:
     1.以磷片石墨为原材料,利用超声波技术制备出膨胀石墨负载的纳米二氧化钛复合材料。
     2.用SEM、TEM、XRD等手段对该复合材料进行表征,获得它们的结构、形貌和表观性能的相关信息。
     3.利用膨胀石墨负载的纳米二氧化钛复合材料为吸附和光催化降解材料,研究其对部分偶氮染料的吸附和光催化降解性能。
     4.探讨膨胀石墨负载的纳米二氧化钛复合材料对偶氮染料的吸附和光催化降解作用的机理。
This thesis reviews the structures and the characteristics of flake graphite,graphite intercalation compounds(GIC or expandable graphite) and expanded graphite(EG);it looks back the development of which graphite intercalation compounds(GIC) and EG has been prepared by natural flake graphite as raw materials for recent years;it introduces the application of EG in dealing with oil-water pollution and dyes wastewater.Meanwhile,it also reviews the preparation and the application of nano-TiO_2 in dealing with wastewater. Although EG has a strong and adsorptive capability and nano-TiO_2 possesses a strong and photoeatalytic degradation function,all of them just plays a single role in the process of treating water pollution.Thereby,it is necessary to prepare nanometer TiO_2/exfoliated graphite composites(the nanometer composites) which have the adsorption capability produced by the surface area and nanometer aperture of EG(nano-EG) and the photocatalysis capability of the nanometer particles of TiO_2(nano-TiO_2) synchronously.
     In the thesis,in order to simplify the preparation technology further,the former method (the preparation of the exfoliated graphite inserting nano-TiO_2),of which we have complete independent intellectual property,is used in the presence of the ultrasound irradiation. Therefore,the method to prepare the nanometer composites has been invented in the presence of ultrasound irradiation for the first time.Meanwhile,SEM,TEM and XRD have been also applied to characterize the structure,the mprphology and the relevant information of the nanometer composites,and they illuminate that the nanometer composites have the same structure and the morphology,comparing with our previous productions.In addition,it has proved that this new method can not only prepare the sulfur-containing nanometer composites but also the sulfur-free nanometer composites(Sulfur-flee meant that the reactants did not contain sulfur element in the process of preparation besides 320μm mesh of flake graphite contained itself).
     Azo dyes(methyl orange,active brilliant red X-3B,acid yellow 42~#,acid red 249,acid mordant brown RH) aqueous solution have been used as a model compound in the process of the research.Sulfur-free and sulfur-containing nanometer composites have been apart applied to investigate the removal ratios of the aqueous solutions.The experiment results have exhibited that the removal ratios of the aqueous solutions are influenced by the irradiation sources,the dosages of the nanometer composites,the initial pH values,the initial solution concentrations and the reaction temperatures.All of them have adsorption capability of nano-EG and the photocatalysis capability of nano-TiO_2,but they possess the different adsorption capability and photocatalysis capability under the above conditions.
     The experiment results have proved well that nanometer composites prepared under ultrasound irradiation have the strong adsorption capability and the strong photocatalysis capability;they have still proved that sulfur-free and sulfur-containing nanometer composites have different capabilities in the process of dealing with azo dyes aqueous solution. Meanwhile,the results also establish an experimental basis for dealing with azo dye wastewater actually.In the last chapter,we have discussed the mechanism of the adsorption and photocatalytic degradation produced by nanometer composites for azo dye molecules,and some significative conclusions are obtained as well as.In addition,the papers related studies have been reported on the foreign journal:Ultrasonics Sonochemistry(2007,SCI,IF:2.434) and the domestic central journal:Non-Metallic Mines.
     Main contents in this thesis:
     1.Nano-TiO_2/exfoliated graphite composites have been prepared by flake graphite as raw materials to prepare in the presence of ultrasound irradiation.
     2.The structure,the morphology and the relevant information of nano-TiO_2/exfoliated graphite composites have been measured by SEM,XRD and TEM.
     3.The adsorption and photocatalysis capability of the nano-TiO_2/exfoliated graphite composites have been investigated in azo dyes aqueous solutions.
     4.The mechanism of the adsorption and photocatalytic degradation produced by nano-TiO_2/exfoliated graphite composites for azo dye has been discussed.
引文
[1]路忠胜,天然石墨及其在铝电解中的应用[J],轻金属,1994,(1):30-32.
    [2]段惠彬,对我国石墨资源开发与利用的探讨[J],中国矿业,2001,10(6):22-24.
    [3]于仁光,乔小晶,纳米复合材料.可膨胀石墨的合成及应用,材料导报,2003,17(专辑1:125-126.
    [4]刘平桂,龚克成,石墨嵌入化合物的研究和发展[J],化学世界,1999,(5):227-232.
    [5]杨东兴,康飞宇,一种纳米复合材料-石墨层间化合物的结构与合成[J],清华大学学报(自然科学版),2001,41(10):9-12,35.
    [6]李冷,曾宪滨,石墨层间化合物(GIC)的研究及应用[J],非金属矿,1994,(1):58-63.
    [7]传秀云,石墨层间化合物的合成技术及应用前景[J],非金属矿,1997,(4):18-21.
    [8]张瑞军,刘建华,沈万慈,石墨层间化合物阶结构的标定方法[J],碳素,1998,(2):5-8.
    [9]康飞宇,石墨层间化合物和膨胀石墨[J],新型炭材料,2000,15(4).
    [10]任京成,沈万慈等,柔性石墨材料和膨胀石墨材料的现状及发展趋势[J],非金属矿,1999,22(5):5-9.
    [11]曲久辉,雷鹏举,多功能高絮凝剂电化学合成的机理和条件[J],环境化学,1997,16(6):528-533.
    [12]于海迎,吴红军,杭磊,王宝辉,氟化石墨的合成应用研究[J],化工时代,2006,20(1):73-74.
    [13]李冀辉,李晶,刘淑芬,使用50目鳞片石墨制备多功能碳材料[J],非金属矿,2007,30(4):14-16.
    [14]A Celzard,E Mcrae,J F Mar(?)ch(?),et al,Composition base on micron-size exfoliated graphite particles:Electrical conduction,critical exponents and anisotropy[J],J.Phys.Chem Solids,1999,57(6-8):715-718.
    [15]Jing Li,Jihui Li,Mei Li,Ultrasound irradiation prepare sulfur-free and lower exfoliate-temperature expandable graphite[J],Materials Letters,2008,62(14,15):2047-2049.
    [16]Jihui Li,Jing Li,Mei Li,Preparation of expandable graphite with ultrasound irradiation [J],Materials Letters,2007,61(28):5070-5073.
    [17]薛美玲,于永良,任志华,张积树,电化学法制造膨胀石墨的再改进[J],精细化工, 2002,19(10):567-570.
    [18]杨永清,王佳德,陈二龙,可膨胀石墨电化学制备及其研究,纤维复合材料[J],1998(2):22.
    [19]杨晓燕,关明等,电化学法制膨胀石墨的改进[J],精细化工,2000,17增刊:36.
    [20]宋克敏,路文义,高淑英等,低硫可膨胀石墨的制备[J],应用化学,1995,12(1):94-95.
    [21]张红波,刘洪波等,低硫膨胀石墨制备研究[J],非金属矿,1996(5):23-24.
    [22]宋克敏,路文义等,制备低硫可膨胀石墨的研究[J],无机材料学报,1994,9(4):455-460.
    [23]宋克敏,路文义,陈希陵等,制备低硫可膨胀石墨的新方法[J],合成化学,1996,4(3):282-284.
    [24]陈希陵,宋克敏,李冀辉等,以冰醋酸为介质制备低硫可膨胀石墨[J],无机材料学报,1996,11(2):381-383.
    [25]靳通收,马艳然,李强,可膨胀石墨的制备[J],无机化学学报,1997,13(2):231-233.
    [27]宋克敏,刘金鹏,敦会娟,混酸法制备无硫可膨胀石墨的研究[J],无机材料学报,1997,12(4):633-636.
    [28]金为群,权新军等,用磷酸酐制备无硫可膨胀石墨的研究[J],非金属矿,2000,23(1):16-17.
    [39]陈小文等,制备低硫高倍膨胀石墨的正交法研究[J],炭素,2000,(3):1-5.
    [30]宋克敏,敦会娟,制备无硫低氮膨胀石墨的新工艺研究[J],功能材料,2000,31(4):433-434.
    [31]李冀辉,刘巧云等,低硫可膨胀石墨的制备[J],精细化工,2003,20(6):341-342.
    [32]周伟,董建,兆恒等,膨胀石墨结构的研究[J],炭素技术,2000,(4):26-30.
    [33]曹乃珍,沈万慈等,膨胀石墨微孔结构的特点及其表征[J],物理化学学报,1996,12(8):766-768.
    [34]曹晓燕,魏淑伟等,膨胀石墨吸附重油的热力学研究[J],中国海洋大学学报,2008,38(1):103-106.
    [35]周伟,昭恒,胡小芳等,膨胀石墨水中吸油行为及机理的研究[J],水处理技术,2001:27(6):335-337.
    [36]胡黄卿,软填料密封常用材料及其选择[J],机械研究与应用,2004,17(1):34-36.
    [37]陈建,卿明强,新型石墨/丙烯酸导电涂料研究[J],新型碳材料,2000,15(2):53-56.
    [38]李冀辉,冯莉莉,贾志欣,以膨胀石墨为填料的防静电涂料的研究[J],上海涂料,2005,43(12):1-3.
    [39]B Tryba,J Przepi(?)rski,A W Morawski,Influence of chemically prepared H_2SO_4-graphite intercalation compound(GIC) precursor on parameters of exfoliated graphite(EG) for oil sorption from water[J],Carbon,2003,41(10):2013-2016.
    [40]Masahiro Toyoda,Michio Inagaki,Heavy oil sorption using exfoliated graphite:New application of exfoliated graphite to protect heavy oil pollution[J],Carbon,2000,38(2):199-210.
    [41]李冀辉,刘淑芬,膨胀石墨孔结构及其吸附性能研究[J],非金属矿,2004,27(4):44.
    [42]刘淑芬,李冀辉,杨丽娜,膨胀石墨对直接染料废水吸附脱色研究[J],化工环保,2006,26(3):186-188.
    [43]刘淑芬,李冀辉,膨胀石墨对活性艳红X-3B染料的吸附脱色[J],城市环境与城市生态,2006,19(2):23-24
    [44]唐振宁,钛白粉的生产与管理[M],北京,化学工业出版社,2000,4.
    [45]Kiln D H,Anderson M A,Photoelectrocatalytic degradation of formic acid using a porous TiO_2 thin-film electrode[J],Environ Sci Technol,1994,28(3):479-483.
    [46]Anderson C,Bard A J,An improved photocatalyst of TiO_2/SiO_2 prepared by sol-gel synthesis[J],J.Phys.Chem,1995,99(24):9882-9885.
    [47]Haarstrick A,Kut O M,Heinzle E,TiO_2-assisted degradation of environmeng ally relevant organic compoundsin wastewater using novel fluidized bed photoreactor[J],Environ.Sci & Technol,1996,30:817-824.
    [48]Matthews R W,Kinetics of photocatalytic oxidation of organic solutesover titanium dioxide[J],J.Catal,1988,111:264-272.
    [49]Rapiph W.Mathews,Solar-electric water purification using photocatalytic oxidation with TiO_2 as a stationary phase[J],Solar Energy,1987,38(6):405-413.
    [50]Al-Ekabi H,Serpone N,Kinetic studies in heterogeneous photocalysis[J],J Phys Chem,1998,92(20):5726-5731.
    [51]Matthews R W,Photooxidation degradation of colourded organics in water using supported catalysts TiO_2 on sand[J],Wat.Res,1991,25(10):1169-1176.
    [52]Berry R J,Mueller M R,Photocatalytic decomposition of crude oil slicks using TiO_2floating subtrate[J],Microchem.J,1994,50:28-32.
    [53]陈士夫,梁新等,空心玻璃微球负载TiO_2光催化降解有机磷农药[J],感光科学和光化学,1999,17(1):85-91.
    [54]李冀辉,贾志欣,冯莉莉,刘淑芬,二氧化钛嵌入膨胀石墨材料制备[J],非金属矿,2006,29(5):39-41.
    [55]李冀辉,贾志欣,冯莉莉,负载二氧化钛的膨胀石墨的制备及表征[J],材料导报,2006,20,专辑Ⅵ:97-98.
    [56]黄绵峰,郑治祥等,膨胀石墨负载二氧化钛光催化剂的制备、表征与光催化性能[J],硅酸盐学报,2008,36(3):325-329.
    [57]Tsumura T,Kojitani N,Umemura H,et al.Composites between photoactive anatase-type TiO_2 and adsorptive carbon[J],Appl Surf Sci,2002,196:429-436.
    [58]Savoskin M V,Yaroshenko A P,Lazarev N I,et al.Using graphite intercalation compounds for producing exfoliated graphiteamorphous carbon-TiO_2 composites,J.Phy.Chem.Solids,2006,67:1205-1207.
    [59]Jihui Li,Caili Mi,Jing Li,et al,The removal of MO molecules from aqueous solution by the combination of ultrasound/adsorption/photocatalysis[J],Ultrasonics Sonochemistry.2008,15(6):949-954.
    [60]李冀辉,米彩丽,李晶等,纳米TiO_2嵌入膨胀石墨处理甲基橙染料污水的研究[J],非金属矿,2008,31(2):21-23.
    [61]Jihui Li,Lili Feng,Zhixin Jia,Preparation of expanded graphite with 160 μm mesh of fine flake graphite[J],Materials Letters,2006,60(6):746-749.
    [62]梁结荣,刘吕荣,盛正华编,普通物理学第一分册,力学[M],北京:高等教育出版社,1987:389-393.
    [63]吴胜举,超声降解处理水体污染物的研究状况与发展[J],物理,2001(12):782-785.
    [64]张艳臻,超声波的声纳原理和空化效应[J],广西物理,1996(4):8-10.
    [65]Ji-Tai Li,Mei Li,Ji-Hui Li,Han-Wen Sun,Decolorization of azo dye direct scarlet 4BS using exfoliated graphite under ultrasound irradiation[J],Ultrasonics Sonochemistry,2007,14(2):241-245.
    [66]Ji-Tai Li,Mei Li,Ji-Hui Li,Han-Wen Sun,Removal of disperse blue 2BLN from aqueous solution by combination of ultrasound and exfoliated graphite[J],Ultrasonics Sonochemistry,2007,14(1) 62-66.
    [67]Mei Li,Ji-Tai Li,Han-Wen Sun,Sonochemical decolorization of acid black 210 in the presence of exfoliated graphite[J],Ultrasonics Sonochemistry,2008,15(1):37-42.
    [68]Mei Li,Ji-Tai Li,Han-Wen Sun,Decolorizing of azo dye Reactive 24 aqueous solution using exfoliated graphite and H_2O_2 under ultrasound irradiation[J],Ultrasonics Sonochemistry,2008,15(5):717-723.
    [69]宋勇,戴友芝,超声波及其联用技术处理有机污染物的研究进展[J],工业安全与环保,2005,31(7):1-3.
    [70]Yoko Nishi,G uangze Dai,Norio Iwashita,et al,Evaluation of Sorption Behvior of Heavy Oil into Exfoliated Graphite by Wicking Test[J],Materials Science Research International,2002,8(4):243-248.
    [71]Michio Inagaki,Akihiro Kawahara,Hidetaka Konno,Sorption and recovery of heavy oils using carbonized fir fibers and recycling[J],Carbon,2002,40(1):105-111.
    [72]Michio Inagaki,Akihiro Kawahara,Yoko Nishi,Norio Iwashita,Heavy oil sorption and recovery by using carbon fiber felts[J],Carbon,2002,40(9) 1487-1492.
    [73]Sambandam Anandan,Photocatalytic effects of titania supported nanoporous MCM-41on degradation of methyl orange in the presence of electron acceptors[J],Dyes Pigments 2008,76(2):535-541.
    [74]Ke Dai,Hao Chen,Tian You Peng,Photocatalytic degradation of methyl orange in aqueous suspension of mesoporous Titania nanoparticles[J],Chemosphere,2007,69(9):1361-1367.
    [75]T Tsumura,N Kojitani,I Izumi,et al,Carbon coating of anatase-type TiO_2 and potoactivity[J],Materials Chemistry,2002,12(5):1391-1396.
    [76]Li Chensha,Tang Yaping,et al,Photocatalytic degradating methyl orange in water phase by UV-irradiated Cds carried by carbon nanotubes[J],Science in China Series E:Technoligical Sciences,2007,50(3) 279-289.
    [77]梁成浩,白忻平,超声波阻垢性能的研究[J],中国给水排水,2003,19(13):64-67.
    [78]孙晓霞,杜平等,重油催化裂化油浆换热设备应用超声防垢的研究及工业试验[J],石油炼制与化工,2003,34(6):52-56.
    [79]K M Swamy,K L Narayana,Intensification of leaching process by dual-frequency ultrasound[J],Ultrasonics Sonochemistry,2001,8(4):341-346.
    [80]郑光洪,冯西宁,染料化学[M],中国纺织出版社,2001.10.
    [81]程薇,过氧化氢催化体系对染料废水的处理研究[D],南京:南京工业大学,2002.
    [82]胥维昌,染料行业废水处理现状和展望[J],染料工业,2002,39(6):35-39.
    [83]樊毓新,周增颜,染料废水的处理方法现状与发展前景[J],环境保护,2002(9):22-23.
    [84]刘立华,张连瑞,处理染料废水的研究进展[J],化工科技市场,2005,(11):20-22.
    [85]Bor-Yann Chen,Understanding decolorization characteristics of reactive azo dyes by Pseudomonas luteola:toxicity and kinetics[J],Process Biochemistry,2002,38(3):437-446.
    [86]颜秀茹,李晓红等,固定相TiO_2催化剂及其反应器研究进展[J],化工进展,2000(2):12-14.
    [87]王亚明,朱和益等,有机废水催化氧化处理的研究进展[J],化工环保,1999,19(3):145-147.
    [88]田春荣,王怡中,胡春,染料化合物光催化氧化降解中氮元素行为分析[J],环境化学,2001,20(1):18-22.
    [89]王萍,印染废水处理方法的研究进展[J],化工环保,1997,17(5):273-276.
    [90]Tian Z R,Tong W,Wang J Y,et al.Manganese oxide mesoporous structure:Mixedvalent semiconducting catalysts[J],Science,1997,276:926.
    [91]洪昕林,张高勇等,介孔锰氧复合物的表面活性剂模板合成与孔结构分析[J],日用化学工业,2002,32(6):6-8.
    [92]Tian Z R,Tong W,Wang J Y,et al.Manganese oxide mesoporous structure:Mixedvalent semiconducting catalysts[J],Science,1997,276:926.
    [93]Mark E.Nielsen,Martin R.Fisk,Data report:specific surface area and physical properties of subsurface basalt samples from the east flank of Juan de Fuca Ridge,Proceedings of the Integrated Ocean Drilling Program,doi:10.2204/iodp.proc.301.205.2008.
    [94]Kruk M,Jaroniec M.Gas adsorption characterization of ordered organic-ino rganic nanocomposite materials[J].Chem Mat,2001,13:316923183.
    [95]徐如人,庞文琴等,分子筛与多孔材料化学[M],北京:科学出版社,2004.
    [96]宋绵新,周天亮等,稀土-沸石-TiO_2三元体系光催化材料的性能研究[J],中国稀土学报,2007,25(2):442-446.
    [97]田敏,张银年,李洪潮,柔性石墨的发展状况[J],矿产保护与利用,1999(5):42-45.
    [98]F Urbach,Potential effects of altered solar ultraviolet radiation on human skin cancer[J],Photochem.Photobiol,1989,50(4):507-513.
    [99]A Green,G Williams,Ultraviolet radiation and skin cancer:epidemiological data from Australia,in:A.R.Young(Ed.),ultraviolet Radiation and Skin Cancer:Epidemiological Data from Australia,Plenum press,New York,1993,233-254.
    [100]David H.Sliney,UV radiation ocular exposure dosimetry[J],Journal of Photochemistry and Photobiology B:Biology,1995,31(1-2):69-77.
    [101]United Nations Environment Progam,World Health Organization,International Commission on Non-Ionizing Radiation Protection,Environmental Health Criteria 160,Ultraviolet Radiation,World Health Organization,Geneva,1994.
    [102]方世杰,徐明霞等,纳米TiO_2光催化降解甲基橙[J],硅酸盐学报,2001,29(5):439-442.
    [103]孟令芝,有机波普分析[M],武汉:武汉大学出版社,1996.16.
    [104]刘雪粉,俞云良等,超声波应用于吸附/脱附过程的研究进展[J],化工进展,2006,25(6):639-645.
    [105]李红,王君等,二氧化钛催化超声降解酸性品红溶液及纳米锐钛矿型与普通金红石型二氧化钛催化性能的比较[J],染料与染色,2004,41(5):306-308.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700